1
|
Lüthy L, Thies LGS, Beitl KN, Hansen M, McManus J, Afzal M, Schrangl L, Bloch S, Subbiahdoss G, Reimhult E, Schäffer C, Carreira EM. Synthesis, Microbiology, and Biophysical Characterization of Mutanofactins from the Human Oral Microbiome. ACS CENTRAL SCIENCE 2025; 11:601-611. [PMID: 40290153 PMCID: PMC12022917 DOI: 10.1021/acscentsci.4c02184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Mutanofactins are a family of natural products produced by Streptococcus mutans from the human oral microbiome. We report a unified approach to all mutanofactins by developing a total synthesis amenable to diversification. The key to success for the most complex members, mutanofactins 607 and 697, was an acyl ketene based strategy. Access to the family enabled comprehensive biological profiling, where we demonstrate that all mutanofactins are biofilm promoting in Streptococcus mutans. Experiments were extended to other inhabitants of the oral microbiome for the first time: Streptococcus gordonii and Streptococcus oralis, two early colonizers, were similarly affected with mutanofactins being biofilm promoting. Conversely, Veillonella dispar and Fusobacterium nucleatum showed little to no reaction to mutanofactins. Biophysical investigations based on quartz crystal microbalance with dissipation monitoring and atomic force microscopy reveal a previously unknown mucin-mutanofactin 697 interaction. Incubation of a mucin layer with mutanofactin 697 induces a morphology change within the mucin layer, which promotes bacterial adhesion and biofilm formation. This unique property of mutanofactin 697 might be key to early stages of biofilm formation in the human oral microbiome. Combined, an interdisciplinary approach consisting of total synthesis, microbiology and biophysical characterization provides insight into the roles of mutanofactins in the oral microbiome.
Collapse
Affiliation(s)
- Lukas Lüthy
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Leon Gabor Sacha Thies
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Moritz Hansen
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Joshua McManus
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Muhammad Afzal
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Lukas Schrangl
- Institute
of Biophysics, BOKU University, 1190 Vienna, Austria
| | - Susanne Bloch
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Erik Reimhult
- Institute
of Colloid and Biointerface Science, BOKU
University, 1190 Vienna, Austria
| | - Christina Schäffer
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Zhao H, Dufour D, Zhong J, Gong S, Roy PH, Lévesque CM. Decoding Adenine DNA Methylation Effects in Streptococcus Mutans: Insights Into Self-DNA Protection and Autoaggregation. Mol Oral Microbiol 2025; 40:82-93. [PMID: 39624001 PMCID: PMC11904264 DOI: 10.1111/omi.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 03/14/2025]
Abstract
Streptococcus mutans, a key player in dental caries, faces multiple environmental challenges within the oral cavity, including oxidative stress, nutrient scarcity, and acidic pH. To survive and thrive, S. mutans has evolved intricate mechanisms, including the CSP-ComDE quorum sensing system, which coordinates responses to environmental cues. The CSP-ComDE system enables S. mutans to communicate with neighboring cells via its CSP pheromone. Under stress conditions, the CSP pheromone production increases, triggering a cascade of events. Notably, our research demonstrated that the CSP pheromone activates the expression of a Type II restriction-modification (R-M) system. Type II R-M systems are well-known tools in molecular biology and genetic engineering and consist of two distinct enzymes: a restriction enzyme and a methyltransferase. An increasing number of studies have revealed that bacterial adenine methylation (Dam methylation) has a broader role beyond mere DNA protection. In fact, the marks introduced into the DNA provide signals for a variety of physiological processes. Our results highlight a conserved chromosomal locus in S. mutans encoding the DpnII R-M system. DpnII R-M methylates DNA at 5'-GATC target sites within the S. mutans genome and cleaves unmarked DNA. Furthermore, our findings suggest that Dam methylation significantly impacts foreign DNA acquisition via natural transformation and modulates mutanobactin expression-a secondary metabolite linked to oxidative stress tolerance. Collectively, our findings suggest that Dam methylation bridges epigenetics and bacterial fitness, potentially opening new avenues in bacterial epigenetics. As we explore this intricate biological process, we may uncover novel therapeutic strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Haowei Zhao
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Delphine Dufour
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Jamie Zhong
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Siew‐Ging Gong
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Paul H. Roy
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de QuébecUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
3
|
Grover V, Jain A, Bhardwaj A, Mehta M, Arora S, Algarni YA, Bavabeedu SS, Das G, Ali ABM, Ahmed N, Heboyan A. Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius. J Clin Lab Anal 2025; 39:e25156. [PMID: 39853814 PMCID: PMC11848166 DOI: 10.1002/jcla.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides. METHODS Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz. Expert Protein-Analysis System (Expasy), UniProt Knowledgebase (UniProtKB), European Molecular Biology Open Software Suite (EMBOSS), Pepwheel, and PEP-FOLD Peptide Structure Prediction Server. The antimicrobial potential of peptides was assessed through the Antimicrobial Peptide Database (AMP) and Bactibase. Two short peptides, viz. synthetic antimicrobial peptides (SAMPs), were designed based on current knowledge of hydrophobic and cationic residues, synthesized, and their efficacy against biofilm formation was evaluated with standard microbiological methods. RESULTS The synthesized short peptides reduced the growth and effectively inhibited biofilm formation by specific oral microbial strains, demonstrating their potential as antimicrobial peptides. Furthermore, the alignment of bacteriocin biosynthetic clusters among streptococcus strains revealed variations in putative bacteriocin amino acid sequences across different strains of the same organism. CONCLUSION Streptococcus salivarius emerges as a promising bioresource for the development of novel antimicrobial agents, particularly for combating biofilm-associated oral infections.
