1
|
Spisarová M, Študentová H, Holá K, Melichar B. Pleural effusion as a sample matrix for laboratory analyses in cancer management: a perspective. Clin Chem Lab Med 2025; 63:1069-1074. [PMID: 40019933 DOI: 10.1515/cclm-2025-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/26/2025]
Abstract
Malignant effusions, pleural effusion or ascites, represent a common problem in cancer patients. Pleural effusion in a cancer patient may be caused also by non-neoplastic conditions, and the diagnosis of malignant pleural effusion is established by the demonstration of tumor cells in pleural fluid. Microscopical detection of tumor cells in pleural fluid often fails, and there is an unmet medical need for more sensitive methods. New approaches, including isolation using magnetic beads coated with monoclonal antibodies targeting antigens expressed on tumor cells not only increase the diagnostic sensitivity, but also provide material for the analysis of predictive biomarkers. The advent of new technologies illustrates the incremental role of laboratory medicine in the management of patients with malignant effusions.
Collapse
Affiliation(s)
- Martina Spisarová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
- Department of Oncology and Radiotherapy, Charles University Medical School and Teaching Hospital, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Kim W, Cho S, Lee J, Lee J, Ji S, Sung H, Jung W, Jeon JH, Kim K, Jheon S. Mutational differences between primary cancer tissue and circulating tumor cells in early-stage non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:3026-3038. [PMID: 39669998 PMCID: PMC11632435 DOI: 10.21037/tlcr-24-709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
Background Early-stage non-small cell lung cancer (NSCLC) has a high recurrence rate despite proper management, including curative surgery. Circulating tumor cells (CTCs) are believed to play a key role in the distant metastasis of lung cancer. Immunofluorescence imaging studies of CTCs have revealed that they are associated with the prognosis of NSCLC. However, the mutational profiling of CTCs from early-stage NSCLC has not been extensively explored. We hypothesized that CTCs could be detected by mutational analysis using panel sequencing and would have distinct mutations associated with distant metastasis compared to those of primary cancer tissue in early-stage NSCLC. Thus, this study examined the DNA from CTCs using targeted panel sequencing to identify mutations and compared them with mutations found in primary cancer tissue in patients with resectable early-stage NSCLC. Methods Overall, 45 patients with resectable NSCLC were prospectively enrolled from September to December 2023. Matched whole blood samples and primary cancer tissues were collected during curative surgery. Then, 405-gene targeted panel sequencing was performed on DNA from primary cancer tissues and CTCs. Results In this study, 37 patients (82%) had adenocarcinoma, and 30 (67%) were classified as having pathologic stage 1 disease. Mutated genes were detected in all (100%) and 31 patients (69%) for primary cancer tissue and CTCs from panel sequencing, respectively. The partial concordance rate of mutations between primary cancer tissue and CTCs was 17.8%, with the top 10 mutated genes differing significantly. Among primary cancer tissue samples, mutated genes differed by stage and histologic type; these findings were not observed in CTCs. CTCs predominantly displayed mutations in tumor suppressor genes, whereas primary cancer tissues exhibited mutations in both oncogenes and tumor suppressor genes. Conclusions CTCs exhibited unique mutations, showing low concordance with mutations found in primary cancer tissue. CTCs may possess specific mutations independent from those of primary cancer tissue in early-stage NSCLC.
Collapse
Affiliation(s)
- Woojung Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joonseok Lee
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinsu Lee
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Soojeong Ji
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Hyejin Sung
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Woohyun Jung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Jeon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tao S, Wu J, He Y, Jiao F. Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. MICROMACHINES 2023; 14:2224. [PMID: 38138393 PMCID: PMC10745660 DOI: 10.3390/mi14122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Precisely controlling magnetically tagged cells in a complex environment is crucial to constructing a magneto-microfluidic platform. We propose a two-dimensional model for capturing magnetic beads from non-magnetic fluids under a micromagnetic matrix. A qualitative description of the relationship between the capture trajectory and the micromagnetic matrix with an alternating polarity configuration was obtained by computing the force curve of the magnetic particles. Three stages comprise the capture process: the first, where motion is a parabolic fall in weak fields; the second, where the motion becomes unpredictable due to the competition between gravity and magnetic force; and the third, where the micromagnetic matrix finally captures cells. Since it is not always obvious how many particles are adhered to the surface, attachment density is utilized to illustrate how the quantity of particles influences the capture path. The longitudinal magnetic load is calculated to measure the acquisition efficiency. The optimal adhesion density is 13%, and the maximum adhesion density is 18%. It has been demonstrated that a magnetic ring model with 100% adhesion density can impede the capture process. The results offer a theoretical foundation for enhancing the effectiveness of rare cell capture in practical applications.
