1
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
2
|
Zhang B, Mullmann J, Ludewig AH, Fernandez IR, Bales TR, Weiss RS, Schroeder FC. Acylspermidines are conserved mitochondrial sirtuin-dependent metabolites. Nat Chem Biol 2024; 20:812-822. [PMID: 38167917 PMCID: PMC11715332 DOI: 10.1038/s41589-023-01511-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylases regulating metabolism and stress responses; however, characterization of the removed acyl groups and their downstream metabolic fates remains incomplete. Here we employed untargeted comparative metabolomics to reinvestigate mitochondrial sirtuin biochemistry. First, we identified N-glutarylspermidines as metabolites downstream of the mitochondrial sirtuin SIR-2.3 in Caenorhabditis elegans and demonstrated that SIR-2.3 functions as a lysine deglutarylase and that N-glutarylspermidines can be derived from O-glutaryl-ADP-ribose. Subsequent targeted analysis of C. elegans, mouse and human metabolomes revealed a chemically diverse range of N-acylspermidines, and formation of N-succinylspermidines and/or N-glutarylspermidines was observed downstream of mammalian mitochondrial sirtuin SIRT5 in two cell lines, consistent with annotated functions of SIRT5. Finally, N-glutarylspermidines were found to adversely affect C. elegans lifespan and mammalian cell proliferation. Our results indicate that N-acylspermidines are conserved metabolites downstream of mitochondrial sirtuins that facilitate annotation of sirtuin enzymatic activities in vivo and may contribute to sirtuin-dependent phenotypes.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - James Mullmann
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Irma R Fernandez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Tyler R Bales
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
5
|
Prakash V, Gabrani R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:336-347. [PMID: 37957904 DOI: 10.2174/0118715257262003231031171910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Vijeta Prakash
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
6
|
Ying L, Hao M, Zhang Z, Guo R, Liang Y, Yu C, Yang Z. Medicarpin suppresses proliferation and triggeres apoptosis by upregulation of BID, BAX, CASP3, CASP8, and CYCS in glioblastoma. Chem Biol Drug Des 2023; 102:1097-1109. [PMID: 37515387 DOI: 10.1111/cbdd.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and incurable. Medicarpin (MED), a flavonoid compound from the legume family, has multiple targets and anticancer properties. However, the role of MED in GBM remains unclear. The objective of this study was to explore the effects of MED on the apoptosis of GBM and to explain the potential molecular mechanisms. We found that the IC50 values of U251 and U-87 MG cells treated with MED for 24 h were 271 μg/mL and 175 μg/mL, and the IC50 values for 48 h were 154 μg/mL and 161 μg/mL, respectively. Additionally, the cell cycle of U251 and U-87 MG cells were arrested at the G2/M phase. Furthermore, the apoptosis rate of U251 and U-87 MG cells increased from 6.26% to 18.36% and 12.46% to 31.33% for 48 h, respectively. The migration rate of U251 and U-87 MG decreased from 20% to 5% and 25% to 15% for 12 h and these of U251 and U-87 MG decreased from 50% to 28% and 60% to 25% for 24 h. MED suppressed GBM tumorigenesis, and improved survival rate of tumor-bearing mice. Taken together, MED triggered GBM apoptosis through upregulation of pro-apoptotic proteins (BID, BAX, CASP3, CASP8, and CYCS), showed strong inhibitory effects on cell proliferation and cell migration, and displayed anti-tumor activity in nude mice.
Collapse
Affiliation(s)
- Lu Ying
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zichen Zhang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| |
Collapse
|
7
|
Liu E, Li W, Jian LP, Yin S, Yang S, Zhao H, Huang W, Zhang Y, Zhou H. Identification of LOX as a candidate prognostic biomarker in Glioblastoma multiforme. Transl Oncol 2023; 36:101739. [PMID: 37544033 PMCID: PMC10423882 DOI: 10.1016/j.tranon.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets. METHOD AND RESULTS In this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cells CONCLUSION: This research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Erheng Liu
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wenjuan Li
- Department of Chemical Biology, Yunnan Technician College, Kunming 650500, Yunnan, China.