Collapse
Affiliation(s)
- Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | - Ashish Jain
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | | | - Manjula Mehta
- Dr. HS Judge Institute of Dental Sciences and HospitalPanjab UniversityChandigarhIndia
| | - Suraj Arora
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Youssef A. Algarni
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Gotam Das
- Department of Prosthodontics, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Ahmed Babiker Mohamed Ali
- Department of Restorative Dental Sciences, College of DentistryKing Khalid UniversityAbhaSaudi Arabia
| | - Naseer Ahmed
- Department of ProsthodonticsAltamash Institute of Dental MedicineKarachiPakistan
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of Prosthodontics, School of DentistryTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Koohi-Moghadam M, Watt RM, Leung WK. Multi-site analysis of biosynthetic gene clusters from the periodontitis oral microbiome. J Med Microbiol 2024; 73. [PMID: 39378072 DOI: 10.1099/jmm.0.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background. Bacteria significantly influence human health and disease, with bacterial biosynthetic gene clusters (BGCs) being crucial in the microbiome-host and microbe-microbe interactions.Gap statement. Despite extensive research into BGCs within the human gut microbiome, their roles in the oral microbiome are less understood.Aim. This pilot study utilizes high-throughput shotgun metagenomic sequencing to examine the oral microbiota in different niches, particularly focusing on the association of BGCs with periodontitis.Methodology. We analysed saliva, subgingival plaque and supragingival plaque samples from periodontitis patients (n=23) and controls (n=16). DNA was extracted from these samples using standardized protocols. The high-throughput shotgun metagenomic sequencing was then performed to obtain comprehensive genetic information from the microbial communities present in the samples.Results. Our study identified 10 742 BGCs, with certain clusters being niche-specific. Notably, aryl polyenes and bacteriocins were the most prevalent BGCs identified. We discovered several 'novel' BGCs that are widely represented across various bacterial phyla and identified BGCs that had different distributions between periodontitis and control subjects. Our systematic approach unveiled the previously unexplored biosynthetic pathways that may be key players in periodontitis.Conclusions. Our research expands the current metagenomic knowledge of the oral microbiota in both healthy and periodontally diseased states. These findings highlight the presence of novel biosynthetic pathways in the oral cavity and suggest a complex network of host-microbe and microbe-microbe interactions, potentially influencing periodontal disease. The BGCs identified in this study pave the way for future investigations into the role of small-molecule-mediated interactions within the human oral microbiota and their impact on periodontitis.
Collapse
Affiliation(s)
- Mohamad Koohi-Moghadam
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, PR China
| | - Rory M Watt
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Keung Leung
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
5
|
Luo W, Zhang M, Zhou X, Xu X, Cheng X. Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm. Mol Oral Microbiol 2024; 39:261-269. [PMID: 38212261 DOI: 10.1111/omi.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.
Collapse
Affiliation(s)
- Wenxin Luo
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mengdie Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Larsen CK, Lindquist P, Rosenkilde M, Madsen AR, Haselmann K, Glendorf T, Olesen K, Kodal ALB, Tørring T. Using LanM Enzymes to Modify Glucagon-Like Peptides 1 and 2 in E.coli. Chembiochem 2024; 25:e202400201. [PMID: 38701360 DOI: 10.1002/cbic.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.
