1
|
Liu X, Shang H, Wei Q, Yao X, Lian L, Dang J, Jia R, Wu Z, Li H, Niu Q, Cheng X, Zou Z, Chen S, Zhang M, Liu Y, Liu Y, Liu Q, Huang X, Wang H, Feng H, Wang S, Fan D. Tetramethylpyrazine Nitrone in Amyotrophic Lateral Sclerosis: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2461055. [PMID: 39992655 PMCID: PMC11851239 DOI: 10.1001/jamanetworkopen.2024.61055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/17/2024] [Indexed: 02/26/2025] Open
Abstract
Importance Tetramethylpyrazine nitrone has exhibited promising results in improving motor dysfunction in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Objective To evaluate the safety and efficacy of orally administered tetramethylpyrazine nitrone in patients with ALS. Design, Setting, and Participants This phase 2, multicenter, double-masked, placebo-controlled, randomized clinical trial was conducted from December 24, 2020, through July 14, 2023, in 11 centers in China, with a 180-day follow-up. Patients aged 45 to 70 years, with ALS onset within 2 years, ALS Functional Rating Scale-Revised (ALSFRS-R) scores of at least 2 points on each item, and forced vital capacity (FVC) of at least 80% were included. Patients experienced a 1- to 4-point decrease in ALSFRS-R score during a 3-month screening period. Interventions Patients were randomly assigned 1:1:1 to receive low-dose tetramethylpyrazine nitrone (600 mg twice daily), high-dose tetramethylpyrazine nitrone (1200 mg twice daily), or placebo (twice daily) for 180 days. Main Outcomes and Measures The primary outcome was change in ALSFRS-R score (range of 0-48, with lower scores indicating worse function) from baseline to 180 days. The secondary outcomes were changes in FVC, grip strength, ALS Assessment Questionnaire-40 (ALSAQ-40) score, and end point events. Safety outcomes included adverse events. Results A total of 155 patients (mean [SD] age, 55.0 [6.5] years; 115 men [74.2%]) were randomized (51 [32.9%] to the low-dose tetramethylpyrazine nitrone group, 52 [33.6%] to the high-dose tetramethylpyrazine nitrone group, and 52 [33.6%] to the placebo group). No significant differences were observed in ALSFRS-R score changes between low-dose tetramethylpyrazine nitrone (least squares [LS] mean difference, -0.89 points; 95% CI -3.25 to 1.48 points) and high-dose tetramethylpyrazine nitrone (LS mean difference, -0.20 points; 95% CI -2.48 to 2.07 points) compared with placebo. High-dose tetramethylpyrazine nitrone showed a significantly slower decline in grip strength at day 180 (LS mean difference, 2.46 kg; 95% CI, 0.15-4.76 kg). In a subgroup of patients younger than 65 years with slower disease progression, tetramethylpyrazine nitrone significantly attenuated the decline in grip strength (LS mean difference, 3.63 kg; 95% CI, 0.84-6.41 kg), bulbar scores (LS mean difference, 0.66 points; 95% CI, 0.03-1.29 points), and respiratory scores (LS mean difference, 0.54 points; 95% CI, 0.03-1.06 points). Adverse events were mostly mild or moderate, with no severe treatment-related adverse events or deaths. Conclusions and Relevance This randomized clinical trial demonstrates that tetramethylpyrazine nitrone is safe and well-tolerated in patients with ALS. There was no difference in the primary end point across the low-dose, high-dose, and placebo groups, with significant benefits in a subgroup of younger patients with slower disease progression. Trial Registration ChiCTR Identifier: ChiCTR2000039689.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Zhiying Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Niu
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Xi Cheng
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xusheng Huang
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Guo B, Zheng C, Cao J, Luo F, Li H, Hu S, Mingyuan Lee S, Yang X, Zhang G, Zhang Z, Sun Y, Wang Y. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson's disease models. J Adv Res 2024; 64:195-211. [PMID: 37989471 PMCID: PMC11464467 DOI: 10.1016/j.jare.2023.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS In MPP+-induced cell model, TBN (30-300 μM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Gerontology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
3
|
