1
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
2
|
López-Jury L, García-Rosales F, González-Palomares E, Wetekam J, Pasek M, Hechavarria JC. A neuron model with unbalanced synaptic weights explains the asymmetric effects of anaesthesia on the auditory cortex. PLoS Biol 2023; 21:e3002013. [PMID: 36802356 PMCID: PMC10013928 DOI: 10.1371/journal.pbio.3002013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/14/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Substantial progress in the field of neuroscience has been made from anaesthetized preparations. Ketamine is one of the most used drugs in electrophysiology studies, but how ketamine affects neuronal responses is poorly understood. Here, we used in vivo electrophysiology and computational modelling to study how the auditory cortex of bats responds to vocalisations under anaesthesia and in wakefulness. In wakefulness, acoustic context increases neuronal discrimination of natural sounds. Neuron models predicted that ketamine affects the contextual discrimination of sounds regardless of the type of context heard by the animals (echolocation or communication sounds). However, empirical evidence showed that the predicted effect of ketamine occurs only if the acoustic context consists of low-pitched sounds (e.g., communication calls in bats). Using the empirical data, we updated the naïve models to show that differential effects of ketamine on cortical responses can be mediated by unbalanced changes in the firing rate of feedforward inputs to cortex, and changes in the depression of thalamo-cortical synaptic receptors. Combined, our findings obtained in vivo and in silico reveal the effects and mechanisms by which ketamine affects cortical responses to vocalisations.
Collapse
Affiliation(s)
- Luciana López-Jury
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- * E-mail: (LL-J); (JCH)
| | - Francisco García-Rosales
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | | | - Johannes Wetekam
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Michael Pasek
- Institut für Theoretische Physik, Goethe University, Frankfurt am Main, Germany
| | - Julio C. Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- * E-mail: (LL-J); (JCH)
| |
Collapse
|
3
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Warnecke M, Simmons JA, Simmons AM. Population registration of echo flow in the big brown bat's auditory midbrain. J Neurophysiol 2021; 126:1314-1325. [PMID: 34495767 DOI: 10.1152/jn.00013.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echolocating big brown bats (Eptesicus fuscus) perceive their surroundings by broadcasting frequency-modulated (FM) ultrasonic pulses and processing returning echoes. Bats echolocate in acoustically cluttered environments containing multiple objects, where each broadcast is followed by multiple echoes at varying time delays. The bat must decipher this complex echo cascade to form a coherent picture of the entire acoustic scene. Neurons in the bat's inferior colliculus (IC) are selective for specific acoustic features of echoes and time delays between broadcasts and echoes. Because of this selectivity, different subpopulations of neurons are activated as the bat flies through its environment, while the physical scene itself remains unchanging. We asked how a neural representation based on variable single-neuron responses could underlie a cohesive perceptual representation of a complex scene. We recorded local field potentials from the IC of big brown bats to examine population coding of echo cascades similar to what the bat might encounter when flying alongside vegetation. We found that the temporal patterning of a simulated broadcast followed by an echo cascade is faithfully reproduced in the population response at multiple stimulus amplitudes and echo delays. Local field potentials to broadcasts and echo cascades undergo amplitude-latency trading consistent with single-neuron data but rarely show paradoxical latency shifts. Population responses to the entire echo cascade move as a unit coherently in time as broadcast-echo cascade delay changes, suggesting that these responses serve as an index for the formation of a cohesive perceptual representation of an acoustic scene.NEW & NOTEWORTHY Echolocating bats navigate through cluttered environments that return cascades of echoes in response to the bat's broadcasts. We show that local field potentials from the big brown bat's auditory midbrain have consistent responses to a simulated echo cascade varying across echo delays and stimulus amplitudes, despite different underlying individual neuronal selectivities. These results suggest that population activity in the midbrain can build a cohesive percept of an auditory scene by aggregating activity over neuronal subpopulations.