Collapse
Affiliation(s)
- Shanjia Tao
- School of Mechanical Engineering, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Jianguo Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
| | - Yongqing He
- Chongqing Key Laboratory of Micro-Nano System and Intelligent Transduction, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Feng Jiao
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Lyons S, Baile Pomares P, Vidal L, McGarry K, Morrin A, Brougham DF. Surface Potential Modulation in Boronate-Functionalized Magnetic Nanoparticles Reveals Binding Interactions: Toward Magnetophoretic Capture/Quantitation of Sugars from Extracellular Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37235552 DOI: 10.1021/acs.langmuir.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.
Collapse
Affiliation(s)
- Stephen Lyons
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paola Baile Pomares
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Lorena Vidal
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Katie McGarry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
6
|
Schwab FD, Scheidmann MC, Ozimski LL, Kling A, Armbrecht L, Ryser T, Krol I, Strittmatter K, Nguyen-Sträuli BD, Jacob F, Fedier A, Heinzelmann-Schwarz V, Wicki A, Dittrich PS, Aceto N. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. MICROSYSTEMS & NANOENGINEERING 2022; 8:130. [PMID: 36561926 PMCID: PMC9763115 DOI: 10.1038/s41378-022-00467-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities.
Collapse
Affiliation(s)
- Fabienne D. Schwab
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
| | - Manuel C. Scheidmann
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Lauren L. Ozimski
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - André Kling
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Till Ryser
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Ilona Krol
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Karin Strittmatter
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Gynaecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Wicki
- University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Nicola Aceto
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
7
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Ahmed F, Mehdi Dar G, Mohan Singh A, Apurva, Kumar A, Athar A, Parveen F, Mahajan B, Singh Saluja S. Molecular approaches in cancer. Clin Chim Acta 2022; 537:60-73. [DOI: https:/doi.org/10.1016/j.cca.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
8
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Ahmed F, Mehdi Dar G, Mohan Singh A, Apurva, Kumar A, Athar A, Parveen F, Mahajan B, Singh Saluja S. Molecular approaches in cancer. Clin Chim Acta 2022; 537:60-73. [DOI: 10.1016/j.cca.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
9
|
Luo L, He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med 2020; 9:4207-4231. [PMID: 32325536 PMCID: PMC7300401 DOI: 10.1002/cam4.3077] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) largely contribute to cancer metastasis and show potential prognostic significance in cancer isolation and detection. Miniaturization has progressed significantly in the last decade which in turn enabled the development of several microfluidic systems. The microfluidic systems offer a controlled microenvironment for studies of fundamental cell biology, resulting in the rapid development of microfluidic isolation of CTCs. Due to the inherent ability of magnets to provide forces at a distance, the technology of CTCs isolation based on the magnetophoresis mechanism has become a routine methodology. This historical review aims to introduce two principles of magnetic isolation and recent techniques, facilitating research in this field and providing alternatives for researchers in their study of magnetic isolation. Researchers intend to promote effective CTC isolation and analysis as well as active development of next-generation cancer treatment. The first part of this review summarizes the primary principles based on positive and negative magnetophoretic isolation and describes the metrics for isolation performance. The second part presents a detailed overview of the factors that affect the performance of CTC magnetic isolation, including the magnetic field sources, functionalized magnetic nanoparticles, magnetic fluids, and magnetically driven microfluidic systems.
