1
|
Bayati M, Lund MN, Tiwari BK, Poojary MM. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr Rev Food Sci Food Saf 2024; 23:e13376. [PMID: 38923698 DOI: 10.1111/1541-4337.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Cold plasma treatment is an innovative technology in the food processing and preservation sectors. It is primarily employed to deactivate microorganisms and enzymes without heat and chemical additives; hence, it is often termed a "clean and green" technology. However, food quality and safety challenges may arise during cold plasma processing due to potential chemical interactions between the plasma reactive species and food components. This review aims to consolidate and discuss data on the impact of cold plasma on the chemical constituents and physical and functional properties of major food products, including dairy, meat, nuts, fruits, vegetables, and grains. We emphasize how cold plasma induces chemical modification of key food components, such as water, proteins, lipids, carbohydrates, vitamins, polyphenols, and volatile organic compounds. Additionally, we discuss changes in color, pH, and organoleptic properties induced by cold plasma treatment and their correlation with chemical modification. Current studies demonstrate that reactive oxygen and nitrogen species in cold plasma oxidize proteins, lipids, and bioactive compounds upon direct contact with the food matrix. Reductions in nutrients and bioactive compounds, including polyunsaturated fatty acids, sugars, polyphenols, and vitamins, have been observed in dairy products, vegetables, fruits, and beverages following cold plasma treatment. Furthermore, structural alterations and the generation of volatile and non-volatile oxidation products were observed, impacting the color, flavor, and texture of food products. However, the effects on dry foods, such as seeds and nuts, are comparatively less pronounced. Overall, this review highlights the drawbacks, challenges, and opportunities associated with cold plasma treatment in food processing.
Collapse
Affiliation(s)
- Mohammad Bayati
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin 15, Ireland
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Ajmal M, Shao Y, Huo W, Lu W. Deep-dewatering of sewage sludge using double dielectric barrier discharge (DDBD) plasma technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168887. [PMID: 38016553 DOI: 10.1016/j.scitotenv.2023.168887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Deep dewatering of sewage sludge is essential for optimizing disposal and resource recovery. This study explores the potential of Double Dielectric Barrier Discharge (DDBD) plasma for enhancing waste activated sludge (WAS) dewatering. Key operational parameters (applied voltage, treatment duration, and air feeding rate) were systematically investigated using a two-step approach: Single Factor-at-a-Time (SFAT) and central composite design (CCD) within the response surface methodology (RSM) framework. The aim was to identify influential factors and their optimal settings for maximizing dewatering efficiency while minimizing energy usage. Higher applied voltages (30 kV) and longer treatment durations (40 min) notably improved % moisture reduction (%MR) (92.92 % and 94.35 %, respectively). ANOVA analysis emphasized the equal and substantial impact of applied voltage and treatment duration on %MR and energy efficiency (EE), whereas the air feeding rate exhibited no significant effect. However, it's worth noting that %MR and EE did not display a strictly linear relationship, suggesting complex interactions. Furthermore, two soft sensing models were developed: a quadratic model for %MR and a linear model for energy efficiency (EE). Results showed minimal reductions in TOC content, maintaining values between 13.68 % and 14.28 % compared to untreated sludge 14.37 %. The study also revealed that ROS generated by DDBD plasma played a key role in sludge disintegration, as observed through SEM and FTIR, enhancing dewatering efficiency by the destruction of sludge flocs and the transformation of organic substances. In conclusion, DDBD plasma technology offers a sustainable solution for effective sludge dewatering in WWTPs, preserving organic content.
Collapse
Affiliation(s)
- Muhammad Ajmal
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Dirks T, Yayci A, Klopsch S, Krewing M, Zhang W, Hollmann F, Bandow JE. Immobilization protects enzymes from plasma-mediated inactivation. J R Soc Interface 2023; 20:20230299. [PMID: 37876274 PMCID: PMC10598437 DOI: 10.1098/rsif.2023.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Non-thermal plasmas are used in various applications to inactivate biological agents or biomolecules. A complex cocktail of reactive species, (vacuum) UV radiation and in some cases exposure to an electric field together cause the detrimental effects. In contrast to this disruptive property of technical plasmas, we have shown previously that it is possible to use non-thermal plasma-generated species such as H2O2 as cosubstrates in biocatalytic reactions. One of the main limitations in plasma-driven biocatalysis is the relatively short enzyme lifetime under plasma-operating conditions. This challenge could be overcome by immobilizing the enzymes on inert carrier materials. Here, we tested whether immobilization is suited to protect proteins from inactivation by plasma. To this end, using a dielectric barrier discharge device (PlasmaDerm), plasma stability was tested for five enzymes immobilized on ten different carrier materials. A comparative analysis of the treatment times needed to reduce enzyme activity of immobilized and free enzyme by 30% showed a maximum increase by a factor of 44. Covalent immobilization on a partly hydrophobic carrier surface proved most effective. We conclude from the study, that immobilization universally protects enzymes under plasma-operating conditions, paving the way for new emerging applications.