Collapse
Affiliation(s)
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Andrea Megela Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island.,Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
5
|
Lewanzik D, Goerlitz HR. Task-dependent vocal adjustments to optimize biosonar-based information acquisition. J Exp Biol 2021; 224:jeb234815. [PMID: 33234681 DOI: 10.1242/jeb.234815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Abstract
Animals need to acquire adequate and sufficient information to guide movements, yet information acquisition and processing are costly. Animals thus face a trade-off between gathering too little and too much information and, accordingly, actively adapt sensory input through motor control. Echolocating animals provide a unique opportunity to study the dynamics of adaptive sensing in naturally behaving animals, as every change in the outgoing echolocation signal directly affects information acquisition and the perception of the dynamic acoustic scene. Here, we investigated the flexibility with which bats dynamically adapt information acquisition depending on a task. We recorded the echolocation signals of wild-caught Western barbastelle bats (Barbastella barbastellus) while they were flying through an opening, drinking on the wing, landing on a wall and capturing prey. We show that the echolocation signal sequences during target approach differed in a task-dependent manner; bats started the target approach earlier and increased the information update rate more when the task became increasingly difficult, and bats also adjusted the dynamics of call duration shortening and peak frequency shifts accordingly. These task-specific differences existed from the onset of object approach, implying that bats plan their sensory-motor programme for object approach exclusively based on information received from search call echoes. We provide insight into how echolocating animals deal with the constraints they face when sequentially sampling the world through sound by adjusting acoustic information flow from slow to extremely fast in a highly dynamic manner. Our results further highlight the paramount importance of high behavioural flexibility for acquiring information.
Collapse
Affiliation(s)
- Daniel Lewanzik
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| |
Collapse
|
6
|
Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Struct Funct 2020; 226:207-223. [PMID: 33315120 PMCID: PMC7817570 DOI: 10.1007/s00429-020-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e., echolocation covers the high-frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20–25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.
Collapse
|
7
|
García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Hechavarría JC. Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the Bat Carollia perspicillata. Front Syst Neurosci 2020; 14:14. [PMID: 32265670 PMCID: PMC7098971 DOI: 10.3389/fnsys.2020.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Most mammals rely on the extraction of acoustic information from the environment in order to survive. However, the mechanisms that support sound representation in auditory neural networks involving sensory and association brain areas remain underexplored. In this study, we address the functional connectivity between an auditory region in frontal cortex (the frontal auditory field, FAF) and the auditory cortex (AC) in the bat Carollia perspicillata. The AC is a classic sensory area central for the processing of acoustic information. On the other hand, the FAF belongs to the frontal lobe, a brain region involved in the integration of sensory inputs, modulation of cognitive states, and in the coordination of behavioral outputs. The FAF-AC network was examined in terms of oscillatory coherence (local-field potentials, LFPs), and within an information theoretical framework linking FAF and AC spiking activity. We show that in the absence of acoustic stimulation, simultaneously recorded LFPs from FAF and AC are coherent in low frequencies (1-12 Hz). This "default" coupling was strongest in deep AC layers and was unaltered by acoustic stimulation. However, presenting auditory stimuli did trigger the emergence of coherent auditory-evoked gamma-band activity (>25 Hz) between the FAF and AC. In terms of spiking, our results suggest that FAF and AC engage in distinct coding strategies for representing artificial and natural sounds. Taken together, our findings shed light onto the neuronal coding strategies and functional coupling mechanisms that enable sound representation at the network level in the mammalian brain.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| | | | - Yuranny Cabral-Calderín
- Research Group Neural and Environmental Rhythms, MPI for Empirical Aesthetics, Frankfurt, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| |
Collapse
|
8
|
Neural Modulation of the Primary Auditory Cortex by Intracortical Microstimulation with a Bio-Inspired Electronic System. Bioengineering (Basel) 2020; 7:bioengineering7010023. [PMID: 32131459 PMCID: PMC7175366 DOI: 10.3390/bioengineering7010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical stimuli. Herein, we investigated the neural modulation induced in the primary auditory cortex (A1) by an acousto-electric transduction of ultrasonic signals using a bio-inspired intracortical microstimulator. The developed electronic system emulates the transduction of ultrasound signals in the cochlea, providing bio-inspired electrical stimuli. Firstly, we identified the receptive fields in the primary auditory cortex devoted to encoding ultrasonic waves at different frequencies, mapping each area with neurophysiological patterns. Subsequently, the activity elicited by bio-inspired ICMS in the previously identified areas, bypassing the sense organ, was investigated. The observed evoked response by microstimulation resulted as highly specific to the stimuli, and the spatiotemporal dynamics of neural oscillatory activity in the alpha, beta, and gamma waves were related to the stimuli preferred by the neurons at the stimulated site. The alpha waves modulated cortical excitability only during the activation of the specific tonotopic neuronal populations, inhibiting neural responses in unrelated areas. Greater neuronal activity in the posterior area of A1 was observed in the beta band, whereas a gamma rhythm was induced in the anterior A1. The results evidence that the proposed bio-inspired acousto-electric ICMS triggers high-frequency oscillations, encoding information about the stimulation sites and involving a large-scale integration in the brain.