Collapse
Affiliation(s)
- Camilla K Larsen
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus C, Denmark
- Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mette Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | | | | | | | | - Thomas Tørring
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
7
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
8
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
9
|
Li S, Zhang Y, Zong J, Liu Y, Tang Y, Lu J, Chen Y. Production improvement of an antioxidant in cariogenic Streptococcus mutans UA140. J Appl Microbiol 2024; 135:lxae017. [PMID: 38268415 DOI: 10.1093/jambio/lxae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
AIMS This study aimed to improve the production of mutantioxidin, an antioxidant encoded by a biosynthetic gene cluster (mao) in Streptococcus mutans UA140, through a series of optimization methods. METHOD AND RESULTS Through the construction of mao knockout strain S. mutans UA140∆mao, we identified mutantioxidin as the antioxidant encoded by mao and verified its antioxidant activity through a reactive oxygen species (ROS) tolerance assay. By optimizing the culture medium and fermentation time, 72 h of fermentation in chemically defined medium (CDM) medium was determined as the optimal fermentation conditions. Based on two promoters commonly used in Streptococcus (ldhp and xylS1p), eight promoter refactoring strains were constructed, nevertheless all showed impaired antioxidant production. In-frame deletion and complementation experiments demonstrated the positive regulatory role of mao1 and mao2, on mao. Afterward, the mao1 and mao2, overexpression strain S. mutans UA140/pDL278:: mao1mao2, were constructed, in which the production of mutantioxidin was improved significantly. CONCLUSIONS In this study, through a combination of varied strategies such as optimization of fermentation conditions and overexpression of regulatory genes, production of mutantioxidin was increased by 10.5 times ultimately.
Collapse
Affiliation(s)
- Shuyu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Gu Q, Yan J, Lou Y, Zhang Z, Li Y, Zhu Z, Liu M, Wu D, Liang Y, Pu J, Zhao X, Xiao H, Li P. Bacteriocins: Curial guardians of gastrointestinal tract. Compr Rev Food Sci Food Saf 2024; 23:e13292. [PMID: 38284593 DOI: 10.1111/1541-4337.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The human gastrointestinal (GI) tract microbiome secretes various metabolites that play pivotal roles in maintaining host physiological balance and influencing disease progression. Among these metabolites, bacteriocins-small, heat-stable peptides synthesized by ribosomes-are notably prevalent in the GI region. Their multifaceted benefits have garnered significant interest in the scientific community. This review comprehensively explores the methods for mining bacteriocins (traditional separation and purification, bioinformatics, and artificial intelligence), their effects on the stomach and intestines, and their complex bioactive mechanisms. These mechanisms include flora regulation, biological barrier restoration, and intervention in epithelial cell pathways. By detailing each well-documented bacteriocin, we reveal the diverse ways in which bacteriocins interact with the GI environment. Moreover, the future research direction is prospected. By further studying the function and interaction of intestinal bacteriocins, we can discover new pharmacological targets and develop drugs targeting intestinal bacteriocins to regulate and improve human health. It provides innovative ideas and infinite possibilities for further exploration, development, and utilization of bacteriocins. The inevitable fact is that the continuously exploration of bacteriocins is sure to bring the promising future for demic GI health understanding and interference strategy.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiaqian Yan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yeqing Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zihao Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yonglu Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zichun Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Manman Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Danli Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Liang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiaqian Pu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodan Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Yu D, Pei Z, Chen Y, Wang H, Xiao Y, Zhang H, Chen W, Lu W. Bifidobacterium longum subsp. infantis as widespread bacteriocin gene clusters carrier stands out among the Bifidobacterium. Appl Environ Microbiol 2023; 89:e0097923. [PMID: 37681950 PMCID: PMC10537742 DOI: 10.1128/aem.00979-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023] Open
Abstract
Bifidobacterium is the dominant genus, particularly in the intestinal tract niche of healthy breast-fed infants, and many of these strains have been proven to elicit positive effects on infant development. In addition to its effective antimicrobial activity against detrimental microorganisms, it helps to improve the intestinal microbiota balance. The isolation and identification of bacteriocins from Bifidobacterium have been limited since the mid-1980s, leading to an underestimation of its ability for bacteriocin production. Here, we employed a silicon-based search strategy to mine 354 putative bacteriocin gene clusters (BGCs), most of which have never been reported, from the genomes of 759 Bifidobacterium strains distributed across 9 species. Consistent with previous reports, most Bifidobacterium strains did not carry or carry only a single BGC; however, Bifidobacterium longum subsp. infantis, in contrast to other Bifidobacterium species, carried numerous BGCs, including lanthipeptides, lasso peptides, thiopeptides, and class IId bacteriocins. The antimicrobial activity of the crude bacteriocins and transcription analysis confirmed its potential for bacteriocin biosynthesis. Additionally, we investigated the association of bacteriocins with the phylogenetic positions of their homologs from other genera and niches. In conclusion, this study re-examines a few Bifidobacterium species traditionally regarded as a poor source of bacteriocins. These bacteriocin genes impart a competitive advantage to Bifidobacterium in colonizing the infant intestinal tract. IMPORTANCE Development of the human gut microbiota commences from birth, with bifidobacteria being among the first colonizers of the newborn intestinal tract and dominating it for a considerable period. To date, the genetic basis for the successful adaptation of bifidobacteria to this particular niche remains unclear since studies have mainly focused on glycoside hydrolase and adhesion-related genes. Bacteriocins are competitive factors that help producers maintain colonization advantages without destroying the niche balance; however, they have rarely been reported in Bifidobacterium. The advancement in sequencing methods and bacteriocin databases enables the use of a silicon-based search strategy for the comprehensive and rapid re-evaluation of the bacteriocin distribution of Bifidobacterium. Our study revealed that B. infantis carries abundant bacteriocin biosynthetic gene clusters for the first time, presenting new evidence regarding the competitive interactions of Bifidobacterium in the infant intestinal tract.
