1
|
Ghobashy MOI, Al-otaibi AS, Alharbi BM, Alshehri D, Ghabban H, Albalawi DA, Alenzi AM, Alatawy M, Alatawi FA, Algammal AM, Mir R, Mahrous YM. Metagenomic Characterization of Microbiome Taxa Associated with Coral Reef Communities in North Area of Tabuk Region, Saudia Arabia. Life (Basel) 2025; 15:423. [PMID: 40141768 PMCID: PMC11944186 DOI: 10.3390/life15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The coral microbiome is highly related to the overall health and the survival and proliferation of coral reefs. The Red Sea's unique physiochemical characteristics, such a significant north-south temperature and salinity gradient, make it a very intriguing research system. However, the Red Sea is rather isolated, with a very diversified ecosystem rich in coral communities, and the makeup of the coral-associated microbiome remains little understood. Therefore, comprehending the makeup and dispersion of the endogenous microbiome associated with coral is crucial for understanding how the coral microbiome coexists and interacts, as well as its contribution to temperature tolerance and resistance against possible pathogens. Here, we investigate metagenomic sequencing targeting 16S rRNA using DNAs from the sediment samples to identify the coral microbiome and to understand the dynamics of microbial taxa and genes in the surface mucous layer (SML) microbiome of the coral communities in three distinct areas close to and far from coral communities in the Red Sea. These findings highlight the genomic array of the microbiome in three areas around and beneath the coral communities and revealed distinct bacterial communities in each group, where Pseudoalteromonas agarivorans (30%), Vibrio owensii (11%), and Pseudoalteromonas sp. Xi13 (10%) were the most predominant species in samples closer to coral (a coral-associated microbiome), with the domination of Pseudoalteromonas_agarivorans and Vibrio_owensii in Alshreah samples distant from coral, while Pseudoalteromonas_sp._Xi13 was more abundant in closer samples. Moreover, Proteobacteria such as Pseudoalteromonas, Pseudomonas and Cyanobacteria were the most prevalent phyla of the coral microbiome. Further, Saweehal showed the highest diversity far from corals (52.8%) and in Alshreah (7.35%) compared to Marwan (1.75%). The microbial community was less diversified in the samples from Alshreah Far (5.99%) and Marwan Far (1.75%), which had comparatively lower values for all indices. Also, Vibrio species were the most prevalent microorganisms in the coral mucus, and the prevalence of these bacteria is significantly higher than those found in the surrounding saltwater. These findings reveal that there is a notable difference in microbial diversity across the various settings and locales, revealing that geographic variables and coral closeness affect the diversity of microbial communities. There were significant differences in microbial community composition regarding the proximity to coral. In addition, there were strong positive correlations between genera Pseudoalteromonas and Vibrio in close-to-coral environments, suggesting that these bacteria may play a synergistic role in Immunizing coral, raising its tolerance towards environmental stress and overall coral health.
Collapse
Affiliation(s)
- Madeha O. I. Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faud A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yussri M. Mahrous
- Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
2
|
Wuerz M, Lawson CA, Oakley CA, Possell M, Wilkinson SP, Grossman AR, Weis VM, Suggett DJ, Davy SK. Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis. BIOLOGY 2023; 12:1014. [PMID: 37508443 PMCID: PMC10376011 DOI: 10.3390/biology12071014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.
Collapse
Affiliation(s)
- Maggie Wuerz
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Arthur R. Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
3
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
4
|
Bharath MS, Chandran R, Aeby GS, Senthilkumaran R, Ramkumaran K, Thanappan VP, Chaudhury NR, Satyanarayana C. First report of yellow-banded tissue loss disease on coral reefs outside the Arabian/Persian Gulf. DISEASES OF AQUATIC ORGANISMS 2023; 153:1-8. [PMID: 36655769 DOI: 10.3354/dao03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coral disease is a major cause of coral reef degradation, yet many diseases remain understudied. Yellow-banded tissue loss disease (YBTLD) has a distinct gross lesion morphology and to date has only been reported from the Arabian/Persian Gulf; little else is known about the ecology of the disease. We report on the first occurrence of YBTLD outside of the Arabian/Persian Gulf at 2 sites (Laku Point, Narara Reef) within the Gulf of Kachchh (GoK) located on the northwest coast of India. At Narara Reef, YBTLD was observed at 12 out of 24 transects with an average prevalence of 4.7 ± 1.3%. At Laku Point, YBTLD was observed at 19 out of 24 transects with an average prevalence of 5.4 ± 1%. Four out of 15 coral genera within transects had signs of YBTLD and included Goniopora, Dipsastraea, Lobophyllia, and Turbinaria. Lobophyllia and Turbinaria had the highest susceptibility to the disease, with prevalence significantly higher than expected based on their abundance on the reefs. The distribution and prevalence of YBTLD in the GoK was higher than in coral reefs in the Arabian/Persian Gulf. The GoK is an extreme environment for coral reefs with both natural stressors (high salinities, strong, seasonal storm activities, and extreme tides) and anthropogenic pollutants from industrial, mining, agricultural, and domestic activities. These poor environmental conditions may help explain the high occurrence of YBTLD on GoK reefs.
