1
|
Zhang H, Hoang QD, Lei S. Description of two new huntsman spiders from Vietnam (Araneae, Sparassidae). Zookeys 2025; 1236:129-140. [PMID: 40336863 PMCID: PMC12056514 DOI: 10.3897/zookeys.1236.145146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
Two new species of the sparassid genera Heteropoda Latreille, 1804 and Pseudopoda Jäger, 2000 are described from Vietnam: Heteropodataygiangensis sp. nov. (♂) from Quang Nam Province and Pseudopodatadungensis sp. nov. (♀) from Dak Nong Province. The new Pseudopoda species is described and diagnosed based on both morphological characteristics and DNA barcoding. DNA barcode data (COI) are provided for both new species.
Collapse
Affiliation(s)
- He Zhang
- Guo Shoujing Innovation College, Xingtai University, Xingtai City 054001, Hebei Province, ChinaXingtai UniversityXingtai CityChina
- Hebei Province Sweet Potato Breeding and Application Technology Innovation Center, Xingtai City 054001, Hebei Province, ChinaHebei Province Sweet Potato Breeding and Application Technology Innovation CenterXingtai CityChina
- Arachnid Resource Centre of Hubei & Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan City 430062, Hubei Province, ChinaHubei UniversityWuhanChina
| | - Quang Duy Hoang
- Tay Nguyen University, 567 Le Duan, Buon Ma Thuot City 630000, Dak Lak Province, VietnamTay Nguyen UniversityBuon Ma Thuot CityVietnam
| | - Shuang Lei
- Guo Shoujing Innovation College, Xingtai University, Xingtai City 054001, Hebei Province, ChinaXingtai UniversityXingtai CityChina
- Hebei Province Sweet Potato Breeding and Application Technology Innovation Center, Xingtai City 054001, Hebei Province, ChinaHebei Province Sweet Potato Breeding and Application Technology Innovation CenterXingtai CityChina
- Shengzhou Agricultural Technology Extension Center, Shengzhou City 312400, Zhejiang Province, ChinaShengzhou Agricultural Technology Extension CenterShengzhou CityChina
| |
Collapse
|
2
|
Stejskal V, Vendl T, Feng S, Qin Y, Aulicky R, Li Z. The relationship between taxonomic classification and applied entomology: stored product pests as a model group. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:8. [PMID: 40178352 PMCID: PMC11966609 DOI: 10.1093/jisesa/ieaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Taxonomy provides a general foundation for research on insects. Using stored product pest (SPP) arthropods as a model group, this article overviews the historical impacts of taxonomy on applied entomology. The article surveys the dynamics of historical descriptions of new species in various SPP taxa; the majority of all species (90%) were described prior to 1925, while the key pests were described prior to 1866. The review shows that process of describing new SPP species is not random but is influenced by following factors: (i) larger species tend to be described earlier than smaller and SPP moths and beetles are described earlier than psocids and mites; (ii) key economic pests are on average described earlier than less significant ones. Considering a species name as a "password" to unique information resources, this review also assesses the historical number of synonymous or duplicate names of SPP species. Pests belonging to some higher taxa Lepidoptera and Coleoptera has accumulated more scientific synonyms than those others belonging to Psocoptera and Acari. Number of synonyms positively correlated with the economic importance of SPP species. The review summarized semantic origin of SPP names showing minor proportion of names (17.6%) are toponyms (geography) or eponyms (people), while the majority (82.4%) fall into other categories (descriptive, etc.). It is concluded that awareness of taxonomic advances, including changes to species and higher taxa names, should be effectively communicated to pest control practitioners and applied entomology students, and specifically addressed in relevant textbooks, web media, and databases.
Collapse
Affiliation(s)
- Vaclav Stejskal
- Department of Stored Product Pest Management, Czech Agrifood Research Center, Prague, Czech Republic
| | - Tomas Vendl
- Department of Stored Product Pest Management, Czech Agrifood Research Center, Prague, Czech Republic
| | - Shiqian Feng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yujia Qin
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Radek Aulicky
- Department of Stored Product Pest Management, Czech Agrifood Research Center, Prague, Czech Republic
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Zhang H, Chen H, Zhang F, Liu J, Jäger P, Fan Q, Cheng L, Hu C. Four new species of Pseudopoda Jäger, 2000 (Araneae, Sparassidae, Heteropodinae) from China and Vietnam. Zookeys 2025; 1230:231-245. [PMID: 40093684 PMCID: PMC11907246 DOI: 10.3897/zookeys.1230.142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
Four new species of Pseudopoda Jäger, 2000 (Araneae, Sparassidae) are described based on material collected from China and Vietnam: P.campylotropa Zhang, Chen, Liu, Jäger & Hu, sp. nov. (♂♀) and P.caoguii Zhang, Chen, Liu, Jäger & Hu, sp. nov. (♀) from Yunnan Province of China; P.yejiachangensis Zhang, Chen, Liu, Jäger & Hu, sp. nov. (♂) from Jiangxi Province of China; and P.ornithorhynchus Zhang, Chen, Liu, Jäger & Hu, sp. nov. (♂) from Vinh Phuc Province of Vietnam.