Zhou X, Zhu Z, Kuang S, Huang K, Li Y, Wang Y, Chen H, Hoi MPM, Xu B, Yang X, Zhang Z. Tetramethylpyrazine Nitrone (TBN) Reduces Amyloid β Deposition in Alzheimer's Disease Models by Modulating APP Expression, BACE1 Activity, and Autophagy Pathways. Pharmaceuticals (Basel) 2024; 17:1005. [PMID: 39204110 PMCID: PMC11357250 DOI: 10.3390/ph17081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with age. A wealth of evidence indicates that the amyloid β (Aβ) aggregates result from dyshomeostasis between Aβ production and clearance, which plays a pivotal role in the pathogenesis of AD. Consequently, therapies targeting Aβ reduction represent a promising strategy for AD intervention. Tetramethylpyrazine nitrone (TBN) is a novel tetramethylpyrazine derivative with potential for the treatment of AD. Previously, we demonstrated that TBN markedly enhanced cognitive functions and decreased the levels of Aβ, APP, BACE 1, and hyperphosphorylated tau in 3×Tg-AD mice. However, the mechanism by which TBN inhibits Aβ deposition is still unclear. In this study, we employed APP/PS1 mice treated with TBN (60 mg/kg, ig, bid) for six months, and N2a/APP695swe cells treated with TBN (300 μM) to explore the mechanism of TBN in Aβ reduction. Our results indicate that TBN significantly alleviated cognitive impairment and reduced Aβ deposition in APP/PS1 mice. Further investigation of the underlying mechanisms revealed that TBN decreased the expression of APP and BACE1, activated the AMPK/mTOR/ULK1 autophagy pathway, inhibited the PI3K/AKT/mTOR/ULK1 autophagy pathway, and decreased the phosphorylation levels of JNK and ERK in APP/PS1 mice. Moreover, TBN was found to significantly reduce the mRNA levels of APP and BACE1, as well as those of SP1, CTCF, TGF-β, and NF-κB, transcription factors involved in regulating gene expression. Additionally, TBN was observed to decrease the level of miR-346 and increase the levels of miR-147 and miR-106a in the N2a/APP695swe cells. These findings indicate that TBN may reduce Aβ levels likely by reducing APP expression by regulating APP gene transcriptional factors and miRNAs, reducing BACE1 expression, and promoting autophagy activities.
Collapse
Affiliation(s)
- Xinhua Zhou
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Zeyu Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
| | - Shaoming Kuang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Kaipeng Huang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Yueping Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 511436, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 511436, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinse Medical Sciences, University of Macau, Macau, China;
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 511436, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 511436, China
| |
Collapse
|
4
|
Kim B, Park B, You S, Jung SH, Lee S, Lim K, Choi YJ, Kim JH, Lee S. Cell membrane camouflaged nanoparticle strategy and its application in brain disease: a review. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2024; 54:435-451. [DOI: 10.1007/s40005-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 01/06/2025]
|
5
|
Guo B, Zheng C, Cao J, Qiu X, Luo F, Li H, Lee SM, Yang X, Zhang G, Sun Y, Zhang Z, Wang Y. Tetramethylpyrazine Nitrone Promotes the Clearance of Alpha-Synuclein via Nrf2-Mediated Ubiquitin-Proteasome System Activation. Neuromolecular Med 2024; 26:9. [PMID: 38568291 DOI: 10.1007/s12017-024-08775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αβ and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αβ, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Xiaoling Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, 999078, Macao SAR, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| |
Collapse
|
6
|
Zhao T, Zeng J, Zhang R, Pu L, Wang H, Pan L, Jiang Y, Dai X, Sha Y, Han L. Proteomic advance of ischemic stroke: preclinical, clinical, and intervention. Metab Brain Dis 2023; 38:2521-2546. [PMID: 37440002 DOI: 10.1007/s11011-023-01262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Ischemic stroke (IS) is the most common type of stroke and is characterized by high rates of mortality and long-term injury. The prediction and early diagnosis of IS are therefore crucial for optimal clinical intervention. Proteomics has provided important techniques for exploring protein markers associated with IS, but there has been no systematic evaluation and review of research that has used these techniques. Here, we review the differential proteins that have been found in cell- and animal- based studies and clinical trials of IS in the past 10 years; determine the key pathological proteins that have been identified in clinical trials; summarize the target proteins affected by interventions aimed at treating IS, with a focus on traditional Chinese medicine treatments. Overall, we clarify findings and problems that have been identified in recent proteomics research on IS and provide suggestions for improvements in this area. We also suggest areas that could be explored for determining the pathogenesis and developing interventions for IS.