Collapse
Affiliation(s)
- Laan Luo
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
| | - Yongqing He
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
- Chongqing Key Laboratory of Micro‐Nano System and Intelligent SensingChongqing Technology and Business UniversityChongqingChina
| |
Collapse
|
10
|
Lei KF. A Review on Microdevices for Isolating Circulating Tumor Cells. MICROMACHINES 2020; 11:E531. [PMID: 32456042 PMCID: PMC7281722 DOI: 10.3390/mi11050531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
Cancer metastasis is the primary cause of high mortality of cancer patients. Enumeration of circulating tumor cells (CTCs) in the bloodstream is a very important indicator to estimate the therapeutic outcome in various metastatic cancers. The aim of this article is to review recent developments on the CTC isolation technologies in microdevices. Based on the categories of biochemical and biophysical isolation approaches, a literature review and in-depth discussion will be included to provide an overview of this challenging topic. The current excellent developments suggest promising CTC isolation methods in order to establish a precise indicator of the therapeutic outcome of cancer patients.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan; ; Tel.: +886-3-2118800 (ext. 5345)
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| |
Collapse
|
11
|
Wang Q, Zhao L, Han L, Tuo X, Ma S, Wang Y, Feng X, Liang D, Sun C, Wang Q, Song Q, Li Q. The Discordance of Gene Mutations between Circulating Tumor Cells and Primary/Metastatic Tumor. Mol Ther Oncolytics 2019; 15:21-29. [PMID: 31650022 PMCID: PMC6804648 DOI: 10.1016/j.omto.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are an important part in the field of "liquid biopsy." However, major questions remain to be answered whether the mutations in the CTCs represent the mutations in primary tumor tissue and metastatic tumors. We compared the genetic mutations between CTCs and their matched tumors, and extracted data on the heterogeneity of the mutational status in CTCs and the change in mutations of CTCs before and during treatment. For mutations detected in single genes, we calculated the concordance of the mutations between the CTCs and primary tumor tissue. For mutations detected in multiple genes, we calculated the concordance of the mutations between the CTCs and primary/metastatic tumor tissue. The heterogeneity of the mutational status is clearly present in CTCs. For mutations detected in a single gene, the overall concordance of mutations is 53.05%. For mutations detected in multiple genes, the concordance of mutations is extremely different. The heterogeneity of the mutational status existed in single CTCs, and the mutational status of CTCs was discordant with that of tumor tissue.
Collapse
Affiliation(s)
- Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaoqian Tuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chao Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Song
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
12
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Jafari Abarghan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kim O, Lee D, Chungwon Lee A, Lee Y, Bae HJ, Lee HB, Kim RN, Han W, Kwon S. Whole Genome Sequencing of Single Circulating Tumor Cells Isolated by Applying a Pulsed Laser to Cell-Capturing Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902607. [PMID: 31240868 DOI: 10.1002/smll.201902607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Single cell analysis of heterogeneous circulating tumor cells (CTCs), by which the genomic profiles of rare single CTCs are connected to the clinical status of cancer patients, is crucial for understanding cancer metastasis and the clinical impact on patients. However, the heterogeneity in genotypes and phenotypes and rarity of CTCs have limited extensive single CTC genome research, further hindering clinical investigation. Despite recent efforts to build platforms that separate CTCs, the investigation on CTCs is difficult due to the lack of a retrieval process at the single cell level. In this study, laser-induced isolation of microstructures on an optomechanically-transferrable-chip and sequencing (LIMO-seq) is applied for whole genome sequencing of single CTCs. Also, the whole genome sequences and the molecular profiles of the isolated single cells from the whole blood of a breast cancer patient are analyzed.