Collapse
Affiliation(s)
- He Zhang
- Guo Shoujing Innovation College, Xingtai University, Xingtai 054001, Hebei, China Hubei University Wuhan China
- Hebei Province Sweet Potato Breeding and Application Technology Innovation Center, Xingtai 054001, Hebei, China Xingtai University Xingtai China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China Hebei Province Sweet Potato Breeding and Application Technology Innovation Center Xingtai China
| | - Hailun Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China Hebei Province Sweet Potato Breeding and Application Technology Innovation Center Xingtai China
| | - Fan Zhang
- Hubei Key Laboratory of Resource Utilization and Quality Control of Characteristic Crops, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China Hubei Engineering University Xiaogan China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China Hebei Province Sweet Potato Breeding and Application Technology Innovation Center Xingtai China
| | - Peter Jäger
- Arachnology, Senckenberg Research Institute, Mertonstraße 17-21, 60325 Frankfurt am Main, Germany Arachnology, Senckenberg Research Institute Frankfurt am Main Germany
| | - Qiangyong Fan
- Jiangxi Wuyi Mountain National Nature Reserve Administration, Shangrao 334599, Jiangxi, China Jiangxi Wuyi Mountain National Nature Reserve Administration Shangrao China
| | - Lin Cheng
- Jiangxi Wuyi Mountain National Nature Reserve Administration, Shangrao 334599, Jiangxi, China Jiangxi Wuyi Mountain National Nature Reserve Administration Shangrao China
| | - Changhao Hu
- Guo Shoujing Innovation College, Xingtai University, Xingtai 054001, Hebei, China Hubei University Wuhan China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China Hebei Province Sweet Potato Breeding and Application Technology Innovation Center Xingtai China
- Hubei Broad Nature Technology Service Co. Ltd, Wuhan 430079, Hubei, China Hubei Broad Nature Technology Service Co. Ltd Wuhan China
| |
Collapse
|
4
|
Nazar N, Saxena A, Sebastian A, Slater A, Sundaresan V, Sgamma T. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:7-29. [PMID: 39532481 PMCID: PMC11743069 DOI: 10.1002/pca.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Existing methods for morphological, organoleptic, and chemical authentication may not adequately ensure the accurate identification of plant species or guarantee safety. Herbal raw material authentication remains a major challenge in herbal medicine. Over the past decade, DNA barcoding, combined with an orthogonal approach integrating various testing methods for quality assurance, has emerged as a new trend in plant authentication. OBJECTIVE The review evaluates DNA barcoding and common alternative testing in plant-related sectors to enhance quality assurance and accurate authentication. METHOD Studies were selected based on their relevance to the identification, quality assurance, and safety of herbal products. Inclusion criteria were peer-reviewed articles, systematic reviews, and relevant case studies from the last two decades focused on DNA barcoding, identification methods, and their applications. Exclusion criteria involved studies lacking empirical data, those not peer-reviewed, or those unrelated to the main focus. This ensured the inclusion of high-quality, pertinent sources while excluding less relevant studies. RESULTS An orthogonal approach refers to the use of multiple, independent methods that provide complementary information for more accurate plant identification and quality assurance. This reduces false positives or negatives by confirming results through different techniques, combining DNA barcoding with morphological analysis or chemical profiling. It enhances confidence in results, particularly in cases of potential adulteration or misidentification of plant materials. CONCLUSION This study highlights the persistent challenges in assuring the quality, purity, and safety of plant materials. Additionally, it stresses the importance of incorporating DNA-based authentication alongside traditional methods, to enhance plant material identification.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Akanksha Saxena
- Plant Biology and SystematicsCSIR—Central Institute of Medicinal and Aromatic Plants, Research CentreBengaluruIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Anu Sebastian
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Velusamy Sundaresan
- Plant Biology and SystematicsCSIR—Central Institute of Medicinal and Aromatic Plants, Research CentreBengaluruIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| |
Collapse
|
5
|
Wu Y, Zhong R, Zhu Y, Jäger P, Liu J, Zhang H. Description of three new species of the spider genus Pseudopoda Jäger, 2000 (Araneae, Sparassidae) from China, Laos and Thailand, and the female of P.kavanaughi Zhang, Jäger & Liu, 2023. Zookeys 2024; 1202:287-301. [PMID: 38836192 PMCID: PMC11148507 DOI: 10.3897/zookeys.1202.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
With 252 species, Pseudopoda Jäger, 2000, is the largest genus in the family Sparassidae and is widely distributed in South (49 species in Bhutan, India, Nepal and Pakistan), East (158 species in China and Japan) and Southeast Asia (51 species in Indonesia, Laos, Myanmar, Thailand and Vietnam). Few species have been found in more than one region. In this paper, three new species of Pseudopoda are described from East and Southeast Asia. Among them, one from China: P.fengtongzhaiensis Jäger & Liu, sp. nov. (♀); one from Laos: P.baimai Jäger & Liu, sp. nov. (♀); and one from Thailand: P.inthanonensis Jäger & Liu, sp. nov. (♀). Additionally, the female of P.kavanaughi Zhang, Jäger & Liu, 2023 is described for the first time. Photos of the habitus and genitalia, as well as a distribution map of all four species, are provided.