Collapse
Affiliation(s)
- Tian Zhao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jingjing Zeng
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Ruijie Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Liyuan Pu
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Han Wang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Lifang Pan
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yannan Jiang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Surgery, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Yuyi Sha
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China.
| | - Liyuan Han
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, 41 Northwest Street, Ningbo, 315000, Zhejiang, China.
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China.
| |
Collapse
|
7
|
Zhou X, Huang K, Wang Y, Zhang Z, Liu Y, Hou Q, Yang X, Hoi MPM. Evaluation of therapeutic effects of tetramethylpyrazine nitrone in Alzheimer's disease mouse model and proteomics analysis. Front Pharmacol 2023; 14:1082602. [PMID: 36950017 PMCID: PMC10025301 DOI: 10.3389/fphar.2023.1082602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The pathophysiology of Alzheimer's disease (AD) is multifactorial with characteristic extracellular accumulation of amyloid-beta (Aβ) and intraneuronal aggregation of hyperphosphorylated tau in the brain. Development of disease-modifying treatment for AD has been challenging. Recent studies suggest that deleterious alterations in neurovascular cells happens in parallel with Aβ accumulation, inducing tau pathology and necroptosis. Therefore, therapies targeting cellular Aβ and tau pathologies may provide a more effective strategy of disease intervention. Tetramethylpyrazine nitrone (TBN) is a nitrone derivative of tetramethylpyrazine, an active ingredient from Ligusticum wallichii Franchat (Chuanxiong). We previously showed that TBN is a potent scavenger of free radicals with multi-targeted neuroprotective effects in rat and monkey models of ischemic stroke. The present study aimed to investigate the anti-AD properties of TBN. We employed AD-related cellular model (N2a/APPswe) and transgenic mouse model (3×Tg-AD mouse) for mechanistic and behavioral studies. Our results showed that TBN markedly improved cognitive functions and reduced Aβ and hyperphosphorylated tau levels in mouse model. Further investigation of the underlying mechanisms revealed that TBN promoted non-amyloidogenic processing pathway of amyloid precursor protein (APP) in N2a/APPswe in vitro. Moreover, TBN preserved synapses from dendritic spine loss and upregulated synaptic protein expressions in 3×Tg-AD mice. Proteomic analysis of 3×Tg-AD mouse hippocampal and cortical tissues showed that TBN induced neuroprotective effects through modulating mitophagy, MAPK and mTOR pathways. In particular, TBN significantly upregulated PINK1, a key protein for mitochondrial homeostasis, implicating PINK1 as a potential therapeutic target for AD. In summary, TBN improved cognitive functions in AD-related mouse model, inhibited Aβ production and tau hyperphosphorylation, and rescued synaptic loss and neuronal damage. Multiple mechanisms underlie the anti-AD effects of TBN including the modulation of APP processing, mTOR signaling and PINK1-related mitophagy.
Collapse
Affiliation(s)
- Xinhua Zhou
- Department of Neurology and Stroke Center, Jinan University College of Pharmacy, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinse Medical Sciences, University of Macau, Macau, China
- Institute of GCP, Guangzhou Eighth People’s Hospital Guangzhou Medical University, Guangzhou, China
| | - Kaipeng Huang
- Institute of GCP, Guangzhou Eighth People’s Hospital Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Wang
- Department of Neurology and Stroke Center, Jinan University College of Pharmacy, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic, College of Pharmacy, Institute of New Drug Research, Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangdong, China
| | - Zaijun Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, College of Pharmacy, Institute of New Drug Research, Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangdong, China
| | - Yingying Liu
- Department of Neurology, Daqing People’s Hospital, Daqing, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, the 7th Affiliated Hospital, Sun-Yat-sen University. Shenzhen, China
- *Correspondence: Maggie Pui Man Hoi, ; Xifei Yang, ; Qinghua Hou,
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- *Correspondence: Maggie Pui Man Hoi, ; Xifei Yang, ; Qinghua Hou,
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinse Medical Sciences, University of Macau, Macau, China
- DPS, Faculty of Health Sciences, University of Macau, Macau, China
- *Correspondence: Maggie Pui Man Hoi, ; Xifei Yang, ; Qinghua Hou,
| |
Collapse
|
8
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
9
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
10
|
Nucleobase-Derived Nitrones: Synthesis and Antioxidant and Neuroprotective Activities in an In Vitro Model of Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23063411. [PMID: 35328832 PMCID: PMC8955307 DOI: 10.3390/ijms23063411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a–i. The neuroprotective properties of nitrones, 9a–i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a–i, have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-L-cysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1–6 μM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50′s ≈ 2–4 μM) and antioxidant (EC50′s ≈ 0.4–3.5 μM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mono-nitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.