Collapse
Affiliation(s)
- Murugan Selva Bharath
- Zoological Survey of India - Jamnagar Field Station, Forest Colony, Jamnagar-Gujarat 361001, India
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|
6
|
Barreto MM, Ziegler M, Venn A, Tambutté E, Zoccola D, Tambutté S, Allemand D, Antony CP, Voolstra CR, Aranda M. Effects of Ocean Acidification on Resident and Active Microbial Communities of Stylophora pistillata. Front Microbiol 2021; 12:707674. [PMID: 34899619 PMCID: PMC8656159 DOI: 10.3389/fmicb.2021.707674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
Collapse
Affiliation(s)
- Marcelle Muniz Barreto
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | - Chakkiath Paul Antony
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Identification of the photoelectron spectra of HFCS via computing Franck–Condon factors. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lawson CA, Raina JB, Deschaseaux E, Hrebien V, Possell M, Seymour JR, Suggett DJ. Heat stress decreases the diversity, abundance and functional potential of coral gas emissions. GLOBAL CHANGE BIOLOGY 2021; 27:879-891. [PMID: 33253484 DOI: 10.1111/gcb.15446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Terrestrial ecosystems emit large quantities of biogenic volatile organic compounds (BVOCs), many of which play important roles in abiotic stress responses, pathogen and grazing defences, inter- and intra-species communications, and climate regulation. Conversely, comparatively little is known about the diversity and functional potential of BVOCs produced in the marine environment, especially in highly productive coral reefs. Here we describe the first 'volatilomes' of two common reef-building corals, Acropora intermedia and Pocillopora damicornis, and how the functional potential of their gaseous emissions is altered by heat stress events that are driving rapid deterioration of coral reef ecosystems worldwide. A total of 87 BVOCs were detected from the two species and the chemical richness of both coral volatilomes-particularly the chemical classes of alkanes and carboxylic acids-decreased during heat stress by 41% and 62% in A. intermedia and P. damicornis, respectively. Across both coral species, the abundance of individual compounds changed significantly during heat stress, with the majority (>86%) significantly decreasing compared to control conditions. Additionally, almost 60% of the coral volatilome (or 52 BVOCs) could be assigned to four key functional groups based on their activities in other species or systems, including stress response, chemical signalling, climate regulation and antimicrobial activity. The total number of compounds assigned to these functions decreased significantly under heat stress for both A. intermedia (by 35%) and P. damicornis (by 64%), with most dramatic losses found for climatically active BVOCs in P. damicornis and antimicrobial BVOCs in A. intermedia. Together, our observations suggest that future heat stress events predicted for coral reefs will reduce the diversity, quantity and functional potential of BVOCs emitted by reef-building corals, potentially further compromising the healthy functioning of these ecosystems.