Collapse
Affiliation(s)
- Yanrong Wu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China
| | - Rui Zhong
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China
| | - Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China
| | - Peter Jäger
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Science, Hubei University, Wuhan 430062, Hubei, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China
- Arachnology, Senckenberg Research Institute, Mertonstraße 17-21, 60325 Frankfurt am Main, Germany
| | - He Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
6
|
Gong LJ, Zeng MY, Zhong Y, Yu HL. A new species of Pseudopoda (Araneae, Sparassidae) from China, with the description of different and distinctive internal ducts of the female vulva. Zookeys 2023; 1159:189-199. [PMID: 37234561 PMCID: PMC10207930 DOI: 10.3897/zookeys.1159.97463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
One new species of the genus Pseudopoda Jäger, 2000, Pseudopodadeformis Gong & Zhong, sp. nov. (♂, ♀), is described and documented with digital images from Shennongjia Forestry District, Hubei Province, China, based on morphology and DNA barcodes. This new species is separated from other Pseudopoda species by the unique type of internal ducts of the female vulva that are curved longitudinally, forming a narrow triangle or trapezoidal shape. In addition, DNA barcodes for this species are provided.
Collapse
Affiliation(s)
- Li-jun Gong
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Meng-yun Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Yang Zhong
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Hui-liang Yu
- Administrative Commission of Jiugongshan National Nature Reserve of Hubei Xianning, Xianning, 437100, Hubei, China
- Shennongjia National Park Administration, Shennongjia 442421, Hubei, China
| |
Collapse
|
7
|
Pandey P, Khan F, Upadhyay TK. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chem Biol Drug Des 2023; 101:1446-1458. [PMID: 36746671 DOI: 10.1111/cbdd.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Cancer is a complicated malignancy controlled by numerous intrinsic and extrinsic pathways. There has been a significant increase in interest in recent years in the elucidation of cancer treatments based on natural extracts that have fewer side effects. Numerous natural product-derived chemicals have been investigated for their anticancer effects in the search for an efficient chemotherapeutic method. Therefore, the rationale behind this review is to provide a detailed insights about the anticancerous potential of apigenin via modulating numerous cell signaling pathways. An ingestible plant-derived flavonoid called apigenin has been linked to numerous anticancerous potential in numerous experimental and biological studies. Apigenin has been reported to induce cell growth arrest and apoptotic induction by modulating multiple cell signaling pathways in a wider range of human tumors including those of the breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach. Oncogenic protein networks, abnormal cell signaling, and modulation of the apoptotic machinery are only a few examples of diverse molecular interactions and processes that have not yet been thoroughly addressed by scientific research. Thus, keeping this fact in mind, we tried to focus our review towards summarizing the apigenin-mediated modulation of oncogenic pathways in various malignancies that can be further utilized to develop a potent therapeutic alternative for the treatment of various cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
8
|
Nolasco S, Valdez-Mondragón A. To be or not to be… Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus Physocyclus (Araneae, Pholcidae) using DNA barcoding and morphology. Zookeys 2022; 1135:93-118. [PMID: 36761795 PMCID: PMC9836410 DOI: 10.3897/zookeys.1135.94628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Integrative taxonomy is crucial for discovery, recognition, and species delimitation, especially in underestimated species complex or cryptic species, by incorporating different sources of evidence to construct rigorous species hypotheses. The spider genus Physocyclus Simon, 1893 (Pholcidae, Arteminae) is composed of 37 species, mainly from North America. In this study, traditional morphology was compared with three DNA barcoding markers regarding their utility in species delimitation within the genus: 1) Cytochrome c Oxidase subunit 1 (CO1), 2) Internal Transcribed Spacer 2 (ITS2), and 3) Ribosomal large subunit (28S). The molecular species delimitation analyses were carried out using four methods under the corrected p-distances Neighbor-Joining (NJ) criteria: 1) Automatic Barcode Gap Discovery (ABGD), 2) Assemble Species by Automatic Partitioning (ASAP), 3) General Mixed Yule Coalescent model (GMYC), and 4) Bayesian Poisson Tree Processes (bPTP). The analyses incorporated 75 terminals from 22 putative species of Physocyclus. The average intraspecific genetic distance (p-distance) was found to be < 2%, whereas the average interspecific genetic distance was 20.6%. The ABGD, ASAP, and GMYC methods were the most congruent, delimiting 26 or 27 species, while the bPTP method delimited 33 species. The use of traditional morphology for species delimitation was congruent with most molecular methods, with the male palp, male chelicerae, and female genitalia shown to be robust characters that support species-level identification. The barcoding with CO1 and 28S had better resolution for species delimitation in comparison with ITS2. The concatenated matrix and traditional morphology were found to be more robust and informative for species delimitation within Physocyclus.