Collapse
Affiliation(s)
- Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Abdulkadir Yayci
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabrina Klopsch
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, People's Republic of China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Sremački I, Asadian M, De Geyter N, Leys C, Geris L, Nikiforov A. Potentials of a Plasma-Aerosol System for Wound Healing Advanced by Drug Introduction: An In Vitro Study. ACS Biomater Sci Eng 2023; 9:2392-2407. [PMID: 37129346 DOI: 10.1021/acsbiomaterials.2c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cold plasmas have found their application in a wide range of biomedical fields by virtue of their high chemical reactivity. In the past decades, many attempts have been made to use cold plasmas in wound healing, and within this field, many studies have focused on plasma-induced cell proliferation mechanisms. In this work, one step further has been taken to demonstrate the advanced role of plasma in wound healing. To this end, the simultaneous ability of plasma to induce cell proliferation and permeabilize treated cells has been examined in the current study. The driving force was to advance the wound healing effect of plasma with drug delivery. On this subject, we demonstrate in vitro the healing effect of Ar, Ar+N2 plasma, and their aerosol counterparts. A systematic study has been carried out to study the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cell adhesion, signaling, differentiation, and proliferation. An additional investigation was also performed to study the permeabilization of cells and the delivery of the modeled drug carrier fluorescein isothiocyanate (FITC) labeled dextran into cells upon plasma treatment. Short 35 s plasma treatments were found to promote fibroblast adhesion, migration, signaling, proliferation, and differentiation by means of reactive oxygen and nitrogen species (RONS) created by plasma and deposited into the cell environment. The impact of the plasma downstream products NO2- and NO3- on the expressions of the focal adhesion's genes, syndecans, and collagens was observed to be prominent. On the other hand, the differentiation of fibroblasts to myofibroblasts was mainly initiated by ROS produced by the plasma. In addition, the ability of plasma to locally permeabilize fibroblast cells was demonstrated. During proliferative cell treatment, plasma can simultaneously induce cell membrane permeabilization (d ∼ 7.3 nm) by the species OH and H2O2. The choice for a plasma or a plasma-aerosol configuration thus allows the possibility to change the spatial chemistry of drug delivery molecules and thus to locally deliver drugs. Accordingly, this study offers a pivotal step toward plasma-assisted wound healing advanced by drug delivery.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Mahtab Asadian
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, ON1 Herestraat 49, 3000 Leuven, Belgium
- Biomechanics Research Unit, Liège University, GIGA In Silico Medicine, Quartier Hôpital avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|
5
|
Xu Y, Bai Y, Dai C, Lv H, Zhou X, Xu Q. Effects of non-thermal atmospheric plasma on protein. J Clin Biochem Nutr 2022; 71:173-184. [PMID: 36447493 PMCID: PMC9701599 DOI: 10.3164/jcbn.22-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2024] Open
Abstract
Currently, the advancement in non-thermal atmospheric plasma technology enables plasma treatments on some heat-sensitive targets, including biological substances, without unspecific damage caused by thermal effect. The significant effects of non-thermal atmospheric plasma modulating biological events have been demonstrated by considerable studies. Protein, one of the most important biomolecules, participates in the majority of the life-sustaining activities in all organisms, whose functions are derived from the diverse biochemical properties of amino acid compositions and four-tiered protein structure hierarchy. Therefore, the knowledge of how non-thermal atmospheric plasma affects protein greatly benefits the understanding and application of the non-thermal atmospheric plasma's effect in biological area. In this review, we summarize recent research progress on the effects of non-thermal atmospheric plasma, particularly its reactive species, on biochemical and biophysical characteristics of proteins at different structural levels that leads to their functional changes. Moreover, the physiological effects of non-thermal atmospheric plasma at cellular or organism level driven by the manipulations on protein and their relative application prospects are reviewed. Despite the exceptional application potential, the exploration of the non-thermal atmospheric plasma's effect on protein still confronts with difficulties due to the limited knowledge of the underlying mechanisms and the complexity of non-thermal atmospheric plasma operation systems, which requires further studies and standardization of non-thermal atmospheric plasma treatments.