| | - Li-Peng Jian
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shi Yin
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shuaifeng Yang
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Heng Zhao
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wei Huang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Yongfa Zhang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Hu Zhou
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| |
Collapse
|
8
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
9
|
Luo L, Guan Z, Jin X, Guan Z, Jiang Y. Identification of kukoamine a as an anti-osteoporosis drug target using network pharmacology and experiment verification. Mol Med 2023; 29:36. [PMID: 36941586 PMCID: PMC10029210 DOI: 10.1186/s10020-023-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a major and growing public health problem characterized by decreased bone mineral density and destroyed bone microarchitecture. Previous studies found that Lycium Chinense Mill (LC) has a potent role in inhibiting bone loss. Kukoamine A (KuA), a bioactive compound extract from LC was responsible for the anti-osteoporosis effect. This study aimed to investigate the anti-osteoporosis effect of KuA isolated from LC in treating OP and its potential molecular mechanism. METHOD In this study, network pharmacology and molecular docking were investigated firstly to find the active ingredients of LC such as KuA, and the target genes of OP by the TCMSP platform. The LC-OP-potential Target gene network was constructed by the STRING database and network maps were built by Cytoscape software. And then, the anti-osteoporotic effect of KuA in OVX-induced osteoporosis mice and MC3T3-E1 cell lines were investigated and the potential molecular mechanism including inflammation level, cell apoptosis, and oxidative stress was analyzed by dual-energy X-ray absorptiometry (DXA), micro-CT, ELISA, RT-PCR, and Western Blotting. RESULT A total of 22 active compounds were screened, and we found KuA was identified as the highest active ingredient. Glycogen Phosphorylase (PYGM) was the target gene associated with a maximum number of active ingredients of LC and regulated KuA. In vivo, KuA treatment significantly increased the bone mineral density and improve bone microarchitecture for example increased BV/TV, Tb.N and Tb.Th but reduced Tb.Sp in tibia and lumber 4. Furthermore, KuA increased mRNA expression of osteoblastic differentiation-related genes in OVX mice and protects against OVX-induced cell apoptosis, oxidative stress level and inflammation level. In vitro, KuA significantly improves osteogenic differentiation and mineralization in cells experiment. In addition, KuA also attenuated inflammation levels, cell apoptosis, and oxidative stress level. CONCLUSION The results suggest that KuA could protect against the development of OP in osteoblast cells and ovariectomized OP model mice and these found to provide a better understanding of the pharmacological activities of KuA again bone loss.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Characterization of Biological Properties of Individual Phenolamides and Phenolamide-Enriched Leaf Tomato Extracts. Molecules 2023; 28:molecules28041552. [PMID: 36838541 PMCID: PMC9966281 DOI: 10.3390/molecules28041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.
Collapse
|
11
|
Zhang L, Gu C, Liu J. Nature spermidine and spermine alkaloids: Occurrence and pharmacological effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Bernard G, Buges J, Delporte M, Molinié R, Besseau S, Bouchereau A, Watrin A, Fontaine JX, Mathiron D, Berardocco S, Bassard S, Quéro A, Hilbert JL, Rambaud C, Gagneul D. Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory. PLANT PHYSIOLOGY 2022; 189:2029-2043. [PMID: 35604091 PMCID: PMC9343010 DOI: 10.1093/plphys/kiac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.
Collapse
Affiliation(s)
- Guillaume Bernard
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Julie Buges
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Marianne Delporte
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours 37200, France
| | - Alain Bouchereau
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Amandine Watrin
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - David Mathiron
- Plateforme Analytique (PFA), Université de Picardie Jules Verne, Amiens 80039, France
| | - Solenne Berardocco
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Solène Bassard
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Anthony Quéro
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| |
Collapse
|
13
|
Guo Z, Yin H, Wu T, Wu S, Liu L, Zhang L, He Y, Zhang R, Liu N. Study on the mechanism of Cortex Lycii on lung cancer based on network pharmacology combined with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115280. [PMID: 35405252 DOI: 10.1016/j.jep.2022.115280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xie Bai San is a Chinese medicine prescription that has been used to treat lung cancer in China for a long time. It has been proven to alleviate the symptoms and extend the survival time of lung cancer patients. Xie Bai San comprises Cortex Lycii, Cortex Mori, and Radix Glycyrrhizae Preparata. The effects and mechanisms of Cortex Mori and Glycyrrhizae on lung cancer have been reported, whereas the underlying mechanism of Cortex Lycii remains unknown. MATERIAL AND METHODS Network pharmacology was used to explore the unknown mechanisms underlying the effect of Cortex Lycii on lung cancer. Molecular docking was used to predict the binding of a compound to the protein. The fingerprint of Cortex Lycii was obtained by HPLC. Cell counting Kit-8 assay was used to determine the appropriate concentration of Cortex Lycii extract for human lung adenocarcinoma cells, A549 and H1299. Wound healing assay and Matrigel invasion assay were used to detect the influence of Cortex Lycii extract on the migration and invasion ability of A549 and H1299. The protein expression level was detected by western blot and immunohistochemical staining. RESULTS Using network pharmacology, 38 components of Cortex Lycii and 79 possible lung cancer-related target genes of Cortex Lycii were obtained. The targets were assigned to 35 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the PI3K-AKT signaling pathway contained the most targets and had the second-lowest P-value. The molecular docking showed the components of Cortex Lycii bound to HSP90AB1. Among them, 6 components bound to HSP90AB1 in which HSP90AB1 binds to and phosphorylates AKT. The functional experiments showed that Cortex Lycii suppressed the migration and invasion of human lung cancer cells in a dose-dependent manner. Cortex Lycii up-regulated E-Cadherin and down-regulated N-Cadherin, Vimentin, and MMP2. Furthermore, Cortex Lycii made no change in the total AKT and mTOR protein levels, but caused the down-regulation of p-AKT and p-mTOR in human lung cancer cells, which was reversed by Terazosin, an agonist of HSP90. Moreover, acacetin and apigenin, two components of Cortex Lycii, reduced the protein level of p-AKT and p-mTOR, and the reduction was also inhibited by Terazosin. CONCLUSION Cortex Lycii suppressed epithelial-mesenchymal transition (EMT) in lung cancer cells through the PI3K-AKT-mTOR signaling pathway, possibly by targeting HSP90AB1 and inhibiting HSP90AB1-AKT binding.