Collapse
Affiliation(s)
- Samuel Nolasco
- Posgrado en Ciencias Biológicas (Doctorado), Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala (UATx), Carretera Federal Tlaxcala-Puebla, Km. 1.5, C. P. 90062, Tlaxcala, Mexico,Laboratory of Arachnology (LATLAX), Laboratorio Regional de Biodiversidad y Cultivo de Tejidos Vegetales (LBCTV), Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), sede Tlaxcala, Ex-Fábrica San Manuel, San Miguel Contla, 90640 Santa Cruz Tlaxcala, Tlaxcala, Mexico
| | - Alejandro Valdez-Mondragón
- Laboratory of Arachnology (LATLAX), Laboratorio Regional de Biodiversidad y Cultivo de Tejidos Vegetales (LBCTV), Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), sede Tlaxcala, Ex-Fábrica San Manuel, San Miguel Contla, 90640 Santa Cruz Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
9
|
Cruz MM, Hoffmann LS, de Freitas TRO. Saint Peter and Saint Paul Archipelago barcoded: Fish diversity in the remoteness and DNA barcodes reference library for metabarcoding monitoring. Genet Mol Biol 2022; 45:e20210349. [PMID: 36205729 PMCID: PMC9540803 DOI: 10.1590/1678-4685-gmb-2021-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/04/2022] [Indexed: 11/04/2022] Open
Abstract
In order to monitor the effects of anthropogenic pressures in ecosystems,
molecular techniques can be used to characterize species composition. Among
molecular markers capable of identifying species, the cytochrome c oxidase I
(COI) is the most used. However, new possibilities of
biodiversity profiling have become possible, in which molecular fragments of
medium and short-length can now be analyzed in metabarcoding studies. Here, a
survey of fishes from the Saint Peter and Saint Paul Archipelago was barcoded
using the COI marker, which allowed the identification of 21
species. This paved the way to further investigate the fish biodiversity of the
archipelago, transitioning from barcoding to metabarcoding analysis. As
preparatory steps for future metabarcoding studies, the first extensive
COI library of fishes listed for these islands was
constructed and includes new data generated in this survey as well as previously
available data, resulting in a final database with 9,183 sequences from 169
species and 63 families of fish. A new primer specifically designed for those
fishes was tested in silico to amplify a region of 262 bp. The
new approach should guarantee a reliable surveillance of the archipelago and can
be used to generate policies that will enhance the archipelago’s protection.
Collapse
Affiliation(s)
- Marcelo Merten Cruz
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Porto
Alegre, RS, Brazil
| | - Lilian Sander Hoffmann
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Porto
Alegre, RS, Brazil
| | - Thales R. O. de Freitas
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Porto
Alegre, RS, Brazil
| |
Collapse
|
10
|
Sarshari B, Mohebbi SR, Ravanshad M, Shahrokh S, Aghdaei HA, Zali MR. Detection and quantification of Epstein-Barr virus, cytomegalovirus, and human herpesvirus-6 in stomach frozen tissue of chronic gastritis and gastric cancer patients. Microbiol Immunol 2022; 66:379-385. [PMID: 35674215 DOI: 10.1111/1348-0421.13013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
Human herpes viruses (HHVs) are among the most common infectious agents detected in the gastrointestinal tract that might be involved in oncogenesis and other gastrointestinal disorders. Although the link between the Epstein-Barr virus (EBV) and gastric cancer (GC) has been established, the role of the viruses in various stomach diseases remains unknown. The frequencies and viral copy number of EBV, cytomegalovirus (CMV), and human herpesvirus 6 (HHV-6) among 50 gastric cancer tumors and 105 chronic gastritis tissues were measured by quantitative real-time PCR. In the tumor specimens and the adjacent normal tissues EBV was found in 60% and 30.9%, CMV in 14% and 4.7%, and HHV-6 in 18%, and 14.2%, respectively. The detection rate of EBV and CMV was found to be significantly higher in tumor tissues relative to the adjacent normal tissues. Also, in chronic gastritis, the frequency of EBV, CMV, and HHV-6 was 19%, 12.3%, and 15.2%, respectively, compared with 16.4%, 1.1%, and 8.2% in their corresponding normal tissues. Here, the CMV frequency was found to be significantly higher in gastritis tissues relative to the adjacent normal tissues. Furthermore, viral load in both gastric cancer and gastritis groups was higher in either tumor or gastritis lesion compared with matched adjacent normal tissue. This study showed a clear association between gastric cancer with both EBV and CMV. Meanwhile, analyses revealed a strong association between the EBV, CMV, and HHV-6 viral loads with gastritis (P = 0.0026, P < 0.0001, and P = 0.0405, respectively). Our results suggest that these three viruses might contribute to the induction and development the gastritis and gastric cancer.
Collapse
Affiliation(s)
- Behrang Sarshari
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Siences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Siences, Tehran, Iran
| |
Collapse
|
11
|
Munger IA, Baugh M, Henrie JR, Hollinger J, Crepeau R, Leavitt SD. Integrative Biodiversity Inventories: Characterizing Lichen-Forming Fungal Diversity in Glen Canyon National Recreation Area Using DNA Barcoding and Vouchered Specimens. WEST N AM NATURALIST 2022. [DOI: 10.3398/064.082.0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Isaac A. Munger
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Mikele Baugh
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Jacob R. Henrie
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Jason Hollinger
- Herbarium, Department of Biology, Western Carolina University, Cullowhee, NC 28723
| | - Robin Crepeau
- Department of Biology, Brigham Young University, Provo, UT 84602
| | | |
Collapse
|
12
|
Phillips JD, Gillis DJ, Hanner RH. Lack of Statistical Rigor in DNA Barcoding Likely Invalidates the Presence of a True Species' Barcode Gap. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.859099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA barcoding has been largely successful in satisfactorily exposing levels of standing genetic diversity for a wide range of taxonomic groups through the employment of only one or a few universal gene markers. However, sufficient coverage of geographically-broad intra-specific haplotype variation within genomic databases like the Barcode of Life Data Systems (BOLD) and GenBank remains relatively sparse. As reference sequence libraries continue to grow exponentially in size, there is now the need to identify novel ways of meaningfully analyzing vast amounts of available DNA barcode data. This is an important issue to address promptly for the routine tasks of specimen identification and species discovery, which have seen broad adoption in areas as diverse as regulatory forensics and resource conservation. Here, it is demonstrated that the interpretation of DNA barcoding data is lacking in statistical rigor. To highlight this, focus is set specifically on one key concept that has become a household name in the field: the DNA barcode gap. Arguments outlined herein specifically center on DNA barcoding in animal taxa and stem from three angles: (1) the improper allocation of specimen sampling effort necessary to capture adequate levels of within-species genetic variation, (2) failing to properly visualize intra-specific and interspecific genetic distances, and (3) the inconsistent, inappropriate use, or absence of statistical inferential procedures in DNA barcoding gap analyses. Furthermore, simple statistical solutions are outlined which can greatly propel the use of DNA barcoding as a tool to irrefutably match unknowns to knowns on the basis of the barcoding gap with a high degree of confidence. Proposed methods examined herein are illustrated through application to DNA barcode sequence data from Canadian Pacific fish species as a case study.