Collapse
|
9
|
Beetz MJ, Kössl M, Hechavarría JC. Adaptations in the call emission pattern of frugivorous bats when orienting under challenging conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:457-467. [PMID: 30997534 DOI: 10.1007/s00359-019-01337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Echolocating bats emit biosonar calls and use echoes arising from call reflections, for orientation. They often pattern their calls into groups which increases the rate of sensory feedback. Insectivorous bats emit call groups at a higher rate when orienting in cluttered compared to uncluttered environments. Frugivorous bats increase the rate of call group emission when they echolocate in noisy environments. In frugivorous bats, it remains unclear if call group emission represents an exclusive adaptation to avoid acoustic interference by signals of conspecifics or if it represents an adaptation that allows to orient under demanding environmental conditions. Here, we compared the emission pattern of the frugivorous bat Carolliaperspicillata when the bats were flying in narrow versus wide or cluttered versus non-cluttered corridors. The bats emitted larger call groups and they increased the call rate within call groups when navigating in narrow or cluttered environments. These adaptations resemble the ones shown when the bats navigate in noisy environments. Thus, call group emission represents an adaptive behavior when the bats orient in complex environments.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany. .,Zoology II Emmy-Noether Animal Navigation Group, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| |
Collapse
|
10
|
Fu Z, Zhang G, Shi Q, Zhou D, Tang J, Liu L, Chen Q. Behaviorally relevant frequency selectivity in single- and double-on neurons in the inferior colliculus of the Pratt's roundleaf bat, Hipposideros pratti. PLoS One 2019; 14:e0209446. [PMID: 30601861 PMCID: PMC6314609 DOI: 10.1371/journal.pone.0209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
Frequency analysis is a fundamental function of the auditory system, and it is essential to study the auditory response properties using behavior-related sounds. Our previous study has shown that the inferior collicular (IC) neurons of CF-FM (constant frequency-frequency modulation) bats could be classified into single-on (SO) and double-on (DO) neurons under CF-FM stimulation. Here, we employed Pratt's roundleaf bats, Hipposideros pratti, to investigate the frequency selectivity of SO and DO neurons in response to CF and behavior-related CF-FM sounds using in vivo extracellular recordings. The results demonstrated that the bandwidths (BWs) of iso-frequency tuning curves had no significant differences between the SO and the DO neurons when stimulated by CF sounds. However, the SO neurons had significant narrower BWs than DO neurons when stimulated with CF-FM sounds. In vivo intracellular recordings showed that both SO and DO neurons had significantly shorter post-spike hyperpolarization latency and excitatory duration in response to CF-FM in comparison to CF stimuli, suggesting that the FM component had an inhibitory effect on the responses to the CF component. These results suggested that SO neurons had higher frequency selectivity than DO neurons under behavior-related CF-FM stimulation, making them suitable for detecting frequency changes during echolocation.