Collapse
Affiliation(s)
- Di Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
13
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
14
|
张 梦, 程 兴, 徐 欣. [Latest Findings on Polyketides/Non-ribosomal Peptides That Are Secondary Metabolites of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:685-691. [PMID: 37248606 PMCID: PMC10475436 DOI: 10.12182/20230560302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Dental caries is a chronic infectious disease that occurs in the hard tissue of teeth under the influence of multiple factors, among which bacteria being a key factor. Streptococcus mutans ( S. mutans) is considered a major pathogen that causes caries. Secondary metabolites, including bacteriocins and polyketides/non-ribosomal peptides, are a class of small-molecule compounds synthesized by S. mutans. To date, polyketides/non-ribosomal peptides identified in S. mutans include mutanobactin, mutanocyclin, and mutanofactin, which are synthesized by the mub, muc, and muf biosynthetic gene clusters, respectively. These polyketides/non-ribosomal peptides play important roles in bacterial inter-species competition, oxidative stress, and biofilm formation. In this review, we provided an overview of the synthesis, function and regulation of three polyketides/non-ribosomal peptides of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin, aiming to provide new insights into the cariogenic mechanism of S. mutans and to promote the better management of dental caries.
Collapse
Affiliation(s)
- 梦碟 张
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| | - 兴群 程
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Duque C, Chrisostomo DA, Souza ACA, de Almeida Braga GP, Dos Santos VR, Caiaffa KS, Pereira JA, de Oliveira WC, de Aguiar Ribeiro A, Parisotto TM. Understanding the Predictive Potential of the Oral Microbiome in the Development and Progression of Early Childhood Caries. Curr Pediatr Rev 2023; 19:121-138. [PMID: 35959611 DOI: 10.2174/1573396318666220811124848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early childhood caries (ECC) is the most common chronic disease in young children and a public health problem worldwide. It is characterized by the presence of atypical and fast progressive caries lesions. The aggressive form of ECC, severe early childhood caries (S-ECC), can lead to the destruction of the whole crown of most of the deciduous teeth and cause pain and sepsis, affecting the child's quality of life. Although the multifactorial etiology of ECC is known, including social, environmental, behavioral, and genetic determinants, there is a consensus that this disease is driven by an imbalance between the oral microbiome and host, or dysbiosis, mediated by high sugar consumption and poor oral hygiene. Knowledge of the microbiome in healthy and caries status is crucial for risk monitoring, prevention, and development of therapies to revert dysbiosis and restore oral health. Molecular biology tools, including next-generation sequencing methods and proteomic approaches, have led to the discovery of new species and microbial biomarkers that could reveal potential risk profiles for the development of ECC and new targets for anti-caries therapies. This narrative review summarized some general aspects of ECC, such as definition, epidemiology, and etiology, the influence of oral microbiota in the development and progression of ECC based on the current evidence from genomics, transcriptomic, proteomic, and metabolomic studies and the effect of antimicrobial intervention on oral microbiota associated with ECC. CONCLUSION The evaluation of genetic and proteomic markers represents a promising approach to predict the risk of ECC before its clinical manifestation and plan efficient therapeutic interventions for ECC in its initial stages, avoiding irreversible dental cavitation.