Collapse
|
13
|
Oyenihi OR, Oyenihi AB, Alabi TD, Tade OG, Adeyanju AA, Oguntibeju OO. Reactive oxygen species: Key players in the anticancer effects of apigenin? J Food Biochem 2022; 46:e14060. [PMID: 34997605 DOI: 10.1111/jfbc.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) exhibit a double-edged sword in cancer-hence their modulation has been an attractive strategy in cancer prevention and therapy. The abundance of scientific information on the pro-oxidant effects of apigenin in cancer cells suggests the crucial role of ROS in its mechanisms of action. Although apigenin is known to enhance the cellular ROS levels to cytotoxic degrees in cancer cells in vitro, it remains to be determined if these pro-oxidant effects prevail or are relevant in experimental tumor models and clinical trials. Here, we critically examine the pro-oxidant and antioxidant effects of apigenin in cancer to provide insightful perspectives on the association between its ROS-modulating action and anticancer potential. We also discussed these effects in a cell/tissue type-specific context to highlight the factors influencing the switch between antioxidant and pro-oxidant effects. Finally, we raised some questions that need addressing for the potential translation of these studies into clinical applications. Further research into this duality in oxidant actions of apigenin, especially in vivo, may enable better exploitation of its anticancer potential. PRACTICAL APPLICATION: Apigenin is a naturally occurring compound found in chamomile flowers, parsley, celery, peppermint, and citrus fruits. Many human trials of dietary interventions with apigenin-containing herbs and flavonoid mixture on oxidative stress markers, for instance, point to their antioxidant effects and health benefits in many diseases. Preclinical studies suggest that apigenin alone or its combination with chemotherapeutics has a strong anti-neoplastic effect and can induce ROS-mediated cytotoxicity at concentrations in the micromolar (μM) range, which may not be feasible with dietary interventions. Enhancing the in vivo pharmacokinetic properties of apigenin may be indispensable for its potential cancer-specific pro-oxidant therapy and may provide relevant information for clinical studies of apigenin either as a single agent or an adjuvant to chemotherapeutics.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Toyin D Alabi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Oluwatosin G Tade
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne A Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan, Oyo State, Nigeria
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
14
|
Li F, Xu X, Zhang Z, Liu F, Yang Z, Li D. Multilocus species delimitation and phylogeny of the genus
Calommata
(Araneae, Atypidae) in southern China. ZOOL SCR 2022. [DOI: 10.1111/zsc.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fan Li
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Xin Xu
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
- College of Life Sciences Hunan Normal University Changsha China
| | - Zengtao Zhang
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
| | - Fengxiang Liu
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
| | - Zizhong Yang
- National‐Local Joint Engineering Research Center of Entomoceutics Dali University Dali China
| | - Daiqin Li
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
15
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Esselstyn JA, Achmadi AS, Handika H, Swanson MT, Giarla TC, Rowe KC. Fourteen New, Endemic Species of Shrew (Genus Crocidura) from Sulawesi Reveal a Spectacular Island Radiation. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.454.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Anang S. Achmadi
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Cibinong, West Java, Indonesia
| | - Heru Handika
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Mark T. Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | | | - Kevin C. Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Leavitt SD, Hollinger J, Summerhays S, Munger I, Allen J, Smith B. Alpine lichen diversity in an isolated sky island in the Colorado Plateau, USA-Insight from an integrative biodiversity inventory. Ecol Evol 2021; 11:11090-11101. [PMID: 34429905 PMCID: PMC8366874 DOI: 10.1002/ece3.7896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
Lichens are major components of high altitude/latitude ecosystems. However, accurately characterizing their biodiversity is challenging because these regions and habitats are often underexplored, there are numerous poorly known taxonomic groups, and morphological variation in extreme environments can yield conflicting interpretations. Using an iterative taxonomic approach based on over 800 specimens and incorporating both traditional morphology-based identifications and information from the standard fungal DNA barcoding marker, we compiled a voucher-based inventory of biodiversity of lichen-forming fungi in a geographically limited and vulnerable alpine community in an isolated sky island in the Colorado Plateau, USA-the La Sal Mountains. We used the newly proposed Assemble Species by Automatic Partitioning (ASAP) approach to empirically delimit candidate species-level lineages from family-level multiple sequence alignments. Specimens comprising DNA-based candidate species were evaluated using traditional taxonomically diagnostic phenotypic characters to identify specimens to integrative species hypotheses and link these, where possible, to currently described species. Despite the limited alpine habitat (ca. 3,250 ha), we document the most diverse alpine lichen community known to date from the southern Rocky Mountains, with up to 240 candidate species/species-level lineages of lichen-forming fungi. 139 species were inferred using integrative taxonomy, plus an additional 52 candidate species within 29 different putative species complexes. Over 68% of sequences could not be assigned to species-level rank with statistical confidence, corroborating the limited utility of current sequence repositories for species-level DNA barcoding of lichen-forming fungi. By integrating vouchered specimens, DNA sequence data, and photographic documentation, we provide an important baseline of lichen-forming fungal diversity for the limited alpine habitat in the Colorado Plateau. These data provide an important resource for subsequent research in the ecology and evolution of lichens alpine habitats, including DNA barcodes for most putative species/species-level lineages occurring in the La Sal Mountains, and vouchered collections representing any potentially undescribed species that can be used for future taxonomic studies.