Collapse
Affiliation(s)
- Zhenhui Guo
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Heng Yin
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tong Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shaofeng Wu
- Experimental Teaching Centre, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lingyun Liu
- Department of Basic Theory of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanli He
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ren Zhang
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Identification of Kukoamine A, Zeaxanthin, and Clexane as New Furin Inhibitors. Int J Mol Sci 2022; 23:ijms23052796. [PMID: 35269938 PMCID: PMC8911046 DOI: 10.3390/ijms23052796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.
Collapse
|
15
|
Li G, Zhong Y, Wang W, Jia X, Zhu H, Jiang W, Song Y, Xu W, Wu S. Sempervirine Mediates Autophagy and Apoptosis via the Akt/mTOR Signaling Pathways in Glioma Cells. Front Pharmacol 2021; 12:770667. [PMID: 34916946 PMCID: PMC8670093 DOI: 10.3389/fphar.2021.770667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The potential antitumor effects of sempervirine (SPV), an alkaloid compound derived from the traditional Chinese medicine Gelsemium elegans Benth., on different malignant tumors were described in detail. The impact of SPV on glioma cells and the basic atomic components remain uncertain. This study aimed to investigate the activity of SPV in vitro and in vivo. The effect of SPV on the growth of human glioma cells was determined to explore three aspects, namely, cell cycle, cell apoptosis, and autophagy. In this study, glioma cells, U251 and U87 cells, and one animal model were used. Cells were treated with SPV (0, 1, 4, and 8 μM) for 48 h. The cell viability, cell cycle, apoptosis rate and autophagic flux were examined. Cell cycle, apoptotic, autophagy, and Akt/mTOR signal pathway-related proteins, such as CDK1, Cyclin B1, Beclin-1, p62, LC3, AKT, and mTOR were investigated by Western blot approach. As a result, cells induced by SPV led to G2/M phase arrest and apoptosis. SPV also promoted the effect of autophagic flux and accumulation of LC3B. SPV reduced the expression of p62 protein and induced the autophagic death of glioma cells. Furthermore, SPV downregulated the expressions of AKT and mTOR phosphorylated proteins in the mTOR signaling pathway, thereby affecting the onset of apoptosis and autophagy in U251 cells. In conclusion, SPV induced cellular G2/M phase arrest and blockade of the Akt/mTOR signaling pathway, thereby triggering apoptosis and cellular autophagy. The in vivo and in vitro studies confirmed that SPV inhibits the growth of glioma cancer.