Collapse
Affiliation(s)
- Okju Kim
- Department of Electrical and Computer Engineering Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Daewon Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21+ Creative Research Engineer Development for IT, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Amos Chungwon Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyung Jong Bae
- Nano Systems Institute, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ryong Nam Kim
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institutes of Entrepreneurial BioConvergence, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
- Inter-University Semiconductor Research Center, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Srivastava SK, Ajalloueian F, Boisen A. Thread-Like Radical-Polymerization via Autonomously Propelled (TRAP) Bots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901573. [PMID: 31165526 DOI: 10.1002/adma.201901573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Indexed: 05/12/2023]
Abstract
Micromotor-mediated synthesis of thread-like hydrogel microstructures in an aqueous environment is presented. The study utilizes a catalytic micromotor assembly (owing to the presence of a Pt layer), with an on-board chemical reservoir (i.e., polymerization mixture), toward thread-like radical-polymerization via autonomously propelled bots (i.e., TRAP bots). Synergistic coupling of catalytically active Pt layer, together with radical initiators (H2 O2 and FeCl3 (III)), and PEGDA monomers preloaded into the TRAP bot, results in the polymerization of monomeric units into elongated thread-like hydrogel polymers coupled with self-propulsion. Interestingly, polymer generation via TRAP bots can also be triggered in the absence of hydrogen peroxide for cellular/biomedical application. The resulting polymeric hydrogel microstructures are able to entrap living cells (NIH 3T3 fibroblast cells), and are easily separable via a centrifugation or magnetic separation (owing to the presence of a Ni layer). The cellular biocompatibility of TRAP bots is established via a LIVE/DEAD assay and MTS cell proliferation assay (7 days observation). This is the first study demonstrating real-time in situ hydrogel polymerization via an artificial microswimmer, capable of enmeshing biotic/abiotic microobjects in its reaction environment, and lays a strong foundation for advanced applications in cell/tissue engineering, drug delivery, and cleaner technologies.
Collapse
Affiliation(s)
- Sarvesh Kumar Srivastava
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
15
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
17
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
18
|
Li R, Zhou M, Li J, Wang Z, Zhang W, Yue C, Ma Y, Peng H, Wei Z, Hu Z. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip. NANO-MICRO LETTERS 2018; 10:16. [PMID: 30393665 PMCID: PMC6199061 DOI: 10.1007/s40820-017-0168-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/14/2017] [Indexed: 05/20/2023]
Abstract
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.
Collapse
Affiliation(s)
- Ren Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Mingxing Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Jine Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Weikai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Chunyan Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Yan Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Hailin Peng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing, 314000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
19
|
Wang L, Dumenil C, Julié C, Giraud V, Dumoulin J, Labrune S, Chinet T, Emile JF, He B, Giroux Leprieur E. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017; 8:109818-109835. [PMID: 29312651 PMCID: PMC5752564 DOI: 10.18632/oncotarget.22651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular characterization of tumor cells is a key step in the diagnosis and optimal treatment of lung cancer. However, analysis of tumor samples, often corresponding to small biopsies, can be difficult and does not accurately reflect tumor heterogeneity. Recent studies have shown that isolation of circulating tumor cells (CTCs) is feasible in non-small cell lung cancer patients, even at early disease stages. The amount of CTCs corresponds to the metastatic potential of the tumor and to patient prognosis. Moreover, molecular analyses, even at the single-cell level, can be performed on CTCs. This review describes the technologies currently available for detecting and capturing CTCs, the potential for downstream molecular diagnostics, and the clinical applications of CTCs isolated from lung cancer patients as screening, prognostic, and predictive tools. Main limitations of CTCs are also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Catherine Julié
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Jean-François Emile
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
20
|
Pimienta M, Edderkaoui M, Wang R, Pandol S. The Potential for Circulating Tumor Cells in Pancreatic Cancer Management. Front Physiol 2017. [PMID: 28626429 PMCID: PMC5454071 DOI: 10.3389/fphys.2017.00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one the most lethal malignancies. Only a small proportion of patients with this disease benefit from surgery. Chemotherapy provides only a transient benefit. Though much effort has gone into finding new ways for early diagnosis and treatment, average patient survival has only been improved in the order of months. Circulating tumor cells (CTCs) are shed from primary tumors, including pre-malignant phases. These cells possess information about the genomic characteristics of their tumor source in situ, and their detection and characterization holds potential in early cancer diagnosis, prognosis, and treatment. Liquid Biopsies present an alternative to tumor biopsy that are hard to sample. Below we summarize current methods of CTC detection, the current literature on CTCs in pancreatic cancer, and future perspectives.
Collapse
Affiliation(s)
- Michael Pimienta
- University of California, San Diego School of MedicineLa Jolla, CA, United States.,Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Mouad Edderkaoui
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Ruoxiang Wang
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Stephen Pandol
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| |
Collapse
|
21
|
|