Collapse
Affiliation(s)
- Yong Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Yu Bai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Chenwei Dai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Han Lv
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Xiuhong Zhou
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Qinghua Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| |
Collapse
|
6
|
Martusevich AK, Surovegina AV, Bocharin IV, Nazarov VV, Minenko IA, Artamonov MY. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidants (Basel) 2022; 11:antiox11071262. [PMID: 35883753 PMCID: PMC9311881 DOI: 10.3390/antiox11071262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma.
Collapse
Affiliation(s)
- Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-909-144-9182
| | - Alexandra V. Surovegina
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
| | - Ivan V. Bocharin
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
| | - Vladimir V. Nazarov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Institute of Applied Physics, 603950 Nizhny Novgorod, Russia
| | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| |
Collapse
|
7
|
Khanikar RR, Kalita M, Kalita P, Kashyap B, Das S, Khan MR, Bailung H, Sankaranarayanan K. Cold atmospheric pressure plasma for attenuation of SARS-CoV-2 spike protein binding to ACE2 protein and the RNA deactivation. RSC Adv 2022; 12:9466-9472. [PMID: 35424902 PMCID: PMC8985215 DOI: 10.1039/d2ra00009a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cold atmospheric pressure (CAP) plasma has a profound effect on protein-protein interactions. In this work, we have highlighted the deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein by CAP plasma treatment. Complete deactivation of spike protein binding to the human ACE2 protein was observed within an exposure time of 5 minutes which is correlated to the higher concentration of hydrogen peroxide formation due to the interaction with the reactive oxygen species present in the plasma. On the other hand, we have established that CAP plasma is also capable of degrading RNA of SARS-CoV-2 virus which is also linked to hydrogen peroxide concentration. The reactive oxygen species is produced in the plasma by using noble gases such as helium, in the absence of any other chemicals. Therefore, it is a green process with no chemical waste generated and highly advantageous from the environmental safety prospects. Results of this work could be useful in designing plasma-based disinfection systems over those based on environmentally hazardous chemical-based disinfection and biomedical applications.
Collapse
Affiliation(s)
- Rakesh Ruchel Khanikar
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Monalisa Kalita
- Life Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Parismita Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Bhaswati Kashyap
- Life Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Santanu Das
- Life Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Mojibur R Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Heremba Bailung
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
8
|
Evaluation of photodynamic effect of Indocyanine green (ICG) on the colon and glioblastoma cancer cell lines pretreated by cold atmospheric plasma. Photodiagnosis Photodyn Ther 2021; 35:102408. [PMID: 34171459 DOI: 10.1016/j.pdpdt.2021.102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cold Atmospheric Plasma (CAP) has been proposed as a new approach based on its anticancer potential. However, its biological effects in combination with other physical modalities may also enhance efficiency and expand the applicability of the CAP method Photodynamic Therapy (PDT) may be improved by the use of indocyanine green (ICG) photosensitizer with absorption wavelength in the near infrared region to allow for deeper treatment depth.. In this study, the effectiveness of cold atmospheric helium plasma (He-CAP) as a pretreatment on the efficiency of ICG mediated PDT was investigated. METHODS AND MATERIAL First, toxicity of different concentrations of ICG on HT-29 and U-87MG cell lines was examined for 24 h. IC10 and IC30 of ICG were determined and then cells were treated with this ICG concentrations with different plasma radiation doses and light exposures for 48 h. Finally, MTT assay was performed for all treatment groups. The experiments were repeated at least 4 times at each group for two cell lines, separately. In order to compare the results, several indicators such as treatment efficiency, synergistic ratio, and the amount of optical exposure required for 50% cell death (ED50) were also defined. Finally, SPSS 20 software is used for statistical analysis of data. RESULTS Pretreatment with CAP could significantly reduce cell survival in both cell lines (P<0.05). Also concentrations, irradiation time with CAP, and appropriate light exposure in both cell lines increased therapeutic efficiency compared to either treatment alone (P<0.05). While increasing the efficiency of photodynamic therapy varied between the two cell lines, the improvement in the PDT process was demonstrated by pretreatment with CAP. CONCLUSION Synergistic effect in the cell death with PDT were observed following He-CAP treatment and the results indicated that pretreatment with He-CAP improves the efficiency of photodynamic therapy.