Collapse
Affiliation(s)
- Gaopan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuhuan Zhong
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenyi Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenwen Jiang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
16
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
17
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
18
|
Yang Y, Gao L, Niu Y, Li X, Liu W, Jiang X, Liu Y, Zhao Q. Kukoamine A Protects against NMDA-Induced Neurotoxicity Accompanied with Down-Regulation of GluN2B-Containing NMDA Receptors and Phosphorylation of PI3K/Akt/GSK-3β Signaling Pathway in Cultured Primary Cortical Neurons. Neurochem Res 2020; 45:2703-2711. [PMID: 32892226 DOI: 10.1007/s11064-020-03114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Kukoamine (KuA) is a spermine alkaloid present in traditional Chinese medicine Cortex Lycii radices, which possesses various pharmacological properties. Our previous studies have demonstrated that KuA exerts neuroprotective effects against H2O2-induced oxidative stress, radiation-induced neuroinflammation, oxidative stress and neuronal apoptosis, as well as neurotoxin-induced Parkinson's disease through apoptosis inhibition and autophagy enhancement. The present study aimed to investigate the neuroprotective effects of KuA against NMDA-induced neuronal injury in cultured primary cortical neurons and explore the underlying mechanism. Incubation with 200 μM NMDA for 30 min induced excitotoxicity in primary cultured cortical neurons. The results demonstrated that pretreatment with KuA attenuated NMDA induced cell injury, LDH leakage and neuronal apoptosis. KuA also regulated apoptosis-related proteins. Thus, incubation with the alkaloid decreased the ratio of Bax/Bcl-2, and inhibited the release of cytochrome C, the expression of p53 and the cleavage of caspase-3. Moreover, KuA prevented the upregulation of GluN2B-containing NMDA receptors (NMDAR). Additionally, pretreatment with KuA reversed NMDA-induced dephosphorylation of Akt and GSK-3β and the protective effect of KuA on NMDA-induced cytotoxicity was abolished by wortmannin, a PI3K inhibitor. Taken together, these results indicated that KuA exerted neuroprotective effects against NMDA-induced neurotoxicity in cultural primary cortical neurons and caused the down-regulation of GluN2B-containing NMDARs as well as the phosphorylation of proteins belonging to the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Lingyue Gao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yixuan Niu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xiang Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Wenwu Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yaqian Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China. .,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
19
|
Wang W, Snooks HD, Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6248-6267. [PMID: 32422049 DOI: 10.1021/acs.jafc.0c02605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenolamides, also known as hydroxycinnamic acid amides or phenylamides, have been reported throughout the plant kingdom, while a few of these amine-conjugated hydroxycinnamic acids are unique in foods. The current knowledge of their specific functions in plant development and defense is readily available as is their biosynthesis; however, their functionality in humans is still largely unknown. Of the currently known phenolamides, the most common are avenanthramides, which are unique in oats and similar to the well-known drug Tranilast, which possess anti-inflammatory, antioxidant, anti-itch, and antiatherogenic activities. While recent data have brought to light more information regarding the other known phenolamides, such as hordatines, dimers of agmatine conjugated to hydroxycinnamic acid, and kukoamines, spermine-derived phenolamides, the information is still severely limited, leaving their potential health benefits to speculation. Herein, to highlight the importance of dietary phenolamides to human health, we review and summarize the four major subgroups of phenolamides, including their chemical structures, dietary sources, and reported health benefits. We believe that the studies on phenolamides are still in the infancy stage and additional health benefits of these phenolamides may yet be identified.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
20
|
Mutlu M, Tunca B, Ak Aksoy S, Tekin C, Egeli U, Cecener G. Inhibitory Effects of Olea europaea Leaf Extract on Mesenchymal Transition Mechanism in Glioblastoma Cells. Nutr Cancer 2020; 73:713-720. [PMID: 32406277 DOI: 10.1080/01635581.2020.1765260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive form of brain tumor. Despite the current treatment methods, the survival rate of patients is very low. Therefore, there is a need to develop new therapeutic agents. The migration and invasion capacity of GB cells is related to mesenchymal transition (MT) mechanism. MATERIALS AND METHODS The effect of OLE on MT was determined by analysis of the Twist, Snail, Zeb1, N-cadherin and E-cadherin genes in the EMT mechanism. The effect of OLE on cell migration was determined by wound healing test. RESULTS 2 mg/ml OLE reduced Twist, Snail, Zeb1 and N-cadherin expression and the combination of OLE + TMZ (2 mg/ml OLE + 350 mM TMZ) increased E-cadherin and reduced Twist, Zeb1 and N-cadherin. In addition, co-treatment with OLE increased TMZ-induced anti-invasion properties thought suppressing transcription factors of MT mechanism. CONCLUSION OLE can enhance the anti-MT activities of TMZ against GB and provide strong evidence that combined treatment with OLE and TMZ has the potential to be an effective alternative approach in GB therapy.