Collapse
Affiliation(s)
- Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Daniela Alvim Chrisostomo
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Amanda Caselato Andolfatto Souza
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Gabriela Pacheco de Almeida Braga
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Apoena de Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina at Chapel Hill - Adams School of Dentistry, Chapel Hill, North Carolina, United State
| | - Thaís Manzano Parisotto
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
16
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
17
|
mucG, mucH, and mucI Modulate Production of Mutanocyclin and Reutericyclins in Streptococcus mutans B04Sm5. J Bacteriol 2022; 204:e0004222. [PMID: 35404110 PMCID: PMC9112991 DOI: 10.1128/jb.00042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Streptococcus mutans is considered a primary etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans B04Sm5 was recently shown to produce reutericyclins and mutanocyclin through the muc biosynthetic gene cluster and to utilize reutericyclins to inhibit the growth of neighboring commensal streptococci. In this study, examination of S. mutans and muc phylogeny suggested evolution of an ancestral S. mutans muc into three lineages within one S. mutans clade and then horizontal transfer of muc to other S. mutans clades. The roles of the mucG and mucH transcriptional regulators and the mucI transporter were also examined. mucH was demonstrated to encode a transcriptional activator of muc. mucH deletion reduced production of mutanocyclin and reutericyclins and eliminated the impaired growth and inhibition of neighboring streptococci phenotypes, which are associated with reutericyclin production. ΔmucG had increased mutanocyclin and reutericyclin production, which impaired growth and increased the ability to inhibit neighboring streptococci. However, deletion of mucG also caused reduced expression of mucD, mucE, and mucI. Deletion of mucI reduced mutanocyclin and reutericylin production but enhanced growth, suggesting that mucI may not transport reutericyclin as its homolog does in Limosilactobacillus reuteri. Further research is needed to determine the roles of mucG and mucI and to identify any cofactors affecting the activity of the mucG and mucH regulators. Overall, this study provided pangenome and phylogenetic analyses that serve as a resource for S. mutans research and began elucidation of the regulation of reutericyclins and mutanocyclin production in S. mutans. IMPORTANCE S. mutans must be able to outcompete neighboring organisms in its ecological niche in order to cause dental caries. S. mutans B04Sm5 inhibited the growth of neighboring commensal streptococci through production of reutericyclins via the muc biosynthetic gene cluster. In this study, an S. mutans pangenome database and updated phylogenetic tree were generated that will serve as valuable resources for the S. mutans research community and that provide insights into the carriage and evolution of S. mutans muc. The MucG and MucH regulators, and the MucI transporter, were shown to modulate production of reutericyclins and mutanocyclin. These genes also affected the ability of S. mutans to inhibit neighboring commensals, suggesting that they may play a role in S. mutans virulence.
Collapse
|
18
|
Tao L, Wang M, Guan G, Zhang Y, Hao T, Li C, Li S, Chen Y, Huang G. Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence 2022; 13:542-557. [PMID: 35311622 PMCID: PMC8942415 DOI: 10.1080/21505594.2022.2046952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Li Tao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms
| |
Collapse
|
19
|
Uranga C, Nelson KE, Edlund A, Baker JL. Tetramic Acids Mutanocyclin and Reutericyclin A, Produced by Streptococcus mutans Strain B04Sm5 Modulate the Ecology of an in vitro Oral Biofilm. FRONTIERS IN ORAL HEALTH 2022; 2:796140. [PMID: 35048077 PMCID: PMC8757879 DOI: 10.3389/froh.2021.796140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
The human oral microbiome consists of diverse microbes actively communicating and interacting through a variety of biochemical mechanisms. Dental caries is a major public health issue caused by fermentable carbohydrate consumption that leads to dysbiosis of the oral microbiome. Streptococcus mutans is a known major contributor to caries pathogenesis, due to its exceptional ability to form biofilms in the presence of sucrose, as well as to its acidophilic lifestyle. S. mutans can also kill competing bacteria, which are typically health associated, through the production of bacteriocins and other small molecules. A subset of S. mutans strains encode the muc biosynthetic gene cluster (BGC), which was recently shown to produce the tetramic acids, mutanocyclin and reutericyclins A, B, and C. Reutericyclin A displayed strong antimicrobial activity and mutanocyclin appeared to be anti-inflammatory; however the effect of these compounds, and the carriage of muc by S. mutans, on the ecology of the oral microbiota is not known, and was examined here using a previously developed in vitro biofilm model derived from human saliva. While reutericyclin significantly inhibited in vitro biofilm formation and acid production at sub-nanomolar concentrations, mutanocyclin did not present any activity until the high micromolar range. 16S rRNA gene sequencing revealed that reutericyclin drastically altered the biofilm community composition, while mutanocyclin showed a more specific effect, reducing the relative abundance of cariogenic Limosilactobacillus fermentum. Mutanocyclin or reutericyclin produced by the S. mutans strains amended to the community did not appear to affect the community in the same way as the purified compounds, although the results were somewhat confounded by the differing growth rates of the S. mutans strains. Regardless of the strain added, the addition of S. mutans to the in vitro community significantly increased the abundance of S. mutans and Veillonella infantium, only. Overall, this study illustrates that reutericyclin A and mutanocyclin do impact the ecology of a complex in vitro oral biofilm; however, further research is needed to determine the extent to which the production of these compounds affects the virulence of S. mutans.
