1
|
Sun S, Ni J, Liu J, Tan J, Jin R, Li H, Wu X. Ubiquitin-Conjugating Enzyme Ubc13 in Macrophages Suppresses Lung Tumor Progression Through Inhibiting PD-L1 Expression. Eur J Immunol 2025; 55:e202451118. [PMID: 39711265 DOI: 10.1002/eji.202451118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Tumor cell-intrinsic ubiquitin-conjugating enzyme Ubc13 promotes tumorigenesis, yet how Ubc13 in immune cell compartments regulates tumor progression remains elusive. Here, we show that myeloid-specific deletion of Ubc13 (Ubc13fl/flLyz2Cre) leads to accelerated transplanted lung tumor growth in mice. Compared with their littermate controls, tumor-bearing Ubc13fl/flLyz2Cre mice had lower proliferation and effector function of CD8+ T lymphocytes, accompanied by increased infiltration of myeloid-derived suppressor cells within the tumor microenvironment. Mechanistically, Ubc13 deficiency leads to upregulation of Arg1 and PD-L1, the latter is modulated by reduced Ubc13-mediated K63-linked polyubiquitination and increasing activation of Akt, thereby inducing skewness to protumoral polarization and immunosuppressive manifestation. Taken together, we reveal that macrophage-intrinsic Ubc13 restrains lung tumor progression, indicating that activating Ubc13 in macrophages could be an effective immunotherapeutic regimen for lung cancer.
Collapse
Affiliation(s)
- Siying Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juofang Tan
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsen Jin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Schwalen F, Ghadi C, Ibazizene L, Khan SU, Sopkova-de Oliveira Santos J, Weiswald LB, Voisin-Chiret AS, Meryet-Figuiere M, Kieffer C. UBE2N: Hope on the Cancer Front, How to Inhibit This Promising Target Prospect? J Med Chem 2025; 68:915-928. [PMID: 39806871 DOI: 10.1021/acs.jmedchem.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners. While covalent UBE2Ni are the most advanced molecules in their development, noncovalent inhibitors offer significant advantages that could overcome the limitations of covalent ones, particularly in terms of selectivity. Lastly, to obtain a drug candidate, early assessment of the druggability of compounds is essential in a hit to lead process. For existing UBE2Ni, a critical challenge lies in their pharmacokinetic properties and will obviously have to be considered as early as possible to hope for an application in human therapy.
Collapse
Affiliation(s)
- Florian Schwalen
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
- Pharmacie, CHU Caen Normandie, 14033 Caen, France
| | - Côme Ghadi
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
| | - Léonie Ibazizene
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | - Shafi Ullah Khan
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | | | - Louis-Bastien Weiswald
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | | | - Matthieu Meryet-Figuiere
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | - Charline Kieffer
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
| |
Collapse
|
3
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
4
|
Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, Chutipongtanate S, Wyder M, Haffey WD, O'Brien E, Wunderlich M, Ramesh V, Kolb EM, Meydan C, Neelamraju Y, Bolanos LC, Christie S, Smith MA, Niederkorn M, Muto T, Kesari S, Garrett-Bakelman FE, Bartholdy B, Will B, Weirauch MT, Mulloy JC, Gul Z, Medlin S, Kovall RA, Melnick AM, Perentesis JP, Greis KD, Nurmemmedov E, Seibel WL, Starczynowski DT. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med 2022; 14:eabb7695. [PMID: 35263148 DOI: 10.1126/scitranslmed.abb7695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery M Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario A Pujato
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen M Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santosh Kesari
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen Medlin
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Elmar Nurmemmedov
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - William L Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Li L, Pan Z, Yang X. Key genes and co-expression network analysis in the livers of type 2 diabetes patients. J Diabetes Investig 2019; 10:951-962. [PMID: 30592156 PMCID: PMC6626963 DOI: 10.1111/jdi.12998] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION The incidence of type 2 diabetes is increasing worldwide. Hepatic insulin resistance and liver lipid accumulation contributes to type 2 diabetes development. The aim of the present study was to investigate the key gene pathways and co-expression networks in the livers of type 2 diabetes patients. MATERIALS AND METHODS Dataset GSE15653 containing nine healthy individuals and nine type 2 diabetes patients was downloaded from the National Center for Biotechnology Information Gene Expression Omnibus database. Differentially expressed genes were obtained from the livers of type 2 diabetes patients, annotated pathway enrichment and protein-protein interaction network analysis. Next, functional modules and transcription factor networks were constructed. Gene co-expression networks were analyzed by weighted correlation network analysis to identify key modules related to clinical traits, and the candidate key genes were validated in hepatic insulin resistance models in vitro. RESULTS A total of 778 differentially expressed genes were filtered in the livers of type 2 diabetes patients, pathway enrichment analysis identified ke y pathways, such as the mitogen-activated protein kinase signaling pathway, Hippo signaling pathway and hypoxia-inducible factor-1 signaling pathway, that were associated with type 2 diabetes. Several transcription factors of three functional modules identified from protein-protein interaction networks are likely to be implicated in type 2 diabetes. Furthermore, weighted correlation network analysis identified five modules that were shown to be highly correlated with type 2 diabetes and other clinical traits. Functional annotation showed that these modules were mainly enriched in pathways such as metabolic pathways, phosphoinositide 3-kinase-protein kinase B signaling pathway and natural killer cell-mediated cytotoxicity. UBE2M and GPER were upregulated in L02 and HepG2 models, whereas P2RY11 only upregulated in L02 model, and UBE2N only downregulated in HepG2 model at a significant level. CONCLUSIONS These results would offer new insights into hepatic insulin resistance, type 2 diabetes pathogenesis, development and drug discovery.
Collapse
Affiliation(s)
- Lu Li
- Department of PharmacyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Zongfu Pan
- Department of PharmacyZhejiang Cancer HospitalHangzhouChina
| | - Xi Yang
- Department of PharmacyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Silva VRR, Katashima CK, Lenhare L, Silva CGB, Morari J, Camargo RL, Velloso LA, Saad MA, da Silva ASR, Pauli JR, Ropelle ER. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice. Aging (Albany NY) 2018; 9:1926-1940. [PMID: 28854149 PMCID: PMC5611986 DOI: 10.18632/aging.101281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022]
Abstract
Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging.
Collapse
Affiliation(s)
- Vagner R R Silva
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Carlos K Katashima
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Luciene Lenhare
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Carla G B Silva
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 1308-970, Brazil
| | - Rafael L Camargo
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 1308-970, Brazil
| | - Mario A Saad
- Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jose Rodrigo Pauli
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.,Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil.,CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| |
Collapse
|