Collapse
|
9
|
Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03750-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
11
|
Physicochemical properties of Grass pea (Lathyrus sativus L.) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of multidrug-resistant bacteria poses a significant threat to human health. Plasma activated liquids (PAL) could be a promising alternative for microbial decontamination, where different PAL can possess diverse antimicrobial efficacies and cytotoxic profiles, depending on the range and concentration of their reactive chemical species. In this research, the biological activity of plasma activated water (PAW) on different biological targets including both microbiological and mammalian cells was investigated in vitro. The aim was to further an understanding of the specific role of distinct plasma reactive species, which is required to tailor plasma activated liquids for use in applications where high antimicrobial activity is required without adversely affecting the biology of eukaryotic cells. PAW was generated by glow and spark discharges, which provide selective generation of hydrogen peroxide, nitrite and nitrate in the liquid. The PAW made by either spark or glow discharges showed similar antimicrobial efficacy and stability of activity, despite the very different reactive oxygen species (ROS) and reactive nitrogen species profiles (RNS). However, different trends were observed for cytotoxic activities and effects on enzyme function, which were translated through the selective chemical species generation. These findings indicate very distinct mechanisms of action which may be exploited when tailoring plasma activated liquids to various applications. A remarkable stability to heat and pressure was noted for PAW generated with this set up, which broadens the application potential. These features also suggest that post plasma modifications and post generation stability can be harnessed as a further means of modulating the chemistry, activity and mode of delivery of plasma functionalised liquids. Overall, these results further understanding on how PAL generation may be tuned to provide candidate disinfectant agents for biomedical application or for bio-decontamination in diverse areas.
Collapse
|
13
|
Abstract
In recent years, non-thermal plasma (NTP) application in agriculture is rapidly increasing. Many published articles and reviews in the literature are focus on the post-harvest use of plasma in agriculture. However, the pre-harvest application of plasma still in its early stage. Therefore, in this review, we covered the effect of NTP and plasma-treated water (PTW) on seed germination and growth enhancement. Further, we will discuss the change in biochemical analysis, e.g., the variation in phytohormones, phytochemicals, and antioxidant levels of seeds after treatment with NTP and PTW. Lastly, we will address the possibility of using plasma in the actual agriculture field and prospects of this technology.
Collapse
|
14
|
Pan YW, Cheng JH, Sun DW. Inhibition of fruit softening by cold plasma treatments: affecting factors and applications. Crit Rev Food Sci Nutr 2020; 61:1935-1946. [PMID: 32539433 DOI: 10.1080/10408398.2020.1776210] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Softening is a common phenomenon of texture changes associated with plant cell walls, inducing a decrease in the quality of fruit. Inhibiting the softening is effective to extend the shelf life of fruit. Cold plasma (CP), as a novel nonthermal technology, has been applied to keep the freshness of the fruit. This review centers on applying cold plasma treatments to the inhibition of fruit softening. Different pathways for inhibiting fruit softening by CP treatments, including maintenance of fruit firmness, reduction in the activities of enzymes, inactivation of fungal pathogens and lowering of respiration rates, are discussed. The biochemistry of fruit softening and the fundamental of cold plasma are also presented. In general, among all postharvest technologies, cold plasma is a promising method with many advantages, showing great potential in maintaining the quality and inhibiting the softening of the fruit. Future work should focus on process optimization to achieve better results in maintaining fruit freshness, and commercial applications of cold plasma technology should also be explored.
Collapse
Affiliation(s)
- Ya-Wen Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Śmiłowicz D, Kogelheide F, Stapelmann K, Awakowicz P, Metzler-Nolte N. Study on Chemical Modifications of Glutathione by Cold Atmospheric Pressure Plasma (Cap) Operated in Air in the Presence of Fe(II) and Fe(III) Complexes. Sci Rep 2019; 9:18024. [PMID: 31792236 PMCID: PMC6888970 DOI: 10.1038/s41598-019-53538-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
Cold atmospheric pressure plasma is an attractive new research area in clinical trials to treat skin diseases. However, the principles of plasma modification of biomolecules in aqueous solutions remain elusive. It is intriguing how reactive oxygen and nitrogen species (RONS) produced by plasma interact on a molecular level in a biological environment. Previously, we identified the chemical effects of dielectric barrier discharges (DBD) on the glutathione (GSH) and glutathione disulphide (GSSG) molecules as the most important redox pair in organisms responsible for detoxification of intracellular reactive species. However, in the human body there are also present redox-active metals such as iron, which is the most abundant transition metal in healthy humans. In the present study, the time-dependent chemical modifications on GSH and GSSG in the