Collapse
Affiliation(s)
- Carla Uranga
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Karen E Nelson
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Pediatrics, UC San Diego School of Medicine, San Diego, CA, United States
| | - Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Pediatrics, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
20
|
Zaidi S, Bhardwaj T, Somvanshi P, Khan AU. Proteomic Characterization and Target Identification Against Streptococcus mutans Under Bacitracin Stress Conditions Using LC-MS and Subtractive Proteomics. Protein J 2022; 41:166-178. [PMID: 34989956 PMCID: PMC8733428 DOI: 10.1007/s10930-021-10038-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2021] [Indexed: 11/24/2022]
Abstract
The aim of the present study, is to identify potential targets against the highly pathogenic bacteria Streptococcus mutans that causes dental caries as well as the deadly infection of endocarditis. The powerful and highly sensitive technique of liquid chromatography-mass spectrometry (LC–MS/MS) identified 321 proteins of S. mutans when grown under stressful conditions induced by the antibiotic bacitracin. These 321 proteins were subjected to the insilico method of subtractive proteomics to screen out potential targets by utilizing different analyses like CD-HIT, non-homologous sequence screening, KEGG pathway, essentiality screening, gut-flora non-homology, and codon usage analysis. A database of essential proteins was employed to find sequence homology of non-paralogous proteins to determine proteins which are essential for bacterial survival. Cellular localization analysis of the selected proteins was done to localize them inside the cell along with physico-chemical characterization and druggability analysis. Using computational tools, 22 proteins out of 321, that are functionally distinguishable from their human counterparts and passed the criterion of a potential therapeutic candidate were identified. The selected proteins comprise central energy metabolic proteins, virulence factors, proteins of the sortase family, and essentiality factors. The presented analyses identified proteins of the sortase family, which appear as key therapeutic targets against caries infection. These proteins regulate a number of virulence factors, thus can be simultaneously inhibited to obstruct multiple virulence pathways.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Tulika Bhardwaj
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India.,Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
21
|
Pascal Andreu V, Augustijn HE, van den Berg K, van der Hooft JJJ, Fischbach MA, Medema MH. BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes. mSystems 2021; 6:e0093721. [PMID: 34581602 PMCID: PMC8547482 DOI: 10.1128/msystems.00937-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes.
Collapse
Affiliation(s)
| | | | - Koen van den Berg
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | | | - Michael A. Fischbach
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- ChEM-H, Stanford University, Stanford, California, USA
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
22
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
23
|
Pultar F, Hansen ME, Wolfrum S, Böselt L, Fróis-Martins R, Bloch S, Kravina AG, Pehlivanoglu D, Schäffer C, LeibundGut-Landmann S, Riniker S, Carreira EM. Mutanobactin D from the Human Microbiome: Total Synthesis, Configurational Assignment, and Biological Evaluation. J Am Chem Soc 2021; 143:10389-10402. [PMID: 34212720 DOI: 10.1021/jacs.1c04825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutanobactin D is a non-ribosomal, cyclic peptide isolated from Streptococcus mutans and shows activity reducing yeast-to-hyphae transition as well as biofilm formation of the pathogenic yeast Candida albicans. We report the first total synthesis of this natural product, which relies on enantioselective, zinc-mediated 1,3-dipolar cycloaddition and a sequence of cascading reactions, providing the key lipidated γ-amino acid found in mutanobactin D. The synthesis enables configurational assignment, determination of the dominant solution-state structure, and studies to assess the stability of the lipopeptide substructure found in the natural product. The information stored in the fingerprint region of the IR spectra in combination with quantum chemical calculations proved key to distinguishing between epimers of the α-substituted β-keto amide. Synthetic mutanobactin D drives discovery and analysis of its effect on growth of other members of the human oral consortium. Our results showcase how total synthesis is central for elucidating the complex network of interspecies communications of human colonizers.
Collapse
Affiliation(s)
- Felix Pultar
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Moritz E Hansen
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lennard Böselt
- Laboratorium für Physikalische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susanne Bloch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Alberto G Kravina
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Deren Pehlivanoglu
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Li ZR, Sun J, Du Y, Pan A, Zeng L, Maboudian R, Burne RA, Qian PY, Zhang W. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat Chem Biol 2021; 17:576-584. [PMID: 33664521 DOI: 10.1038/s41589-021-00745-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Aifei Pan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
25
|
Yonezawa H, Motegi M, Oishi A, Hojo F, Higashi S, Nozaki E, Oka K, Takahashi M, Osaki T, Kamiya S. Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. Int J Mol Sci 2021; 22:3343. [PMID: 33805848 PMCID: PMC8037337 DOI: 10.3390/ijms22073343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Lantibiotics are a type of bacteriocin produced by Gram-positive bacteria and have a wide spectrum of Gram-positive antimicrobial activity. In this study, we determined that Mutacin I/III and Smb (a dipeptide lantibiotic), which are mainly produced by the widespread cariogenic bacterium Streptococcus mutans, have strong antimicrobial activities against many of the Gram-positive bacteria which constitute the intestinal microbiota. These lantibiotics also demonstrate resistance to acid and temperature. Based on these features, we predicted that lantibiotics may be able to persist into the intestinal tract maintaining a strong antimicrobial activity, affecting the intestinal microbiota. Saliva and fecal samples from 69 subjects were collected to test this hypothesis and the presence of lantibiotics and the composition of the intestinal microbiota were examined. We demonstrate that subjects possessing lantibiotic-producing bacteria in their oral cavity exhibited a tendency of decreased species richness and have significantly reduced abundance of the phylum Firmicutes in their intestinal microbiota. Similar results were obtained in the fecal microbiota of mice fed with S. mutans culture supernatant containing the lantibiotic bacteriocin Mutacin I. These results showed that lantibiotic bacteriocins produced in the oral cavity perturb the intestinal microbiota and suggest that oral bacteria may be one of the causative factors of intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan; (M.T.); (T.O.); (S.K.)