Collapse
Affiliation(s)
- Steven D. Leavitt
- M.L. Bean Life Science Museum & Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Jason Hollinger
- HerbariumDepartment of BiologyWestern Carolina UniversityCullowheeNorth CarolinaUSA
| | | | - Isaac Munger
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Jonah Allen
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Barb Smith
- Wildlife Biologist/Botanist, Moab DistrictManti–La Sal National ForestMoabUtahUSA
| |
Collapse
|
19
|
Responte M, Chiu Y, Peng P, Brown RM, Dai C, Su Y. Northward geographic diversification of a kleptoparasitic spider Argyrodes lanyuensis (Araneae, Theridiidae) from the Philippine Archipelago to Orchid Island. Ecol Evol 2021; 11:11241-11266. [PMID: 34429915 PMCID: PMC8366866 DOI: 10.1002/ece3.7910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Oceanic islands are unique geographic systems that promote local adaptations and allopatric speciation in many of their highly endemic taxa. This is a common case in the Philippine Archipelago, where numerous unrelated taxa on islands have been inferred to have diversified in isolation. However, few cases have been reported in invertebrates especially among parasitic organisms. Here, we tested for biogeographical structure in novel populations of the "generalist" kleptoparasitic spider, Argyrodes lanyuensis Yoshida, Tso & Severinghaus, 1998 in the Philippines. Results showed that, in addition to Orchid/Lanyu Island, this species has a wide geographic distribution in the Philippine Archipelago. The estimated divergence time of this lineage using the mitochondrial cytochrome oxidase 1 (mt-CO1) suggests that this species diverged ca 3.12 MYA, during the Pliocene. Two reciprocal monophyletic clades were elucidated in A. lanyuensis, but with limited differentiation across Pleistocene Aggregate Island Complex (PAIC) boundaries and modern-day islands. However, in our analyses of morphological variation, we identified two phenotypically differentiated units in males (Orchid Island, Taiwan + Luzon, Philippine PAIC populations vs. Palawan + West Visayan + Mindanao PAIC populations). We infer that this species diverged in the southern portion of the Philippine Archipelago and only recently colonized Orchid Island. Our study provides new information on the extensive distribution of A. lanyuensis outside Orchid Island, Taiwan, but we documented a very limited geographically associated genetic variation. Our study points to behavioral phenomena such as foraging behavior as essential contributor to the evolutionary process of species diversification, in contrast to the traditionally invoked geographic drivers of divergence.
Collapse
Affiliation(s)
- Mae Responte
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Biological Sciences and Environmental StudiesCollege of Science and MathematicsUniversity of the Philippines MindanaoDavao CityPhilippines
| | - Yi‐Fan Chiu
- Department of Biomedical Science and Environmental BiologyCollege of Life ScienceKaohsiung Medical UniversityKaohsiungTaiwan
| | - Po Peng
- Department of Biomedical Science and Environmental BiologyCollege of Life ScienceKaohsiung Medical UniversityKaohsiungTaiwan
| | - Rafe M. Brown
- Biodiversity InstituteDepartment of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Chia‐Yen Dai
- Department of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yong‐Chao Su
- Department of Biomedical Science and Environmental BiologyCollege of Life ScienceKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
20
|
Jusoh WFA, Ballantyne L, Chan KO. DNA-based species delimitation reveals cryptic and incipient species in synchronous flashing fireflies (Coleoptera: Lampyridae) of Southeast Asia. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Synchronous flashing fireflies of the genus Pteroptyx are ubiquitous throughout Southeast Asia, yet fundamental knowledge about their biodiversity is lacking. Recent studies have revealed notable population-level phylogeographical structure within the Pteroptyx tener and P. bearni groups in Malaysia, suggesting that cryptic species may exist. Additionally, morphological and genetic similarities between P. balingiana and P. malaccae have raised questions about the former’s validity as a distinct species. We collected samples from previously unsampled populations and assembled the most comprehensive genetic dataset for Pteroptyx to date, to characterize species boundaries within the P. tener, P. bearni and P. malaccae groups. Using a suite of species delimitation analyses, we show that P. tener along the west coast of Peninsular Malaysia (PM) is distinct from populations from the east coast and Borneo despite the absence of morphological differentiation. However, analyses could not conclusively differentiate P. bearni from Borneo and eastern PM, nor identify P. balingiana and P. malaccae as distinct species, indicating that these populations may be conspecific or represent incipient species. This study underlines the need to increase geographical, taxonomic and genetic sampling of Southeast Asian fireflies to provide a better understanding of their biodiversity.