Collapse
|
11
|
Granato Á, Amarante GW, Adrio J. Metal-Free Solvent Promoted Oxidation of Benzylic Secondary Amines to Nitrones with H 2O 2. J Org Chem 2021; 86:13817-13823. [PMID: 34528787 PMCID: PMC8650016 DOI: 10.1021/acs.joc.1c01888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/29/2022]
Abstract
An environmentally benign protocol for the generation of nitrones from benzylic secondary amines via catalyst-free oxidation of secondary amines using H2O2 in MeOH or CH3CN is described. This methodology provides a selective access to a variety of C-aryl nitrones in yields of 60 to 93%. Several studies have been performed to shed light on the reaction mechanism and the role of the solvent.
Collapse
Affiliation(s)
- Álisson
Silva Granato
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Chemistry
Department, Federal University of Juiz de
Fora, Sao Pedro, Juiz de Fora 36036-900, Brazil
| | - Giovanni Wilson Amarante
- Chemistry
Department, Federal University of Juiz de
Fora, Sao Pedro, Juiz de Fora 36036-900, Brazil
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
12
|
Akhoundzadeh K, Shafia S. Association between GFAP-positive astrocytes with clinically important parameters including neurological deficits and/or infarct volume in stroke-induced animals. Brain Res 2021; 1769:147566. [PMID: 34237322 DOI: 10.1016/j.brainres.2021.147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The effect of GFAP-positive astrocytes, as positive or negative factors on stroke complications such as infarct volume and neurological deficits is currently under debate. This review was aimed to evaluate and compare the frequency of studies that showed a positive or negative relationship between astrocyte activation with the improvement of neurological deficits and/or the decrease of infarct volume. In addition, we reviewed two possible causes of differences in results including timepoint of stroke and stroke severity. Time of GFAP assessment was considered as time point and type of stroke induction and duration of stroke as stroke severity. According to our review in the most relevant English-language studies in the PubMed, Web of Science, and Google Scholar databases from 2005 to 2020, the majority of studies (77 vs. 28) showed a negative coincidence or correlation between GFAP-positive cells with neurological improvement as well as between GFAP-positive cells with infarct volume reduction. In most reviewed studies, GFAP expression was reported as a marker related to or coinciding with worse neurological function, or greater infarct volume. However, there were also studies that showed helpful effects of GFAP-positive cells on neurological function or stroke lesion. Although there are some elucidations that the difference in these findings is due to the time point of stroke and stroke severity, our review did not confirm these interpretations.
Collapse
Affiliation(s)
| | - Sakineh Shafia
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Wen J, Li S, Zheng C, Wang F, Luo Y, Wu L, Cao J, Guo B, Yu P, Zhang G, Li S, Sun Y, Yang X, Zhang Z, Wang Y. Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 2020; 182:108380. [PMID: 33152451 DOI: 10.1016/j.neuropharm.2020.108380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.
Collapse
Affiliation(s)
- Jing Wen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shangming Li
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Chengyou Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fengjiao Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Yangwen Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
14
|
Homo-Tris-Nitrones Derived from α-Phenyl- N-tert-butylnitrone: Synthesis, Neuroprotection and Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21217949. [PMID: 33114714 PMCID: PMC7663103 DOI: 10.3390/ijms21217949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones (HTN) 1-3, designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone 6 (HBN6) would result in an improved and stronger neuroprotection. The neuroprotection of HTNs 1-3, measured against oligomycin A/rotenone, showed that HTN2 was the best neuroprotective agent at a lower dose (EC50 = 51.63 ± 4.32 μM), being similar in EC50 and maximal activity to α-phenyl-N-tert-butylnitrone (PBN) and less potent than any of HBNs 4-6. The results of neuroprotection in an in vitro oxygen glucose deprivation model showed that HTN2 was the most powerful (EC50 = 87.57 ± 3.87 μM), at lower dose, but 50-fold higher than its analogous HBN5, and ≈1.7-fold less potent than PBN. HTN3 had a very good antinecrotic (IC50 = 3.47 ± 0.57 μM), antiapoptotic, and antioxidant (EC50 = 6.77 ± 1.35 μM) profile, very similar to that of its analogous HBN6. In spite of these results, and still being attractive neuroprotective agents, HTNs 2 and 3 do not have better neuroprotective properties than HBN6, but clearly exceed that of PBN.