presence of iron(II) and iron(III) complexes caused by a dielectric barrier discharge (DBD) under ambient conditions were investigated by IR spectroscopy, mass spectrometry and High Performance Liquid Chromatography (HPLC). HPLC chromatograms revealed one clean peak after treatment of both GSH and GSSH with the dielectric barrier discharge (DBD) plasma, which corresponded to glutathione sulfonic acid GSO3H. The ESI-MS measurements confirmed the presence of glutathione sulfonic acid. In our experiments, involving either iron(II) or iron(III) complexes, glutathione sulfonic acid GSO3H appeared as the main oxidation product. This is in sharp contrast to GSH/GSSG treatment with DBD plasma in the absence of metal ions, which gave a wild mixture of products. Also interesting, no nitrosylation of GSH/GSSG was oberved in the presence of iron complexes, which seems to indicate a preferential oxygen activation chemistry by this transition metal ion.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
16
|
Park JH, Yun JH, Shi Y, Han J, Li X, Jin Z, Kim T, Park J, Park S, Liu H, Lee W. Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers. Int J Mol Sci 2019; 20:E1943. [PMID: 31010024 PMCID: PMC6514806 DOI: 10.3390/ijms20081943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 integrase (HIV-1 IN) is an enzyme produced by the HIV-1 virus that integrates genetic material of the virus into the DNA of infected human cells. HIV-1 IN acts as a key component of the Retroviral Pre-Integration Complex (PIC). Protein dynamics could play an important role during the catalysis of HIV-1 IN; however, this process has not yet been fully elucidated. X-ray free electron laser (XFEL) together with nuclear magnetic resonance (NMR) could provide information regarding the dynamics during this catalysis reaction. Here, we report the non-cryogenic crystal structure of HIV-1 IN catalytic core domain at 2.5 Å using microcrystals in XFELs. Compared to the cryogenic structure at 2.1 Å using conventional synchrotron crystallography, there was a good agreement between the two structures, except for a catalytic triad formed by Asp64, Asp116, and Glu152 (DDE) and the lens epithelium-derived growth factor binding sites. The helix III region of the 140-153 residues near the active site and the DDE triad show a higher dynamic profile in the non-cryogenic structure, which is comparable to dynamics data obtained from NMR spectroscopy in solution state.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Yingchen Shi
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Zeyu Jin
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Taehee Kim
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jaehyun Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Sehan Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
17
|
Han Y, Cheng JH, Sun DW. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit Rev Food Sci Nutr 2019; 59:794-811. [DOI: 10.1080/10408398.2018.1555131] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yongxu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
- Agriculture and Food Science Centre, Food Refrigeration and Computerized Food Technology University College Dublin National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
18
|
Farasat M, Arjmand S, Ranaei Siadat SO, Sefidbakht Y, Ghomi H. The effect of non-thermal atmospheric plasma on the production and activity of recombinant phytase enzyme. Sci Rep 2018; 8:16647. [PMID: 30413721 PMCID: PMC6226467 DOI: 10.1038/s41598-018-34239-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Atmospheric pressure cold plasma (ACP) is introduced as a useful tool in a variety of biological applications. Proteins are the most abundant macromolecules in living systems with a central role in all biological processes. These organic molecules are modified by ACP exposure that is responsible for many of ACP's biological effects. This study evaluated the effect of ACP on the production of recombinant phytase in yeast Pichia pastoris (P. pastoris) as well as the structure and function of the phytase enzyme. The results indicated that yeast cells treated with ACP, directly or indirectly, produced higher amounts of recombinant phytase, which was associated with the time of ACP treatment. The exposure of commercial phytase solution with ACP caused a significant increase in the enzyme activity (125%) after 4 hours. Evaluation of the phytase solution by far- and near-UV circular dichroism (CD) and fluorescence analysis indicated that this protein maintained its secondary structure when exposed to ACP while the tertiary structure was slightly unfolded. The effects of heat and H2O2 on the phytase structure and function were compared with the effect of ACP treatment. The modification of Cys, Tyr and Trp amino acids upon reactive oxygen/nitrogen spices was simulated using a molecular dynamics approach. RMSF and RMSD analysis suggested that this structural alteration occurs owing to changes made by reactive species in accessible amino acids.
Collapse
Affiliation(s)
- Mahsa Farasat
- Laser and Plasma research Institute, Shahid Beheshti University, G. C., Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran.
| | | | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma research Institute, Shahid Beheshti University, G. C., Tehran, Iran
| |
Collapse
|
19
|
Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 2018; 8:11268. [PMID: 30050086 PMCID: PMC6062550 DOI: 10.1038/s41598-018-29549-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
There is a growing body of literature that recognizes the importance of plasma treated water (PTW) for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.