Collapse
Affiliation(s)
- Caitlin A Lawson
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- School of Environment and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Elisabeth Deschaseaux
- Centre for Coastal Biogeochemistry, Southern Cross University, Lismore, NSW, Australia
| | - Victoria Hrebien
- Centre for Coastal Biogeochemistry, Southern Cross University, Lismore, NSW, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Rosset SL, Oakley CA, Ferrier-Pagès C, Suggett DJ, Weis VM, Davy SK. The Molecular Language of the Cnidarian-Dinoflagellate Symbiosis. Trends Microbiol 2020; 29:320-333. [PMID: 33041180 DOI: 10.1016/j.tim.2020.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The cnidarian-dinoflagellate symbiosis is of huge importance as it underpins the success of coral reefs, yet we know very little about how the host cnidarian and its dinoflagellate endosymbionts communicate with each other to form a functionally integrated unit. Here, we review the current knowledge of interpartner molecular signaling in this symbiosis, with an emphasis on lipids, glycans, reactive species, biogenic volatiles, and noncoding RNA. We draw upon evidence of these compounds from recent omics-based studies of cnidarian-dinoflagellate symbiosis and discuss the signaling roles that they play in other, better-studied symbioses. We then consider how improved knowledge of interpartner signaling might be used to develop solutions to the coral reef crisis by, for example, engineering more thermally resistant corals.
Collapse
Affiliation(s)
- Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, PO Box 123, Broadway NSW 2007, Australia
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
10
|
Jackson RL, Gabric AJ, Cropp R. Coral reefs as a source of climate-active aerosols. PeerJ 2020; 8:e10023. [PMID: 33062438 PMCID: PMC7531332 DOI: 10.7717/peerj.10023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
We review the evidence for bio-regulation by coral reefs of local climate through stress-induced emissions of aerosol precursors, such as dimethylsulfide. This is an issue that goes to the core of the coral ecosystem’s ability to maintain homeostasis in the face of increasing climate change impacts and other anthropogenic pressures. We examine this through an analysis of data on aerosol emissions by corals of the Great Barrier Reef, Australia. We focus on the relationship with local stressors, such as surface irradiance levels and sea surface temperature, both before and after notable coral bleaching events. We conclude that coral reefs may be able to regulate their exposure to environmental stressors through modification of the optical properties of the atmosphere, however this ability may be impaired as climate change intensifies.
Collapse
Affiliation(s)
- Rebecca L Jackson
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| | - Albert J Gabric
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
11
|
Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. MICROBIOME 2020; 8:8. [PMID: 32008576 PMCID: PMC6996193 DOI: 10.1186/s40168-019-0776-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/12/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. RESULTS We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific. CONCLUSION The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.
Collapse
Affiliation(s)
- Eslam O Osman
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Marine Biology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11448, Egypt.
| | - David J Suggett
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - D Tye Pettay
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Dave R Clark
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Warner
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - David J Smith
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
12
|
Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 2019; 9:17395. [PMID: 31758008 PMCID: PMC6874547 DOI: 10.1038/s41598-019-53552-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry - surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae. We used GC-MS to characterise five species (Symbiodinium linucheae, Breviolum psygmophilum, Durusdinium trenchii, Effrenium voratum, Fugacium kawagutii) under steady-state growth. A diverse range of 32 BVOCs were detected (from 12 in D. trenchii to 27 in S. linucheae) with halogenated hydrocarbons, alkanes and esters the most common chemical functional groups. A thermal stress experiment on thermally-sensitive Cladocopium goreaui and thermally-tolerant D. trenchii significantly affected the volatilomes of both species. More BVOCs were detected in D. trenchii following thermal stress (32 °C), while fewer BVOCs were recorded in stressed C. goreaui. The onset of stress caused dramatic increases of dimethyl-disulfide (98.52%) in C. goreaui and nonanoic acid (99.85%) in D. trenchii. This first volatilome analysis of Symbiodiniaceae reveals that both species-specificity and environmental factors govern the composition of BVOC emissions among the Symbiodiniaceae, which potentially have, as yet unexplored, physiological and ecological importance in shaping coral reef community functioning.
Collapse
Affiliation(s)
- Caitlin A Lawson
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia.