Collapse
Affiliation(s)
- Ziying Fu
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Guimin Zhang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Qing Shi
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Dandan Zhou
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jia Tang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Long Liu
- College of science, National University of Defense Technology, Changsha, China
| | - Qicai Chen
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Warnecke M, Macías S, Falk B, Moss CF. Echo interval and not echo intensity drives bat flight behavior in structured corridors. ACTA ACUST UNITED AC 2018; 221:jeb.191155. [PMID: 30355612 DOI: 10.1242/jeb.191155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
To navigate in the natural environment, animals must adapt their locomotion in response to environmental stimuli. The echolocating bat relies on auditory processing of echo returns to represent its surroundings. Recent studies have shown that echo flow patterns influence bat navigation, but the acoustic basis for flight path selection remains unknown. To investigate this problem, we released bats in a flight corridor with walls constructed of adjacent individual wooden poles, which returned cascades of echoes to the flying bat. We manipulated the spacing and echo strength of the poles comprising each corridor side, and predicted that bats would adapt their flight paths to deviate toward the corridor side returning weaker echo cascades. Our results show that the bat's trajectory through the corridor was not affected by the intensity of echo cascades. Instead, bats deviated toward the corridor wall with more sparsely spaced, highly reflective poles, suggesting that pole spacing, rather than echo intensity, influenced bat flight path selection. This result motivated investigation of the neural processing of echo cascades. We measured local evoked auditory responses in the bat inferior colliculus to echo playback recordings from corridor walls constructed of sparsely and densely spaced poles. We predicted that evoked neural responses would be discretely modulated by temporally distinct echoes recorded from the sparsely spaced pole corridor wall, but not by echoes from the more densely spaced corridor wall. The data confirm this prediction and suggest that the bat's temporal resolution of echo cascades may drive its flight behavior in the corridor.
Collapse
Affiliation(s)
- Michaela Warnecke
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Benjamin Falk
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Beetz MJ, García-Rosales F, Kössl M, Hechavarría JC. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Sci Rep 2018; 8:6863. [PMID: 29717258 PMCID: PMC5931562 DOI: 10.1038/s41598-018-25241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany. .,Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| |
Collapse
|
13
|
Kothari NB, Wohlgemuth MJ, Moss CF. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat. eLife 2018; 7:e29053. [PMID: 29633711 PMCID: PMC5896882 DOI: 10.7554/elife.29053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 02/27/2018] [Indexed: 11/23/2022] Open
Abstract
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat's inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal's instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task.
Collapse
|
14
|
Budenz T, Denzinger A, Schnitzler HU. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. PLoS One 2018; 13:e0194600. [PMID: 29543882 PMCID: PMC5854437 DOI: 10.1371/journal.pone.0194600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/16/2018] [Indexed: 11/25/2022] Open
Abstract
Bats lower the emission SPL when approaching a target. The SPL reduction has been explained by intensity compensation which implies that bats adjust the emission SPL to perceive the retuning echoes at the same level. For a better understanding of this control mechanism we recorded the echolocation signals of four Myotis myotis with an onboard microphone when foraging in the passive mode for rustling mealworms offered in two feeding dishes with different target strength, and determined the reduction rate for the emission SPL and the increase rate for the SPL of the returning echoes. When approaching the dish with higher target strength bats started the reduction of the emission SPL at a larger reaction distance (1.05 ± 0.21 m) and approached it with a lower reduction rate of 7.2 dB/halving of distance (hd), thus producing a change of echo rate at the ears of + 4 dB/hd. At the weaker target reaction distance was shorter (0.71 ± 0.24 m) and the reduction rate (9.1 dB/hd) was higher, producing a change of echo rate of—1.2 dB/hd. Independent of dish type, bats lowered the emission SPL by about 26 dB on average. In one bat where the echo SPL from both targets could be measured, the reduction of emission SPL was triggered when the echo SPL surpassed a similar threshold value around 41–42 dB. Echo SPL was not adjusted at a constant value indicating that Myotis myotis and most likely all other bats do not use a closed loop system for intensity compensation when approaching a target of interest. We propose that bats lower the emission SPL to adjust the SPL of the perceived pulse-echo-pairs to the optimal auditory range for the processing of range information and hypothesize that bats use flow field information not only to control the reduction of the approach speed to the target but also to control the reduction of emission SPL.