| | - Mizuho Motegi
- Division of Oral Restitution, Department of Pediatric Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (M.M.); (A.O.)
| | - Atsushi Oishi
- Division of Oral Restitution, Department of Pediatric Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (M.M.); (A.O.)
| | - Fuhito Hojo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyorin University School of Medicine, Tokyo 181-8611, Japan;
| | - Seiya Higashi
- Central Research Institute, Miyarisan Pharmaceutical Co. Ltd., Tokyo 114-0016, Japan; (S.H.); (K.O.)
| | - Eriko Nozaki
- Core Laboratory for Proteomics and Genomics, Kyorin University School of Medicine, Tokyo 181-8611, Japan;
| | - Kentaro Oka
- Central Research Institute, Miyarisan Pharmaceutical Co. Ltd., Tokyo 114-0016, Japan; (S.H.); (K.O.)
| | - Motomichi Takahashi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan; (M.T.); (T.O.); (S.K.)
- Central Research Institute, Miyarisan Pharmaceutical Co. Ltd., Tokyo 114-0016, Japan; (S.H.); (K.O.)
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan; (M.T.); (T.O.); (S.K.)
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan; (M.T.); (T.O.); (S.K.)
| |
Collapse
|
26
|
Kumar R, Borker SS, Thakur A, Thapa P, Kumar S, Mukhia S, Anu K, Bhattacharya A, Kumar S. Physiological and genomic evidence supports the role of Serratia quinivorans PKL:12 as a biopriming agent for the biohardening of micropropagated Picrorhiza kurroa plantlets in cold regions. Genomics 2021; 113:1448-1457. [PMID: 33744342 DOI: 10.1016/j.ygeno.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
The medicinal herb, Picrorhiza kurroa Royle ex Benth has become endangered because of indiscriminate over-harvesting. Although micropropagation has been attempted for mass propagation of the plant, survival of in vitro plantlets under green house/open field poses a major challenge. Biopriming of micropropagated plantlets with plant growth-promoting rhizobacteria (PGPR) are among the successful methods to combat this problem. Serratia quinivorans PKL:12 was the best-characterized PGPR from rhizospheric soil of P. kurroa as it increased the vegetative growth and survival of the micropropagated plantlets most effectively. Complete genome (5.29 Mb) predicted genes encoding proteins for cold adaptation and plant growth-promoting traits in PKL:12. Antibiotic and biosynthetic gene cluster prediction supported PKL:12 as a potential biocontrol agent. Comparative genomics revealed 226 unique genes with few genes associated with plant growth-promoting potential. Physiological and genomic evidence supports S. quinivorans PKL:12 as a potential agent for bio-hardening of micropropagated P. kurroa plantlets in cold regions.
Collapse
Affiliation(s)
- Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India..
| | - Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Pooja Thapa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amita Bhattacharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
27
|
Wang W, Zijlstra RT, Gänzle MG. Feeding Limosilactobacillus fermentum K9-2 and Lacticaseibacillus casei K9-1, or Limosilactobacillus reuteri TMW1.656 Reduces Pathogen Load in Weanling Pigs. Front Microbiol 2020; 11:608293. [PMID: 33391231 PMCID: PMC7773707 DOI: 10.3389/fmicb.2020.608293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
Applying probiotics to improve gut health and growth performance of pigs is considered an effective approach to reduce use of antimicrobial growth promoters in swine production. Understanding the properties of these probiotics is a prerequisite for the selection of probiotic strains for pigs. Host-adapted probiotic strains were suggested to exert probiotic effects by different mechanisms when compared to free-living or nomadic probiotic strains. This study assessed the effect of probiotic intervention with Limosilactobacillus reuteri TMW1.656, a host-adapted species producing the antimicrobial compound reutericyclin, its isogenic and reutericyclin-negative L. reuteri TMW1.656ΔrtcN, and with Limosilactobacillus fermentum and Lacticaseibacillus casei, two species with a nomadic lifestyle. Probiotic strains were supplemented to the post weaning diet in piglets by fermented feed or as freeze-dried cultures. The composition of fecal microbiota was determined by high throughput sequencing of 16S rRNA gene sequence tags; Enterotoxigenic Escherichia coli and Clostridium perfringens were quantified by qPCR targeting specific virulence factors. Inclusion of host-adapted L. reuteri effectively reduced ETEC abundance in swine intestine. In contrast, nomadic L. fermentum and L. casei did not show inhibitory effects on ETEC but reduced the abundance of Clostridium spp. In addition, the increasing abundance of Bacteriodetes after weaning was correlated to a reduction of ETEC abundance. Remarkably, the early colonization of piglets with ETEC was impacted by maternal-neonatal transmission; the pattern of virulence factors changed significantly over time after weaning. Probiotic intervention or the production of reutericyclin showed limited effect on the overall composition of commensal gut microbiota. In conclusion, the present study provided evidence that the lifestyle of lactobacilli is a relevant criterion for selection of probiotic cultures while the production of antimicrobial compounds has only minor effects.