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| |
Collapse
|
13
|
Okane D, Koveke EP, Tashima K, Saeki K, Maezono S, Nagahata T, Hayashi N, Owen K, Zitterbart DP, Ohira SI, Toda K. High Sensitivity Monitoring Device for Onboard Measurement of Dimethyl Sulfide and Dimethylsulfoniopropionate in Seawater and an Oceanic Atmosphere. Anal Chem 2019; 91:10484-10491. [PMID: 31337210 DOI: 10.1021/acs.analchem.9b01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An automated device has been developed to measure aqueous dimethyl sulfide (DMSaq), its precursor dimethylsulfoniopropionate (DMSP), and atmospheric gaseous dimethyl sulfide (DMSg). In addition to having a role in the oceanic atmosphere, DMS and DMSP have recently gained substantial interest within the biosciences and are suspected as chemoattractants for predators searching for prey. To provide the spatial resolution relevant for biogeochemical functions, fast and on-site analysis of these compounds is an important technique. The system described measures the dimethyl sulfur compounds by sequential vaporization of DMSaq and DMSP to their gas phase, which is then analyzed by chemiluminescence detection (SVG-CL). The device has five analysis modes (full, DMS, water, gas, and DMSP mode) that can be selected by the user depending on the required analyte or desired sampling rate. Seawater analyses were performed by the developed SVG-CL system and, simultaneously, by an ion molecule reaction-mass spectrometer and a gas chromatograph-flame photometric detector to verify quantitative analysis results. Results obtained by the new method/device agreed well with those by the other methods. Detection limits of the SVG-CL system are 0.02 ppbv and 0.04 nM for DMSg and DMSaq/DMSP, respectively, which are much better than those of the mass spectrometer. The SVG-CL system can be easily installed and operated on a boat. Spatial variability in DMS and DMSP off the coast of Japan were obtained, showing significant changes in the concentrations of the components at the brackish/saline water interface and at the channel between the closed and open seas.
Collapse
Affiliation(s)
- Daiki Okane
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Edwin P Koveke
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Koya Tashima
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Kentaro Saeki
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Seiya Maezono
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Takanori Nagahata
- Mitsubishi Chemical Analytech , 7-10-1 Chuo-Rinkan , Yamato , Kanagawa 242-0007 , Japan
| | - Norio Hayashi
- Mitsubishi Chemical Analytech , 7-10-1 Chuo-Rinkan , Yamato , Kanagawa 242-0007 , Japan
| | - Kylie Owen
- Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , 266 Woods Hole Road , Woods Hole , Massachusetts 02543 , United States
| | - Daniel P Zitterbart
- Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , 266 Woods Hole Road , Woods Hole , Massachusetts 02543 , United States
| | - Shin-Ichi Ohira
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| | - Kei Toda
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto 860-8555 , Japan
| |
Collapse
|
14
|
Cropp R, Gabric A, van Tran D, Jones G, Swan H, Butler H. Coral reef aerosol emissions in response to irradiance stress in the Great Barrier Reef, Australia. AMBIO 2018; 47:671-681. [PMID: 29397545 PMCID: PMC6131131 DOI: 10.1007/s13280-018-1018-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
We investigate the correlation between stress-related compounds produced by corals of the Great Barrier Reef (GBR) and local atmospheric properties-an issue that goes to the core of the coral ecosystem's ability to survive climate change. We relate the variability in a satellite decadal time series of fine-mode aerosol optical depth (AOD) to a coral stress metric, formulated as a function of irradiance, water clarity, and tide, at Heron Island in the southern GBR. We found that AOD was correlated with the coral stress metric, and the correlation increased at low wind speeds, when horizontal advection of air masses was low and the production of non-biogenic aerosols was minimal. We posit that coral reefs may be able to protect themselves from irradiance stress during calm weather by affecting the optical properties of the atmosphere and local incident solar radiation.
Collapse
Affiliation(s)
- Roger Cropp
- Griffith School of Environment, Griffith University, Nathan, QLD 4111 Australia
| | - Albert Gabric
- Griffith School of Environment, Griffith University, Nathan, QLD 4111 Australia
| | - Dien van Tran
- Griffith School of Environment, Griffith University, Nathan, QLD 4111 Australia
| | - Graham Jones
- Southern Cross University, Lismore, NSW 2480 Australia
| | - Hilton Swan
- Southern Cross University, Lismore, NSW 2480 Australia
| | - Harry Butler
- School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| |
Collapse
|
15
|
Jackson R, Gabric A, Cropp R. Effects of ocean warming and coral bleaching on aerosol emissions in the Great Barrier Reef, Australia. Sci Rep 2018; 8:14048. [PMID: 30232386 PMCID: PMC6145874 DOI: 10.1038/s41598-018-32470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
It is proposed that emissions of volatile sulfur compounds by coral reefs contribute to the formation of a biologically-derived feedback on sea surface temperature (SST) through the formation of marine biogenic aerosol (MBA). The direction and strength of this feedback remains uncertain and constitutes a fundamental constraint on predicting the ability of corals to cope with future ocean warming. We investigate the effects of elevated SST and irradiance on satellite-derived fine-mode aerosol optical depth (AOD) throughout the Great Barrier Reef, Australia (GBR) over an 18-year time period. AOD is positively correlated with SST and irradiance and increases two-fold during spring and summer with high frequency variability. As the influence of non-biogenic and distant aerosol sources are found to be negligible, the results support recent findings that the 2,300 km stretch of coral reefs can be a substantial source of biogenic aerosol and thus, influence local ocean albedo. Importantly however, a tipping point in the coral stress response is identified, whereby thermal stress reaches a point that exceeds the capacity of corals to influence local atmospheric properties. Beyond this point, corals may become more susceptible to permanent damage with increasing stress, with potential implications for mass coral bleaching events.