Collapse
|
15
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
16
|
Abstract
The recent advances of tetramethylpyrazine nitrones and quinolylnitrones for the treatment of stroke have been reviewed and compared with other agents, showing promising therapeutic applications. As a result of a functional transformation of natural product ligustrazine, (Z)-N-tert-butyl-1-(3,5,6-trimethylpyrazin-2-yl)methanimine oxide (6) is a multitarget small nitrone showing potent thrombolytic activity and free radicals scavenging power, in addition to nontoxicity and blood-brain barrier permeability. Similarly, antioxidant (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (17) is a novel agent for cerebral ischemia therapy as it is able to scavenge different types of free radical species, showing strong neuroprotection and reduced infarct size.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC; Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
17
|
Zhao C, Lv Y, Cui H, Zhu Y, Wei M, Xia Y, Tian J, Ma Y, Liu Y, Zhang P, Wang X, Wu J, Wang Y. Phase I safety, tolerability, and pharmacokinetic studies of tetramethylpyrazine nitrone in healthy Chinese volunteers. Drug Dev Res 2020; 82:97-107. [PMID: 32864754 DOI: 10.1002/ddr.21733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/01/2019] [Accepted: 07/17/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the safety, tolerability and pharmacokinetics of tetramethylpyrazine nitrone (TBN) in healthy Chinese volunteers. METHODS A single-ascending-dose (SAD) study where 68 subjects were randomized to a single dose of placebo or TBN (50, 100, 200, 400, 700, 1,000, 1,400, or 1,800 mg) through IV infusion over 30 min. A multiple-ascending-dose (MAD) study where 24 subjects received TBN twice daily (with 12 hr interval) for total 6.5 days at doses of either 700 or 1,400 mg. Adverse events were recorded and pharmacokinetic samples were collected during the whole study period. RESULTS No serious adverse events were found in the study. All of the observed adverse events, including increased white blood cell (4.4% subjects) and neutrophil counts (4.4% subjects), and decreased hemoglobin levels (4.2% subjects), were laboratory test abnormalities. All the adverse events were mild and tolerable, and returned to normal without any intervention. In the SAD study, linear Cmax values were observed in the dose interval of 50-1,800 mg. In the MAD study, the average steady-state concentrations (Cavg.ss ) of TBN in the 700 and 1,400 mg dose group were 2,407 and 5,837 ng/ml, respectively. No drug accumulation was observed in this study. CONCLUSIONS TBN is well tolerated in healthy volunteers. Linear Cmax values were observed in the interval of 50-1,800 mg, and target exposures of TBN were achieved without accumulation after twice daily administration to subjects. (This study has been registered at ChiCTR.org.cn. Identifier: ChiCTR1800016225 and ChiCTR1800019627.).