Collapse
Affiliation(s)
- Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
21
|
Khan F, Singh VK, Saeed M, Kausar MA, Ansari IA. Carvacrol Induced Program Cell Death and Cell Cycle Arrest in Androgen-Independent Human Prostate Cancer Cells via Inhibition of Notch Signaling. Anticancer Agents Med Chem 2020; 19:1588-1608. [PMID: 31364516 DOI: 10.2174/1871520619666190731152942] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several studies have revealed that abnormal activation of Notch signaling is closely related with the development and progression of prostate cancer. Although there are numerous therapeutic strategies, a more effective modality with least side effects is urgently required for the treatment of prostate cancer. Carvacrol is a monoterpenoid phenol and majorly present in the essential oils of Lamiaceae family plants. Many previous reports have shown various biological activities of carvacrol like antioxidant, antiinflammatory and anticancer properties. Recently, we have shown potent anticancer property of carvacrol against prostate cancer cell line DU145. In the current study, we report the chemopreventive and therapeutic potential of carvacrol against another prostate cancer cell line PC-3 with its detailed mechanism of action. METHODS To determine the effect of the carvacrol on prostate cancer cells, the cell viability was estimated by MTT assay and cell death was estimated by LDH release assay. The apoptotic assay was performed by DAPI staining and FITC-Annexin V assay. Reactive Oxygen Species (ROS) was estimated by DCFDA method. Cell cycle analysis was performed by flow cytometry. Gene expression analysis was performed by quantitative real time PCR. RESULTS Our results suggested that the carvacrol treatment significantly reduced the cell viability of PC-3 cells in a dose- and time-dependent manner. The antiproliferative action of carvacrol was correlated with apoptosis which was confirmed by nuclear condensation, FITC-Annexin V assay, modulation in expression of Bax, Bcl-2 and caspase activation. The mechanistic insight into carvacrol-induced apoptosis leads to finding of elevated level of Reactive Oxygen Species (ROS) and mitochondrial membrane potential disruption. Cell cycle analysis revealed that carvacrol prevented cell cycle in G0/G1 that was associated with decline in expression of cyclin D1 and Cyclin-Dependent Kinase 4 (CDK4) and augmented expression of CDK inhibitor p21. Having been said the role of hyperactivation of Notch signaling in prostate cancer, we also deciphered that carvacrol could inhibit Notch signaling in PC-3 cells via downregulation of Notch-1, and Jagged-1. CONCLUSION Thus, our previous and current findings have established the strong potential of carvacrol as a chemopreventive agent against androgen-independent human prostate cancer cells.
Collapse
Affiliation(s)
- Fahad Khan
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India.,Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Vipendra K Singh
- Environmental Carcinogenesis Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd A Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| |
Collapse
|
22
|
Wang L, Wang P, Wang D, Tao M, Xu W, Olatunji OJ. Anti-Inflammatory Activities of Kukoamine A From the Root Bark of Lycium chinense Miller. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20912088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kukoamine A (Kuk A) is a naturally occurring bioactive spermine alkaloid found in the root bark of Lycium chinense, and it exerts various therapeutic effects including antioxidant, neuroprotective, anti-inflammatory, and antidiabetic effects. This study evaluated the anti-inflammatory properties of Kuk A against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells and carrageenan-induced paw edema in rats. Pretreatment of cells with Kuk A significantly inhibited the production of reactive oxygen species, nitric oxide, prostaglandin E2, cyclooxygenase-2 activity, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 in LPS-treated cells. In addition, pretreatment of rats with Kuk A significantly decreased inflammatory response to carrageenan-induced paw edema by alleviating proinflammatory cytokines in the serum, malondialdehyde levels in the liver and increasing the activities of liver antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) of carrageenan-treated rats. These results suggest the protective role of Kuk A in acute inflammatory reaction and could be useful in the treatment of inflammatory-related disorders.
Collapse
Affiliation(s)
- Lin Wang
- Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Peipei Wang
- Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dandan Wang
- Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mengqing Tao
- Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wenke Xu
- Yijishan Hospital of Wannan Medical College, Wuhu, China
| | | |
Collapse
|
23
|
Song YC, Huang HC, Chang CYY, Lee HJ, Liu CT, Lo HY, Ho TY, Lin WC, Yen HR. A Potential Herbal Adjuvant Combined With a Peptide-Based Vaccine Acts Against HPV-Related Tumors Through Enhancing Effector and Memory T-Cell Immune Responses. Front Immunol 2020; 11:62. [PMID: 32153559 PMCID: PMC7044417 DOI: 10.3389/fimmu.2020.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Viral infection is associated with many types of tumorigenesis, including human papillomavirus (HPV)-induced cervical cancer. The induction of a specific T-cell response against virus-infected cells is desired to develop an efficient therapeutic approach for virus-associated cancer. Chinese herbal medicine (CHM) has a long history in the treatment of cancer patients in Asian countries. Hedyotis diffusa Willd (Bai Hua She She Cao, BHSSC) is frequently used clinically and has been shown to inhibit tumor growth in vitro. However, in vivo data demonstrating the antitumor efficacy of BHSSC are still lacking. We showed that BHSSC induces murine and human antigen-presenting cell (APC) activation via the MAPK signaling pathway and enhances antigen presentation in bone marrow-derived dendritic cells (BMDCs) in vitro. Furthermore, we identified that treatment with BHSSC leads to improved specific effector and memory T-cell responses in vivo. Variant peptide-based vaccines combined with BHSSC improved antitumor activity in preventive, therapeutic, and recurrent HPV-related tumor models. Furthermore, we showed that rutin, one of the ingredients in BHSSC, induces a strong specific immune response against HPV-related tumors in vivo. In summary, we demonstrated that BHSSC extract and its active compound, rutin, can be used as adjuvants in peptide-based vaccines to increase immunogenicity and to bypass the requirement of a conditional adjuvant.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Chi Huang