Collapse
Affiliation(s)
- Rebecca Jackson
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia.
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia.
| | - Albert Gabric
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia
- School of Environment and Science, Griffith University, Nathan, 4111, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
16
|
Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake. Sci Rep 2018; 8:630. [PMID: 29330538 PMCID: PMC5766545 DOI: 10.1038/s41598-017-18923-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Biogenic volatile organic compounds (BVOCs) affect atmospheric chemistry, climate and regional air quality in terrestrial and marine atmospheres. Although isoprene is a major BVOC produced in vascular plants, and marine phototrophs release dimethyl sulfide (DMS), lakes have been widely ignored for their production. Here we demonstrate that oligotrophic Lake Constance, a model for north temperate deep lakes, emits both volatiles to the atmosphere. Depth profiles indicated that highest concentrations of isoprene and DMS were associated with the chlorophyll maximum, suggesting that their production is closely linked to phototrophic processes. Significant correlations of the concentration patterns with taxon-specific fluorescence data, and measurements from algal cultures confirmed the phototrophic production of isoprene and DMS. Diurnal fluctuations in lake isoprene suggested an unrecognised physiological role in environmental acclimation similar to the antioxidant function of isoprene that has been suggested for marine biota. Flux estimations demonstrated that lakes are a currently undocumented source of DMS and isoprene to the atmosphere. Lakes may be of increasing importance for their contribution of isoprene and DMS to the atmosphere in the arctic zone where lake area coverage is high but terrestrial sources of BVOCs are small.
Collapse
|
17
|
|
18
|
Steinke M, Randell L, Dumbrell AJ, Saha M. Volatile Biomarkers for Aquatic Ecological Research. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
The relative abundance of dimethylsulfoniopropionate (DMSP) among other zwitterions in branching coral at Heron Island, southern Great Barrier Reef. Anal Bioanal Chem 2017; 409:4409-4423. [PMID: 28527001 DOI: 10.1007/s00216-017-0385-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) and eleven other target zwitterions were quantified in the branch tips of six Acropora species and Stylophora pistillata hard coral growing on the reef flat surrounding Heron Island in the southern Great Barrier Reef (GBR), Australia. Hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) was used for sample analysis with isotope dilution MS applied to quantify DMSP. The concentration of DMSP was ten times greater in A. aspera than A. valida, with this difference being maintained throughout the spring, summer and winter seasons. In contrast, glycine betaine was present in significantly higher concentrations in these species during the summer than the winter. Exposure of branch tips of A. aspera to air and hypo-saline seawater for up to 1 h did not alter the concentrations of DMSP present in the coral when compared with control samples. DMSP was the most abundant target zwitterion in the six Acropora species examined, ranging from 44-78% of all target zwitterions in A. millepora and A. aspera, respectively. In contrast, DMSP only accounted for 7% in S. pistillata, with glycine betaine and stachydrine collectively accounting for 88% of all target zwitterions in this species. The abundance of DMSP in the six Acropora species examined points to Acropora coral being an important source for the biogeochemical cycling of sulfur throughout the GBR, since this reef-building branching coral dominates the coral cover of the GBR. Graphical Abstract HILIC-MS extracted ion chromatogram showing zwitterionic metabolites from the branching coral Acropora isopora.
Collapse
|