Collapse
Affiliation(s)
- Caiyun Zhao
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Hong Cui
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yan Zhu
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Minji Wei
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yahong Xia
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Jihong Tian
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yan Ma
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yan Liu
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Pu Zhang
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Xi Wang
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Jing Wu
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| | - Yatai Wang
- Institute of Clinical Pharmacology, The Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|
19
|
Eng T, Sasaki Y, Herbert RA, Lau A, Trinh J, Chen Y, Mirsiaghi M, Petzold CJ, Mukhopadhyay A. Production of tetra-methylpyrazine using engineered Corynebacterium glutamicum. Metab Eng Commun 2020; 10:e00115. [PMID: 31890587 PMCID: PMC6926172 DOI: 10.1016/j.mec.2019.e00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 is an established and industrially-relevant microbial host that has been utilized for the expression of many desirable bioproducts. Tetra-methylpyrazine (TMP) is a naturally occurring alkylpyrazine with broad applications spanning fragrances to resins. We identified an engineered strain of C. glutamicum which produces 5 g/L TMP and separately, a strain which can co-produce both TMP and the biofuel compound isopentenol. Ionic liquids also stimulate TMP production in engineered strains. Using a fed batch-mode feeding strategy, ionic liquid stimulated strains produced 2.2 g/L of tetra-methylpyrazine. We show that feedback from a specific heterologous gene pathway on host physiology leads to acetoin accumulation and the production of TMP.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Lau
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mona Mirsiaghi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Advanced Biofuels Process Demonstration Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
20
|
Li YN, Gao ZW, Li R, Zhang YF, Zhu QS, Huang F. Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury. Medicine (Baltimore) 2019; 98:e17591. [PMID: 31626131 PMCID: PMC6824638 DOI: 10.1097/md.0000000000017591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is a common complication of spinal surgery as well as thoracic and abdominal surgery. Acute cytotoxic edema is the key pathogenic alteration. Therefore, avoiding or decreasing cellular edema has become the major target for SCII treatment. METHODS The antiedema activity of ginsenoside Rb1 on aquaporin (AQP) 4, nerve growth factor (NGF), and brain-derived neurotrophic factor expression was detected by western blot and real-time polymerase chain reaction under conditions of oxygen-glucose deprivation/reoxygenation (OGD/R) in a rat astrocyte model in vitro. In addition, the cellular membrane permeability of AQP4 overexpressing cells or AQP4 small interfering RNA-transfected cells was detected. RESULTS Ginsenoside Rb1 significantly prevented OGD/R-induced AQP4 downregulation in rat astrocytes. In addition, ginsenoside Rb1 treatment or AQP4 overexpression in rat astrocytes significantly attenuated the OGD/R-induced increase of cellular membrane permeability. Moreover, ginsenoside Rb1 obviously prevented the OGD/R-induced decrease of NGF and BDNT expression in rat astrocytes. CONCLUSION These findings demonstrate that ginsenoside Rb1 can relieve spinal cord edema and improve neurological function by increasing AQP4 expression.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University
- Department of Molecular Biology, Basic Medical College of Jilin University
| | - Zhong-Wen Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yun-Feng Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Qing-San Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
21
|
Li H, You W, Li X, Shen H, Chen G. Proteomic-Based Approaches for the Study of Ischemic Stroke. Transl Stroke Res 2019; 10:601-606. [PMID: 31278685 DOI: 10.1007/s12975-019-00716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
22
|
Wu L, Su Z, Zha L, Zhu Z, Liu W, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Tetramethylpyrazine Nitrone Reduces Oxidative Stress to Alleviate Cerebral Vasospasm in Experimental Subarachnoid Hemorrhage Models. Neuromolecular Med 2019; 21:262-274. [PMID: 31134485 DOI: 10.1007/s12017-019-08543-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Cerebral vasospasm is one of the deleterious complications after subarachnoid hemorrhage (SAH), leading to delayed cerebral ischemia and permanent neurological deficits or even death. Free radicals and oxidative stress are considered as crucial causes contributing to cerebral vasospasm and brain damage after SAH. Tetramethylpyrazine nitrone (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical scavenging nitrone moiety, has been reported to prevent brain damage from ischemic stroke. The present study aimed to investigate the effects of TBN on vasospasm and brain damage after SAH. Two experimental SAH models were used, a rat model by endovascular perforation and a rabbit model by intracisternal injection of autologous blood. The effects of TBN on SAH were evaluated assessing basilar artery spasm, neuronal apoptosis, and neurological deficits. TBN treatment significantly attenuated vasospasm, improved neurological behavior functions and reduced the number of apoptotic neurons in both the SAH rats and rabbits. Mechanistically, TBN suppressed the increase in 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine immuno-positive cells in the cortex of SAH rat brain. Western blot analyses indicated that TBN effectively reversed the altered expression of Bcl-2, Bax and cytochrome C, and up-regulated nuclear factor erythroid-derived 2-like 2 (Nrf2) and hemeoxygenase-1 (HO-1) protein expressions. In the in vitro studies, TBN inhibited H2O2-induced bEnd.3 cell apoptosis and reduced ROS generation. Additionally, TBN alleviated the contraction of rat basilar artery rings induced by H2O2 ex vivo. In conclusion, TBN ameliorated SAH-induced cerebral vasospasm and neuronal damage. These effects of TBN may be attributed to its anti-oxidative stress effect and up-regulation of Nrf2/HO-1.