Collapse
Affiliation(s)
- Tobias Budenz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Annette Denzinger
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Schnitzler
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Beetz MJ, Kordes S, García-Rosales F, Kössl M, Hechavarría JC. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata. eNeuro 2017; 4:ENEURO.0314-17.2017. [PMID: 29242823 PMCID: PMC5729038 DOI: 10.1523/eneuro.0314-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022] Open
Abstract
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Kordes
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
16
|
Schaefer MK, Kössl M, Hechavarría JC. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils. PLoS One 2017; 12:e0182514. [PMID: 28771568 PMCID: PMC5542772 DOI: 10.1371/journal.pone.0182514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA) as well as local field potentials (LFP), and current source density (CSD) waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns) could indeed be important for encoding sounds that differ in their acoustic attributes.
Collapse
Affiliation(s)
- Markus K. Schaefer
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| | - Julio C. Hechavarría
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
17
|
Bats pre-adapt sensory acquisition according to target distance prior to takeoff even in the presence of closer background objects. Sci Rep 2017; 7:467. [PMID: 28352130 PMCID: PMC5428694 DOI: 10.1038/s41598-017-00543-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Animals execute sensorimotor sequences to optimize performance of complex actions series. However, the sensory aspects of these sequences and their dynamic control are often poorly understood. We trained bats to fly to targets at different distances, and analysed their sensory behavior before and during flight to test whether they assess target distance before flight and how they adapt sensory acquisition in different situations. We demonstrate that bats’ sensory acquisition during approach-flight is more flexible than previously described. We identified acoustic parameters that illustrate that bats assess target distance before takeoff. We show that bats adapt their echolocation approach-sequences to target distance - ignoring closer background objects. At shorter distances, bats initiated their echolocation approach-sequence with distance-appropriate parameters, thus entering the approach sensory sequence “in step”. Our results suggest that in order to perform fine flight-manoeuvres, bats must maintain their sensorimotor plan in phase. To do this, they adapt acquisition according to target distance before initiating a complex sensory sequence based on a sensorimotor feedback-loop, even in complex acoustic environments, which impose other sensory reactions and restrictions. Though studying this in non-echolocating animals may prove difficult, such mechanisms are probably widely used in nature whenever complex series of sensorimotor actions are required.
Collapse
|
18
|
Greiter W, Firzlaff U. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes. J Neurophysiol 2017; 117:2113-2124. [PMID: 28275060 DOI: 10.1152/jn.00860.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
Abstract
Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such complex streams of echoes or other sounds is a challenge for the auditory system of bats as well as other animals. We investigated the representation of multiple echo streams in the AC of anesthetized bats (Phyllostomus discolor) and tested the hypothesis that neurons can lock on echoes from specific objects in a complex echo-acoustic pattern while the representation of surrounding objects is suppressed. We combined naturalistic pulse/echo sequences simulating a bat's flight through a virtual acoustic space with extracellular recordings. Neurons could selectively lock on echoes from one object in complex echo streams originating from two different objects along a virtual flight path. The objects were processed sequentially in the order in which they were approached. Object selection depended on sequential changes of echo delay and amplitude, but not on absolute values. Furthermore, the detailed representation of the object echo delays in the cortical target range map was not fixed but could be dynamically adapted depending on the temporal pattern of sonar emission during target approach within a simulated flight sequence.NEW & NOTEWORTHY Complex signal analysis is a challenging task in sensory processing for all animals, particularly for bats because they use echolocation for navigation in darkness. Recent studies proposed that the bat's perceptional system might organize complex echo-acoustic information into auditory streams, allowing it to track specific auditory objects during flight. We show that in the auditory cortex of bats, neurons can selectively respond to echo streams from specific objects.
Collapse
Affiliation(s)
- Wolfgang Greiter
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|