Collapse
Affiliation(s)
- Wan F A Jusoh
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Lesley Ballantyne
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
21
|
Abstract
The use of the "integrative approach" for classification of organisms since its formal establishment in 2005 has become a recurrent theme of zoosystematics. A bibliometric survey of the publications on integrative taxonomy of animals, which is aimed at exploring the most popular areas of research and characterizing the practical systematists' attitudes to this new approach, is presented. An analysis of 582 papers, which appeared between 2005 and 2017 in journals indexed by Scopus and the Web of Science Core Collection, has illustrated the gradual growth of the popularity of integrative taxonomy as well as some biases in the representation of higher taxa in "integrated" studies. It has been shown that the "integrative" papers have more chance of appearing in a top-ranking journal and gain relatively more citations as compared with non-integrative papers. The obtained results are discussed in the context of the "taxonomic impediment" problem thought to be a consequence of the institutional crisis of traditional taxonomy, which has been vividly debated over the past decades.
Collapse
Affiliation(s)
- Maxim V Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
22
|
Zhang H, Jäger P, Liu J. Establishing a new species group of Pseudopoda Jäger, 2000 with the description of two new species (Araneae, Sparassidae). Zookeys 2019; 879:91-115. [PMID: 31636500 PMCID: PMC6795626 DOI: 10.3897/zookeys.879.35110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022] Open
Abstract
The huntsman spider genus Pseudopoda Jäger, 2000 contains 140 species worldwide, of which 61 have been described from China. In this paper, this knowledge is increased by the description of two new species from Yunnan Province in China. These new species, P.physematosasp. nov. (♀) and P.semilunatasp. nov. (♂♀), are treated with five previously described ones, P.bibulba Xu & Yin, 2000 (♂♀), P.signata Jäger, 2001 (♂♀), P.wu Jäger, Li & Krehenwinkel, 2015 (♂♀), P.yinae Jäger & Vedel, 2007 (♂), and P.yunnanensis Yang & Hu, 2001 (♂♀), as the newly defined Pseudopodasignata species group. The P.signata group can be distinguished from other groups within Pseudopoda by the male palps with long, slightly broad, S-shaped embolus, small but distinct tegular apophysis, pronounced dRTA and reduced vRTA, and by the female with V-shaped or W-shaped anterior margins of lateral lobes, membranous and wide first winding, long and strongly curved SIDS (sclerotised internal duct system), the latter mostly covered by the first winding. The monophyly of this group is also supported by molecular phylogenetic results mainly based on Chinese Pseudopoda species. In addition, photographs of P.bibulba (♂♀), P.signata (♂♀), and P.yunnanensis (♂♀) are provided. P.bibulba is newly recorded from Guizhou Province and P.signata is newly recorded from Yunnan Province.
Collapse
Affiliation(s)
- He Zhang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China Hubei University Wuhan China
| | - Peter Jäger
- Arachnology, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany Senckenberg Research Institute Frankfurt am Main Germany
| | - Jie Liu
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China Hubei University Wuhan China.,School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, China Hubei University of Science and Technology Hubei China
| |
Collapse
|
23
|
Jirapatrasilp P, Backeljau T, Prasankok P, Chanabun R, Panha S. Untangling a mess of worms: Species delimitations reveal morphological crypsis and variability in Southeast Asian semi-aquatic earthworms (Almidae, Glyphidrilus). Mol Phylogenet Evol 2019; 139:106531. [PMID: 31185298 DOI: 10.1016/j.ympev.2019.106531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022]
Abstract
Semi-aquatic freshwater earthworms in the genus Glyphidrilus from Southeast Asia are characterized by both an extreme morphological crypsis among divergent phylogenetic lineages and a high morphological variability within the same phylogenetic lineages. The present study provides a new taxonomic framework for this problematic genus in SE Asia by integrating DNA sequence and morphological data. When single-locus and multilocus multispecies coalescent-based (MSC) species delimitation methods were applied to DNA sequence data, they usually yielded highly incongruent results compared to morphology-based species identifications. This suggested the presence of several cryptic species and high levels of intraspecific morphological variation. Applying reciprocal monophyly to the cytochrome c oxidase subunit 1 (COI) gene tree allowed us to propose the existence of 33 monophyletic species. Yet, often substantially more molecular operational taxonomic units (MOTUs) were obtained when species delimitation was based on COI and 16S rRNA sequences. In contrast, the ITS1 and ITS2 sequences suggested fewer MOTUs and did not recover most of the monophyletic species from the Mekong basin. However, several of these latter taxa were better supported when MSC species delimitation methods were applied to the combined mtDNA and ITS datasets. The ITS2 secondary structure retrieved one unnamed Mekong basin species that was not uncovered by the other methods when applied to ITS2 sequences. In conclusion, based on an integrative taxonomic workflow, 26 Glyphidrilus candidate species were retained and two remained to be confirmed. As such, this study provides evidence to suggest nine species new to science and to synonymize 12 nominal morphospecies. It also illustrates that the uncritical use of COI as a universal DNA barcode may overestimate species diversity because COI may be unable to distinguish between divergent conspecific lineages and different candidate species.