Collapse
Affiliation(s)
- Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zhiyang Su
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Ling Zha
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Wei Liu
- Foshan Magpie Pharmaceuticals Co., LTD, Foshan, Guangdong Province, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| |
Collapse
|
23
|
Danduga RCSR, Dondapati SR, Kola PK, Grace L, Tadigiri RVB, Kanakaraju VK. Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats. Biomed Pharmacother 2018; 105:1254-1268. [PMID: 30021362 DOI: 10.1016/j.biopha.2018.06.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease characterized by chorea, dystonia, motor ataxia, cognitive decline and psychiatric disorders with gradual loss of nerve cells and has no existing cure for the disease. In the present study, a mitochondrial toxin, 3-nitropropionic acid (3-NP) is used to induce HD like symptoms in rats. Tetramethylpyrazine is one of the active ingredients of Chuan Xiong which was reported to have neurotrophic and neuroprotective activities. The present study was designed to evaluate the role of TMP on 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in the different regions of the brain. Animals were pretreated with normal saline/TMP for 7 days. From 8th day, the treatment groups were co-administered with 3-NP (10 mg/kg, i.p) and continued to the 21st day of the treatment protocol. At the end of the study, we found that the TMP improved all the behavioral performances of 3-NP induced neurotoxic rats, significantly. Further, oxidative stress parameters (lipid peroxidation, reduced glutathione, catalase, and superoxide dismutase), succinate dehydrogenase enzyme, and neurochemical (GABA and glutamate) estimations were done in the brain homogenate. In our study, the treatment with TMP ameliorated the 3-NP induced alterations, in the biochemical and neurochemical parameter in the brain homogenate, dose-dependently. The protective role of TMP further confirmed by measuring the lesion area with the 2,3,5-triphenyltetrazolium chloride staining of the brain slices and histopathological alteration in the hippocampus (CA1 and CA3) and striatal regions of the brain. Hence, the present findings suggest that the protective role of TMP against 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in rats.
Collapse
Affiliation(s)
| | - Subba Reddy Dondapati
- Department of Pharmacology, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | - Lilly Grace
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | | | - Vijaya Kishore Kanakaraju
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| |
Collapse
|
24
|
JM-20 Treatment After MCAO Reduced Astrocyte Reactivity and Neuronal Death on Peri-infarct Regions of the Rat Brain. Mol Neurobiol 2018; 56:502-512. [DOI: 10.1007/s12035-018-1087-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023]
|
25
|
Nuñez-Figueredo Y, Ramírez-Sánchez J, Pardo Andreu GL, Ochoa-Rodríguez E, Verdecia-Reyes Y, Souza DO. Multi-targeting effects of a new synthetic molecule (JM-20) in experimental models of cerebral ischemia. Pharmacol Rep 2018; 70:699-704. [PMID: 29933207 DOI: 10.1016/j.pharep.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
Abstract
Ischemic stroke is a major cause of death and disability worldwide. Thrombolysis by tissue plasminogen activator is the only pharmacological treatment approved for clinical practice, but has a narrow therapeutic window and poor efficacy when the cell death cascade is activated. Numerous drugs that are thought to protect neurons against injury have previously failed in human trials despite showing efficacy in experimental models of stroke. Herein, we reviewed the main pre-clinical results of the neuroprotective effects of JM-20, a new hybrid molecule, against brain ischemia. JM-20 appears to protect the brain from ischemic damage by interfering with several elements of the ischemic cascade: antiexcitotoxic, anticalcic, antioxidant, antiapoptotic, and anti-inflammatory. Its ability to protect not only neurons but also glial cells together with its ability to target and preserve mitochondrial function makes JM-20 a promising molecule that may be able to shield the whole neurovascular unit. The multimodal and multi-cell action of JM-20 may explain the high degree of protection observed in a rat model of brain ischemia, as assayed through histological (hematoxylin-eosin, and luxol fast blue staining), neurochemical (glutamate and aspartate levels in cerebrospinal fluid), mitochondrial functionality and behavioural (neurological scale) analysis at doses of 4 and 8mg/kg. Furthermore, the wide therapeutic window of JM-20 of 8h also suggests that this molecule could be of potential interest in situations where brain perfusion is compromised.