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lee
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chuan-Teng Liu
- Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Yi Lo
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tin-Yun Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wu-Chou Lin
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Peng H, Meyer RS, Yang T, Whitaker BD, Trouth F, Shangguan L, Huang J, Litt A, Little DP, Ke H, Jurick WM. A novel hydroxycinnamoyl transferase for synthesis of hydroxycinnamoyl spermine conjugates in plants. BMC PLANT BIOLOGY 2019; 19:261. [PMID: 31208339 PMCID: PMC6580504 DOI: 10.1186/s12870-019-1846-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hydroxycinnamoyl-spermine conjugates (HCSpm) are a class of hydroxycinnamic acid amides (HCAAs), which not only are instrumental in plant development and stress response, but also benefit human health. However, HCSpm are not commonly produced in plants, and the mechanism of their biosynthesis remains unclear. In previous investigations of phenolics in Solanum fruits related to eggplant (Solanum melongena L.), we discovered that Solanum richardii, an African wild relative of eggplant, was rich in HCSpms in fruits. RESULTS The putative spermine hydroxycinnamoyl transferase (HT) SpmHT was isolated from S. richardii and eggplant. SrSpmHT expression was high in flowers and fruit, and was associated with HCSpm accumulation in S. richardii; however, SpmHT was hardly detected in eggplant cultivars and other wild relatives. Recombinant SpmHT exclusively selected spermine as the acyl acceptor substrate, while showing donor substrate preference in the following order: caffeoyl-CoA, feruloyl-CoA, and p-coumaroyl-CoA. Molecular docking revealed that substrate binding pockets of SpmHT could properly accommodate spermine but not the shorter, more common spermidine. CONCLUSION SrSpmHT is a novel spermine hydroxycinnamoyl transferase that uses Spm exclusively as the acyl acceptor substrate to produce HCSpms. Our findings shed light on the HCSpm biosynthetic pathway that may allow an increase of health beneficial metabolites in Solanum crops via methods such as introgression or engineering HCAA metabolism.
Collapse
Affiliation(s)
- Hui Peng
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Bruce D. Whitaker
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Frances Trouth
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Lingfei Shangguan
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jingbing Huang
- College of Food Science and Engineering, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Amy Litt
- College of Natural and Agricultural Sciences, University of California, Riverside, CA 92521 USA
| | - Damon P. Little
- Cullman Program for Molecular Systematics, New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, NY 10458 USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| |
Collapse
|
26
|
Song YC, Hung KF, Liang KL, Chiang JH, Huang HC, Lee HJ, Wu MY, Yu SJ, Lo HY, Ho TY, Yen HR. Adjunctive Chinese herbal medicine therapy for nasopharyngeal carcinoma: Clinical evidence and experimental validation. Head Neck 2019; 41:2860-2872. [PMID: 30985039 DOI: 10.1002/hed.25766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To investigate the benefits of adjunctive Chinese herbal medicine (CHM) for patients with nasopharyngeal carcinoma (NPC). METHODS We included all patients diagnosed with NPC during 1997-2009 and followed until 2011 in Taiwan. We used 1:1 frequency matching by age, sex, comorbidity, conventional treatment, and index year to compare the CHM users and non-CHM users (n = 2542 each). The prescribed CHM was further investigated with regard to its cytotoxicity. RESULTS Compared with non-CHM users, adjunctive CHM users had a lower hazard ratio of mortality risk, and a better survival probability. Gan-Lu-Yin (GLY) was the most commonly prescribed CHM, and it reduced cell viability, inhibited tumor proliferation, and induced apoptosis through the poly (ADP-ribose) polymerase and caspase-3-dependent pathway in human NPC TW01 cells. Oral administration of GLY retarded NPC-TW01 tumor growth in the xenograft nude mouse model. CONCLUSION Real-world data and laboratory experiments implied that adjunctive CHM might be beneficial for NPC patients.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Feng Hung
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liang
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lee
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sheng-Jie Yu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Lo
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tin-Yun Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Chen YY, Chang YM, Wang KY, Chen PN, Hseu YC, Chen KM, Yeh KT, Chen CJ, Hsu LS. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. ENVIRONMENTAL TOXICOLOGY 2019; 34:233-239. [PMID: 30431227 DOI: 10.1002/tox.22677] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most mortality brain cancer in the world. Due to high invasion and drug resistance cause the poor prognosis of GBM. Naringenin, an ingredient of citrus, exhibits many cellular functions such as antioxidant, anti-inflammation, and anticancer. Naringenin inhibits the migration of bladder and lung cancer via modulation of MMP-2 and/or MMP-9 activities, Naringenin inhibits migration and trigger apoptosis in gastric cancer cells through downregulation of AKT pathway. However, the effects of naringenin in GBM still remain to be elucidated. In this study, we reveal the molecular mechanisms of naringenin in the inhibition of migration and invasion in GBM. No overt alternation of cell proliferation was found in of GBM 8901 cells treated with different concentration of naringenin. Slight decreased cell viability was found in GBM 8401 cell treated with 200 and 300 μM naringenin. Significant reduction of migration and invasion as assayed by Boyden chamber analysis was found in of GBM cells treated with 100, 200, and 300 μM naringenin. Zymography analysis also revealed that the activities of MMP-2 and MMP-9 of GBM cells were significantly inhibited in response to 100, 200, or 300 μM naringenin treatment. Proteins of MMP-2 and MMP-9 were downregulated in naringenin treated GBM cells. In addition, naringenin also attenuated the activities of ERK and p38. Naringenin decreased mesenchymal markers (snail and slug) expression as revealed by Western blot analysis. Taken together, our findings indicated that naringenin eliminated the migration and invasion of GBM cells through multiple mechanisms including inhibition of MMPs, ERK, and p38 activities and modulation of EMT markers. Our results also suggested that naringenin may be a potential agent to prevent metastasis of GBM.