Collapse
|
20
|
Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 2018; 8:10218. [PMID: 29977069 PMCID: PMC6033864 DOI: 10.1038/s41598-018-28600-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Collapse
Affiliation(s)
- Pankaj Attri
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea.
| |
Collapse
|
21
|
Zhang H, Ma J, Shen J, Lan Y, Ding L, Qian S, Xia W, Cheng C, Chu PK. Roles of membrane protein damage and intracellular protein damage in death of bacteria induced by atmospheric-pressure air discharge plasmas. RSC Adv 2018; 8:21139-21149. [PMID: 35539941 PMCID: PMC9080852 DOI: 10.1039/c8ra01882k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023] Open
Abstract
Although plasma sterilization has attracted much attention, the underlying mechanisms and biochemical pathways are still not fully understood. In this work, we investigate the molecular mechanism pertaining to the inactivation of Escherichia coli (E. coli) by air discharge plasmas. The membrane protein YgaP and intracellular protein swc7 are over-expressed in E. coli by genetic recombination and gene inducible expression techniques and plasma exposure is demonstrated to alter the structures of YgaP and swc7 in E. coli. The plasma-induced damage of YgaP and swc7 involves changes in the secondary and tertiary structures instead of the primary structure and the modification effectiveness depends on the storage time after the plasma treatment. Owing to the unique structure of E. coli, YgaP is more susceptible to the plasma treatment than intracellular swc7. Within 1 h after plasma exposure, YgaP is modified but not swc7, but after 1 h or longer, both YgaP and swc7 proteins are indeed modified. By analyzing the plasma-induced antimicrobial efficacy and modification of YgaP and swc7, plasma-induced modification of the membrane proteins is the major cause of bacterial death but there is no identifiable relationship with modification of the intracellular protein. The new results provide insights into the mechanism of multiple plasma-induced damage to bacteria and cells as well as the disinfection mechanism.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life Science, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
- Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei 230031 P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 People's Republic of China
| | - Jie Ma
- School of Life Science, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 People's Republic of China
| | - Jie Shen
- Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei 230031 P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 People's Republic of China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei 230031 P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 People's Republic of China
| | - Lili Ding
- School of Life Science, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
| | - Shulou Qian
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
| | - Weidong Xia
- School of Life Science, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei Anhui Province 230026 People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei 230031 P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 People's Republic of China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
22
|
Pérez-Andrés JM, Charoux CMG, Cullen PJ, Tiwari BK. Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5041-5054. [PMID: 29672043 DOI: 10.1021/acs.jafc.7b06055] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A range of nonthermal techniques have demonstrated process efficacy in ensuring product safety, extension of shelf life, and in general a retention of key quality attributes. However, various physical, chemical and biochemical effects of nonthermal techniques on macro and micro nutrients are evident, leading to both desirable and undesirable changes in food products. The objective of this review is to outline the effects of nonthermal techniques on food chemistry and the associated degradation mechanisms with the treatment of foods. Oxidation is one of the key mechanisms responsible for undesirable effects induced by nonthermal techniques. Degradation of key macromolecules largely depends on the processing conditions employed. Various extrinsic and intrinsic control parameters of high-pressure processing, pulsed electric field, ultrasound processing, and cold atmospheric plasma on chemistry of processed food are outlined. Proposed mechanisms and associated degradation of macromolecules, i.e., proteins, lipids, and bioactive molecules resulting in food quality changes are also discussed.
Collapse
Affiliation(s)
- Juan M Pérez-Andrés
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
| | - Clémentine M G Charoux
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- School of Biosystems and Food Engineering , University College Dublin , Dublin 4 , Ireland
| | - P J Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
- Department of Chemical and Environmental Engineering , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Brijesh K Tiwari
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
| |
Collapse
|
23
|
Choi SH, Jeong WS, Cha JY, Lee JH, Lee KJ, Yu HS, Choi EH, Kim KM, Hwang CJ. Effect of the ultraviolet light treatment and storage methods on the biological activity of a titanium implant surface. Dent Mater 2017; 33:1426-1435. [PMID: 29033191 DOI: 10.1016/j.dental.2017.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We evaluated whether the biological activity of the surface of titanium, when stored in an aqueous solution, in low vacuum, and under ambient conditions after ultraviolet light (UV) treatment is comparable to that of the surface immediately after UV treatment for 15min and that after dielectric barrier discharge (DBD) plasma treatment for 15min. METHODS Grade IV titanium discs with machined surfaces were irradiated with UV and their surface properties were evaluated immediately and after storage for 28days in distilled H2O (dH2O), a vacuum desiccator (31.325kPa), and a sealed container under air. Their surface characteristics were evaluated by atomic force microscopy, X-ray diffraction, contact angle analysis, and X-ray photoelectron spectroscopy. Biological activities were determined by analyzing the albumin adsorption, MC3T3-E1 cell adhesion, and cytoskeleton development. RESULTS Hydrophilicity of titanium surfaces stored in dH2O was comparable to that immediately after UV treatment and higher than that immediately after DBD plasma treatment (P<0.001). Storage in dH2O and in low vacuum immediately after UV treatment prevented hydrocarbon contamination and maintained elevated amounts of titanium and oxygen. After 28 days, protein adsorption, cellular adhesion, and cytoskeletal development of MC3T3-E1 cells on the titanium surfaces stored in dH2O were significantly enhanced compared to those stored in low vacuum and under ambient conditions while being comparable to those immediately after UV and DBD plasma treatments. SIGNIFICANCE UV treatment of the titanium implants followed by wet storage is useful for maintaining enhanced biological activity and overcoming biological aging during shelf storage.