Collapse
Affiliation(s)
| | | | - Gilberto L Pardo Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, La Habana, Cuba.
| | - Estael Ochoa-Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana (Zapata s/n entre G y Carlitos Aguirre, La Habana, Cuba
| | - Yamila Verdecia-Reyes
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana (Zapata s/n entre G y Carlitos Aguirre, La Habana, Cuba
| | - Diogo O Souza
- Departamento de Bioquímica, PPG em Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Neuroprotective Effect and Mechanism of Action of Tetramethylpyrazine Nitrone for Ischemic Stroke Therapy. Neuromolecular Med 2018; 20:97-111. [DOI: 10.1007/s12017-018-8478-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
27
|
Zhang G, Zhang T, Li N, Wu L, Gu J, Li C, Zhao C, Liu W, Shan L, Yu P, Yang X, Tang Y, Yang G, Wang Y, Sun Y, Zhang Z. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br J Pharmacol 2018; 175:517-531. [PMID: 29161771 PMCID: PMC5773967 DOI: 10.1111/bph.14102] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuronal regeneration from endogenous precursors is an attractive strategy for the treatment of ischaemic stroke. However, most stroke-generated newborn neurons die over time. Therefore, a drug that is both neuroprotective and pro-neurogenic may be beneficial after stroke. Here, we assessed the neurogenic and oligodendrogenic effects of tetramethylpyrazine nitrone (TBN), a neuroprotective drug candidate for stroke, in a rat model of ischaemic stroke. EXPERIMENTAL APPROACH We used Sprague Dawley rats with middle cerebral artery occlusion (MCAO). TBN was administered by tail vein injection beginning at 3 h post ischaemia. Therapeutic effect of TBN was evaluated by neurological behaviour and cerebral infarction. Promotion of neurogenesis and oligodendrogenesis was determined by double immunofluorescent staining and Western blotting analyses. Primary cultures of cortical neurons were used to assess the effect of TBN on neuronal differentiation in vitro. KEY RESULTS TBN reduced cerebral infarction, preserved and/or restored neurological function and promoted neurogenesis and oligodendrogenesis in rats after MCAO. In addition, TBN stimulated neuronal differentiation on primary culture of cortical neurons in vitro. Pro-neurogenic effects of TBN were attributed to its activation of the AKT/cAMP responsive element-binding protein through increasing brain-derived neurotrophic factor (BDNF) expression, as shown by the abolition of the effects of TBN by a specific inhibitor of BDNF receptor ANA-12 and by the PI3K inhibitor LY294002. CONCLUSION AND IMPLICATIONS As TBN can simultaneously provide neuroprotection and pro-neurogenic effects, it may be a promising treatment for both acute phase neuroprotection and long-term functional recovery after ischaemic stroke.
Collapse
Affiliation(s)
- Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Tao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Ning Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Jianbo Gu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Cuimei Li
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Chen Zhao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Wei Liu
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and PreventionShenzhenChina
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guo‐Yuan Yang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| |
Collapse
|
28
|
Zhang T, Gu J, Wu L, Li N, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology 2017; 118:137-147. [DOI: 10.1016/j.neuropharm.2017.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
|
29
|
Luo X, Yu Y, Xiang Z, Wu H, Ramakrishna S, Wang Y, So KF, Zhang Z, Xu Y. Tetramethylpyrazine nitrone protects retinal ganglion cells against N
-methyl-d
-aspartate-induced excitotoxicity. J Neurochem 2017; 141:373-386. [DOI: 10.1111/jnc.13970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaopeng Luo
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Yankun Yu
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Zongqin Xiang
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Huisu Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | | | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | - Kwok-Fai So
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
- Co-Innovation Center of Neuroregeneration; Nantong University; Jiangsu China
- Joint International Research Laboratory of CNS Regeneration; Ministry of Education of PRC; Guangzhou China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | - Ying Xu
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
- Co-Innovation Center of Neuroregeneration; Nantong University; Jiangsu China
- Joint International Research Laboratory of CNS Regeneration; Ministry of Education of PRC; Guangzhou China
| |
Collapse
|