Collapse
Affiliation(s)
- Parin Jirapatrasilp
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Pongpun Prasankok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratmanee Chanabun
- Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Ashfaq M, Blagoev G, Tahir HM, Khan AM, Mukhtar MK, Akhtar S, Butt A, Mansoor S, Hebert PDN. Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS One 2019; 14:e0217086. [PMID: 31116764 PMCID: PMC6530854 DOI: 10.1371/journal.pone.0217086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/04/2019] [Indexed: 01/16/2023] Open
Abstract
Morphological study of 1,795 spiders from sites across Pakistan placed these specimens in 27 families and 202 putative species. COI sequences >400 bp recovered from 1,782 specimens were analyzed using neighbor-joining trees, Bayesian inference, barcode gap, and Barcode Index Numbers (BINs). Specimens of 109 morphological species were assigned to 123 BINs with ten species showing BIN splits, while 93 interim species included representatives of 98 BINs. Maximum conspecific divergences ranged from 0-5.3% while congeneric distances varied from 2.8-23.2%. Excepting one species pair (Oxyopes azhari-Oxyopes oryzae), the maximum intraspecific distance was always less than the nearest-neighbor (NN) distance. Intraspecific divergence values were not significantly correlated with geographic distance. Most (75%) BINs detected in this study were new to science, while those shared with other nations mainly derived from India. The discovery of many new, potentially endemic species and the low level of BIN overlap with other nations highlight the importance of constructing regional DNA barcode reference libraries.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Gergin Blagoev
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Arif M. Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | - Saleem Akhtar
- Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Abida Butt
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Tong Y, Binford G, Rheims CA, Kuntner M, Liu J, Agnarsson I. Huntsmen of the Caribbean: Multiple tests of the GAARlandia hypothesis. Mol Phylogenet Evol 2019; 130:259-268. [DOI: 10.1016/j.ympev.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
|
26
|
Jiang T, Zhao Q, Li S. Sixteen new species of the genus Pseudopoda Jäger, 2000 from China, Myanmar, and Thailand (Sparassidae, Heteropodinae). Zookeys 2018:107-161. [PMID: 30386156 PMCID: PMC6205991 DOI: 10.3897/zookeys.791.28137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Sixteen new species of Pseudopoda Jäger, 2000 (Sparassidae, Heteropodinae) are described. Among them, eight species were collected from China: P.chayuensis Zhao & Li, sp. n. (♂), P.conaensis Zhao & Li, sp. n. (♂), P.medogensis Zhao & Li, sp. n. (♂), P.nyingchiensis Zhao & Li, sp. n. (♂), P.shacunensis Zhao & Li, sp. n. (♂), P.shuo Zhao & Li, sp. n. (♂♀), P.yuanjiangensis Zhao & Li, sp. n. (♀) and P.zixiensis Zhao & Li, sp. n. (♂); seven from Myanmar: P.colubrina Zhao & Li, sp. n. (♂♀), P.daxing Zhao & Li, sp. n. (♂), P.gexiao Zhao & Li, sp. n. (♂), P.putaoensis Zhao & Li, sp. n. (♂), P.subbirmanica Zhao & Li, sp. n. (♂♀), P.titan Zhao & Li, sp. n. (♂♀), P.xia Zhao & Li, sp. n. (♂); and one from Thailand: P.maeklongensis Zhao & Li, sp. n. (♂). A distribution map of the new species is also provided.
Collapse
Affiliation(s)
- Tongyao Jiang
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China Institute of Zoology, Chinese Academy of Science Beijing China
| | - Qingyuan Zhao
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China Institute of Zoology, Chinese Academy of Science Beijing China
| | - Shuqiang Li
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China Institute of Zoology, Chinese Academy of Science Beijing China
| |
Collapse
|
27
|
DNA Barcoding and Taxonomic Challenges in Describing New Putative Species: Examples from Sootywing and Cloudywing Butterflies (Lepidoptera: Hesperiidae). DIVERSITY 2018. [DOI: 10.3390/d10040111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA barcoding has resulted in the ‘discovery’ of a vast number of new species and subspecies. Assigning formal scientific names to these taxa remains a major challenge. Names sometimes are newly designated. Alternatively, available valid names can be resurrected from synonymy, based on barcode analyses together with classical taxonomic characters. For the most part, however, new putative species revealed by barcoding studies go undescribed. This situation is most often attributed to insufficient taxonomic expertise with the authors conducting the study, together with a critical lack of formally trained taxonomists. However, even with formal training, and additional supportive data from morphological, ecological or life history characters, other factors can arise that impede new species descriptions. In the present paper, several specific taxonomic challenges that have arisen from barcode analyses in two groups of skipper butterflies (Lepidoptera: Hesperiidae), the Sootywings (Pholisora catullus and P. mejicanus) and the Coyote Cloudywing (Achalarus toxeus) are highlighted and discussed. Both P. catullus and A. toxeus show relatively large intraspecific genetic divergences of barcodes (2–3%) which suggests the possibility of previously unrecognized cryptic speciation within each group. Some of the challenges to providing formal names and clarifying taxonomic status of these cryptic taxa could be largely overcome by (1) barcoding type specimens, (2) clarifying imprecise and often vague or suspect type localities, and (3) by conducting in-depth comparative studies on genitalic morphology.
Collapse
|
28
|
Christiansen H, Dettai A, Heindler FM, Collins MA, Duhamel G, Hautecoeur M, Steinke D, Volckaert FAM, Van de Putte AP. Diversity of Mesopelagic Fishes in the Southern Ocean - A Phylogeographic Perspective Using DNA Barcoding. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Yusseff-Vanegas SZ, Agnarsson I. DNA-barcoding of forensically important blow flies (Diptera: Calliphoridae) in the Caribbean Region. PeerJ 2017; 5:e3516. [PMID: 28761780 PMCID: PMC5531032 DOI: 10.7717/peerj.3516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identifying immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study, recovering substantial geographic variation for Lucilia eximia, Lucilia retroversa, Lucilia rica and Chloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance of employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids, and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.
Collapse
Affiliation(s)
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|