Collapse
Affiliation(s)
- Sung-Hwan Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Won-Seok Jeong
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Hoon Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
24
|
Moniruzzaman R, Rehman MU, Zhao QL, Jawaid P, Takeda K, Ishikawa K, Hori M, Tomihara K, Noguchi K, Kondo T, Noguchi M. Cold atmospheric helium plasma causes synergistic enhancement in cell death with hyperthermia and an additive enhancement with radiation. Sci Rep 2017; 7:11659. [PMID: 28916738 PMCID: PMC5600975 DOI: 10.1038/s41598-017-11877-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/31/2017] [Indexed: 02/03/2023] Open
Abstract
Cold atmospheric plasmas (CAPs) have been proposed as a novel therapeutic method for its anti-cancer potential. However, its biological effects in combination with other physical modalities remain elusive. Therefore, this study examined the effects of cold atmospheric helium plasma (He-CAP) in combination with hyperthermia (HT) 42 °C or radiation 5 Gy. Synergistic enhancement in the cell death with HT and an additive enhancement with radiation were observed following He-CAP treatment. The synergistic effects were accompanied by increased intracellular reactive oxygen species (ROS) production. Hydrogen peroxide (H2O2) and superoxide (O2•–) generation was increased immediately after He-CAP treatment, but fails to initiate cell death process. Interestingly, at late hour’s He-CAP-induced O2•– generation subsides, however the combined treatment showed sustained increased intracellular O2•– level, and enhanced cell death than either treatment alone. He-CAP caused marked induction of ROS in the aqueous medium, but He-CAP-induced ROS seems insufficient or not completely incorporated intra-cellularly to activate cell death machinery. The observed synergistic effects were due to the HT effects on membrane fluidity which facilitate the incorporation of He-CAP-induced ROS into the cells, thus results in the enhanced cancer cell death following combined treatment. These findings would be helpful when establishing a therapeutic strategy for CAP in combination with HT or radiation.
Collapse
Affiliation(s)
- Rohan Moniruzzaman
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Mati Ur Rehman
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan.
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Paras Jawaid
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Keigo Takeda
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Kenji Ishikawa
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Masaru Hori
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
| | - Kei Tomihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Takashi Kondo
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Sugitani 2630, Toyama, 930-0194, Japan
| |
Collapse
|
25
|
Attri P, Kim M, Sarinont T, Ha Choi E, Seo H, Cho AE, Koga K, Shiratani M. The protective action of osmolytes on the deleterious effects of gamma rays and atmospheric pressure plasma on protein conformational changes. Sci Rep 2017; 7:8698. [PMID: 28821765 PMCID: PMC5562882 DOI: 10.1038/s41598-017-08643-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023] Open
Abstract
Both gamma rays and atmospheric pressure plasma are known to have anticancer properties. While their mechanism actions are still not clear, in some contexts they work in similar manner, while in other contexts they work differently. So to understand these relationships, we have studied Myoglobin protein after the treatment of gamma rays and dielectric barrier discharge (DBD) plasma, and analyzed the changes in thermodynamic properties and changes in the secondary structure of protein after both treatments. The thermodynamic properties were analyzed using chemical and thermal denaturation after both treatments. We have also studied the action of gamma rays and DBD plasma on myoglobin in the presence of osmolytes, such as sorbitol and trehalose. For deep understanding of the action of gamma rays and DBD plasma, we have analyzed the reactive species generated by them in buffer at all treatment conditions. Finally, we have used molecular dynamic simulation to understand the hydrogen peroxide action on myoglobin with or without osmolytes, to gain deeper insight into how the osmolytes can protect the protein structure from the reactive species generated by gamma rays and DBD plasma.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.,Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea
| | - Thapanut Sarinont
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Hyunwoong Seo
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea.