Collapse
Affiliation(s)
- Yen-Yu Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yuh-Ming Chang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Division of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Kuan-Yi Wang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:125-136. [PMID: 30668422 DOI: 10.1016/j.phymed.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The plant kingdom represents an unlimited source of phytotherapeutics with promising perspectives in the field of anticancer drug discovery. PURPOSE In this view, epithelial-mesenchymal transition (EMT) represents a novel and major target in anticancer therapy. Therefore, this narrative review aims to provide an updated overview on the bioactive phytochemicals with anti-EMT activity. CONCLUSION Among the plant products reviewed, phenylpropanoids were the most investigated at preclinical phase, thus exhibiting a promising potential as anticancer drugs, though an evidence-based clinical efficacy is still lacking.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Noninvasive evaluation of 18F-FDG/ 18F-FMISO-based Micro PET in monitoring hepatic metastasis of colorectal cancer. Sci Rep 2018; 8:17832. [PMID: 30546057 PMCID: PMC6292879 DOI: 10.1038/s41598-018-36238-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the application of two radiotracers (18F-fluorodeoxyglucose (FDG) and 18F-fluoromisonidazole (FMISO)) in monitoring hepatic metastases of human colorectal cancer (CRC). Mouse models of CRC hepatic metastases were established by implantation of the human CRC cell lines LoVo and HT29 by intrasplenic injection. Wound healing and Transwell assays were performed to examine cell migration and invasion abilities. Radiotracer-based cellular uptake in vitro and micro-positron emission tomography imaging of liver metastases in vivo were performed. The incidence of liver metastases in LoVo-xenografted mice was significantly higher than that in HT29-xenografted ones. The SUVmax/mean values of 18F-FMISO, but not 18F-FDG, in LoVo xenografts were significantly greater than in HT29 xenografts. In vitro, LoVo cells exhibited stronger metastatic potential and higher radiotracer uptake than HT29 cells. Mechanistically, the expression of HIF-1α and GLUT-1 in LoVo cells and LoVo tumor tissues was remarkably higher than in HT29 cells and tissues. Linear regression analysis demonstrated correlations between cellular 18F-FDG/18F-FMISO uptake and HIF-1α/GLUT-1 expression in vitro, as well as between 18F-FMISO SUVmax and GLUT-1 expression in vivo. 18F-FMISO uptake may serve as a potential biomarker for the detection of liver metastases in CRC, whereas its clinical use warrants validation.
Collapse
|
30
|
Evaluation of antioxidant and antibacterial activities of the stems of Flammulina velutipes and Hypsizygus tessellatus (white and brown var.) extracted with different solvents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9810-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Woo SM, Min KJ, Seo SU, Kim S, Park JW, Song DK, Lee HS, Kim SH, Kwon TK. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin. Oncotarget 2017; 8:106672-106684. [PMID: 29290980 PMCID: PMC5739765 DOI: 10.18632/oncotarget.22508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dae Kyu Song
- Department of Physiology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
32
|
Review of Natural Product-Derived Compounds as Potent Antiglioblastoma Drugs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8139848. [PMID: 29181405 PMCID: PMC5664208 DOI: 10.1155/2017/8139848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/28/2022]
Abstract
Common care for glioblastoma multiforme (GBM) is a surgical resection followed by radiotherapy and temozolomide- (TMZ-) based chemotherapy. Unfortunately, these therapies remain inadequate involving severe mortality and recurrence. Recently, new approaches discovering combinations of multiple inhibitors have been proposed along with the identification of key driver mutations that are specific to each patient. To date, this approach is still limited by the lack of effective therapy. Hopefully, novel compounds derived from natural products are suggested as potential solutions. Inhibitory effects of natural products on angiogenesis and metastasis and cancer suppressive effect of altering miRNA expression are provident discoveries. Angelica sinensis accelerates apoptosis by their key substances influencing factors of apoptosis pathways. Brazilin displays antitumor features by making influence on reactive oxygen species (ROS) intensity. Sargassum serratifolium, flavonoids, and so on have antimetastasis effect. Ficus carica controls miRNA that inhibits translation of certain secretory pathway proteins during the UPR. Serratia marcescens and patupilone (EPO 906) are physically assessed materials through clinical trials related to GBM progression. Consequently, our review puts emphasis on the potential of natural products in GBM treatment by regulating multiple malignant cancer-related pathway solving pending problem such as reducing toxicity and side effect.
Collapse
|
33
|
Kahlert UD, Joseph JV, Kruyt FAE. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 2017; 11:860-877. [PMID: 28556516 PMCID: PMC5496495 DOI: 10.1002/1878-0261.12085] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to mesenchymal (EMT) process is increasingly recognized for playing a key role in the progression, dissemination, and therapy resistance of epithelial tumors. Accumulating evidence suggests that EMT inducers also lead to a gain in mesenchymal properties and promote malignancy of nonepithelial tumors. In this review, we present and discuss current findings, illustrating the importance of EMT inducers in tumors originating from nonepithelial/mesenchymal tissues, including brain tumors, hematopoietic malignancies, and sarcomas. Among these tumors, the involvement of mesenchymal transition has been most extensively investigated in glioblastoma, providing proof for cell autonomous and microenvironment-derived stimuli that provoke EMT-like processes that regulate stem cell, invasive, and immunogenic properties as well as therapy resistance. The involvement of prominent EMT transcription factor families, such as TWIST, SNAI, and ZEB, in promoting therapy resistance and tumor aggressiveness has also been reported in lymphomas, leukemias, and sarcomas. A reverse process, resembling mesenchymal-to-epithelial transition (MET), seems particularly relevant for sarcomas, where (partial) epithelial differentiation is linked to less aggressive tumors and a better patient prognosis. Overall, a hybrid model in which more stable epithelial and mesenchymal intermediates exist likely extends to the biology of tumors originating from sources other than the epithelium. Deeper investigation and understanding of the EMT/MET machinery in nonepithelial tumors will shed light on the pathogenesis of these tumors, potentially paving the way toward the identification of clinically relevant biomarkers for prognosis and future therapeutic targets.
Collapse
Affiliation(s)
- Ulf D Kahlert
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
34
|
Gao L, Wang L, Sun Z, Li H, Wang Q, Yi C, Wang X. Morusin shows potent antitumor activity for human hepatocellular carcinoma in vitro and in vivo through apoptosis induction and angiogenesis inhibition. Drug Des Devel Ther 2017; 11:1789-1802. [PMID: 28670112 PMCID: PMC5481341 DOI: 10.2147/dddt.s138320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers with high mortality worldwide. Research and development of novel agents for HCC therapy is in demand, urgently. Morusin has been reported to exhibit potential cytotoxic activity in several cancer cell lines. However, whether it has potential antiangiogenic activity especially in HCC remains unclear. In the current study, we found that morusin exerted growth inhibition effects on human HCC cells (HepG2 and Hep3B) in vitro and human HCC cell (HepG2) xenografts in vivo. Moreover, apoptosis induction was observed in a dose-dependent manner after morusin treatment along with an increase in the expression of active caspase-3 and the Bax/Bcl-2 expression ratio. More importantly, morusin inhibited proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and downregulated angiogenic proteins in HCC cells and HUVECs. In vivo, tumor angiogenesis was also attenuated after morusin treatment. In addition, morusin suppressed constitutive as well as IL-6-induced STAT3 phosphorylation in HCC cells and corresponding tumor tissues. Overall, morusin has a potential anticancer effect on human HCC cells in vitro and in vivo by inducing apoptosis and inhibiting anti-angiogenesis. The corresponding mechanism might be associated with the attenuation of the IL-6/STAT3 signaling pathway. Morusin might serve as a promising novel anticancer agent in HCC therapy, and requires further study.
Collapse
Affiliation(s)
| | - Li Wang
- Laboratory of Lung Cancer, Lung Cancer Center
| | - Zhen Sun
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Haiyan Li
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | | | - Xiujie Wang
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|