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
26
|
Interaction studies of carbon nanomaterials and plasma activated carbon nanomaterials solution with telomere binding protein. Sci Rep 2017; 7:2636. [PMID: 28572671 PMCID: PMC5454022 DOI: 10.1038/s41598-017-02690-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
Abstract
Most cancer cells have telomerase activity because they can express the human telomerase reverse transcriptase (hTERT) gene. Therefore, the inhibition of the hTERT expression can play an important role in controlling cancer cell proliferation. Our current study aims to inhibit hTERT expression. For this, we synthesized graphene oxide (GO) and a functionalized multiwall carbon nanotube (f-MWCNT), latter treated them with cold atmospheric pressure plasma for further analysis of the hTERT expression. The inhibition of hTERT expression by GO, f-MWCNT, plasma activated GO solution (PGOS), and plasma activated f-MWCNT solution (PCNTS), was studied using two lung cancer cell lines, A549 and H460. The hTERT experimental results revealed that GO and PGOS sufficiently decreased the hTERT concentration, while f-MWCNT and PCNTS were unable to inhibit the hTERT concentration. Therefore, to understand the inhibition mechanism of hTERT, we studied the binding properties of GO and PGOS with telomere binding protein (AtTRB2). The interaction studies were carried out using circular dichroism, fluorescence, 1H-15N NMR spectroscopy, and size-exclusion chromatography (SEC) binding assay. We also used docking simulation to have an better understanding of the interactions between GO nanosheets and AtTRB2 protein. Our results may provide new insights that can benefit in biomedical treatments.
Collapse
|
27
|
Choi S, Attri P, Lee I, Oh J, Yun JH, Park JH, Choi EH, Lee W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci Rep 2017; 7:1027. [PMID: 28432354 PMCID: PMC5430822 DOI: 10.1038/s41598-017-01030-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
The variation in the biological function of proteins plays an important role in plasma medicine and sterilization. Several non-thermal plasma sources with different feeding gases are used worldwide for plasma treatment, including dielectric barrier discharge (DBD) and atmospheric-pressure plasma jet (APPJ) as the most commonly used sources. Therefore, in the present work, we used both DBD and APPJ plasma sources with N2 and air as feeding gases to evaluate the effects on the structural, thermodynamic, and activity changes of enzymes. In the current work, we used lysozyme as a model enzyme and verified the structural changes using circular dichroism (CD), fluorescence, and X-ray crystallography. In addition, we investigated the lysozyme thermodynamics using CD thermal analysis and changes in the B-factor from X-ray crystallography. The results showed that lysozyme activity decreased after the plasma treatment. From these analyses, we concluded that N2-feeding gas plasma disturbs the structure and activity of lysozyme more than Air feeding gas plasma in our experimental studies. This study provides novel fundamental information on the changes to enzymes upon plasma treatment, which has been absent from the literature until now.
Collapse
Affiliation(s)
- Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Korea
| | - Inhwan Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Jeongmin Oh
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Ji Hoon Park
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 139-701, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
28
|
Kaur A, Banipal PK, Banipal TS. Study on the interactional behaviour of transition metal ions with myoglobin: A detailed calorimetric, spectroscopic and light scattering analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:236-244. [PMID: 27923210 DOI: 10.1016/j.saa.2016.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The energetics and the impact on the conformation of heme containing protein myoglobin (Mb) due to the binding of three transition metal ions (Zn2+, Ni2+, and Mn2+) have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), UV-vis, and circular dichroism (CD) spectroscopy under physiological conditions. The binding affinity of the order of 104M-1 has been observed for all metal ions from calorimetry as well as from absorption spectroscopy. The binding of these metal ions with Mb is a spontaneous process that exposes the hydrophobic groups away from the protein core as exhibited by the negative Gibbs free energy change (ΔG) and positive heat capacity change (ΔCp) values. Both light scattering and CD results demonstrates that the binding of Zn2+ and Mn2+ ions with Mb results in the folding whereas Ni2+ ion results in the unfolding of the protein. No direct interactions among the transition metal ions and heme moiety of Mb has been observed from absorption study. The results of these studies reveals that Mn2+ ion influences the biological functions of Mb to a larger extent in spite of its lowest affinity followed by Zn2+ and Ni2+ ions.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Parampaul K Banipal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Tarlok S Banipal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
29
|
Sarinont T, Katayama R, Wada Y, Koga K, Shiratani M. Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water. ACTA ACUST UNITED AC 2017. [DOI: 10.1557/adv.2017.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Attri P, Kim M, Choi EH, Cho AE, Koga K, Shiratani M. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays. Phys Chem Chem Phys 2017; 19:25277-25288. [DOI: 10.1039/c7cp04083k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TEMS IL can protect proteins against the reactive species generated by gamma rays and plasma.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 01897
- Korea
- Faculty of Information Science and Electrical Engineering
| | - Minsup Kim
- Department of Bioinformatics
- Korea University
- Sejong 02841
- Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 01897
- Korea
| | - Art E. Cho
- Department of Bioinformatics
- Korea University
- Sejong 02841
- Korea
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering
- Kyushu University
- Fukuoka
- Japan
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering
- Kyushu University
- Fukuoka
- Japan
| |
Collapse
|