Collapse
Affiliation(s)
| | | | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Composite Long- and Short-Read Sequencing Delivers a Complete Genome Sequence of B04Sm5, a Reutericyclin- and Mutanocyclin-Producing Strain of Streptococcus mutans. Microbiol Resour Announc 2020; 9:9/47/e01067-20. [PMID: 33214302 PMCID: PMC7679095 DOI: 10.1128/mra.01067-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans strain B04Sm5 was recently shown to inhibit the growth of neighboring commensal bacteria using reutericyclin, an acylated tetramic acid produced by the muc biosynthetic gene cluster. Here, a complete genome sequence of B04Sm5 is reported.
Collapse
|
29
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Genetic Analysis of Mutacin B-Ny266, a Lantibiotic Active against Caries Pathogens. J Bacteriol 2020; 202:JB.00762-19. [PMID: 32229530 DOI: 10.1128/jb.00762-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriocins are ribosomally synthesized proteinaceous antibacterial peptides. They selectively interfere with the growth of other bacteria. The production and secretion of bacteriocins confer a distinct ecological advantage to the producer in competing against other bacteria that are present in the same ecological niche. Streptococcus mutans, a significant contributor to the development of dental caries, is one of the most prolific producers of bacteriocins, known as mutacins in S. mutans In this study, we characterized the locus encoding mutacin B-Ny266, a lantibiotic with a broad spectrum of activity. The chromosomal locus is composed of six predicted operon structures encoding proteins involved in regulation, antimicrobial activity, biosynthesis, modification, transport, and immunity. Mutacin B-Ny266 was purified from semisolid cultures, and two inhibitory peptides, LanA and LanA', were detected. Both peptides were highly modified. Such modifications include dehydration of serine and threonine and the formation of a C-terminal aminovinyl-cysteine (AviCys) ring. While LanA peptide alone is absolutely required for antimicrobial activity, the presence of LanA' enhanced the activity of LanA, suggesting that B-Ny266 may function as a two-peptide lantibiotic. The activation of lanAA' expression is most likely controlled by the conserved two-component system NsrRS, which is activated by LanA peptide but not by LanA'. The chromosomal locus encoding mutacin B-Ny266 was not universally conserved in all sequenced S. mutans genomes. Intriguingly, the genes encoding LanAA' peptides were restricted to the most invasive serotypes of S. mutans IMPORTANCE Although dental caries is largely preventable, it remains the most common and costly infectious disease worldwide. Caries is initiated by the presence of dental plaque biofilm that contains Streptococcus mutans, a species extensively characterized by its role in caries development and formation. S. mutans deploys an arsenal of strategies to establish itself within the oral cavity. One of them is the production of bacteriocins that confer a competitive advantage by targeting and killing closely related competitors. In this work, we found that mutacin B-Ny266 is a potent lantibiotic that is effective at killing a wide array of oral streptococci, including nearly all S. mutans strains tested. Lantibiotics produced by oral bacteria could represent a promising strategy to target caries pathogens embedded in dental plaque biofilm.
Collapse
|
31
|
Momeni SS, Beno SM, Baker JL, Edlund A, Ghazal T, Childers NK, Wu H. Caries-Associated Biosynthetic Gene Clusters in Streptococcus mutans. J Dent Res 2020; 99:969-976. [PMID: 32298190 DOI: 10.1177/0022034520914519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early childhood caries (ECC) is a chronic disease affecting the oral health of children globally. This disease is multifactorial, but a primary factor is cariogenic microorganisms such as Streptococcus mutans. Biosynthetic gene clusters (BGCs) encode small molecules with diverse biological activities that influence the development of many microbial diseases, including caries. The purpose of this study was to identify BGCs in S. mutans from a high-caries risk study population using whole-genome sequencing and assess their association with ECC. Forty representative S. mutans isolates were selected for genome sequencing from a large-scale epidemiological study of oral microbiology and dental caries in children from a localized Alabama population. A total of 252 BGCs were identified using the antiSMASH BGC-mining tool. Three types of BGCs identified herein-butyrolactone-like, ladderane-like, and butyrolactone-ladderane-like hybrid (BL-BGC)-have not been reported in S. mutans. These 3 BGCs were cross-referenced against public transcriptomics data, and were found to be highly expressed in caries subjects. Furthermore, based on a polymerase chain reaction screening for core BL genes, 93% of children with BL-BGC had ECC. The role of BL-BGC was further investigated by examining cariogenic traits and strain fitness in a deletion mutant using in vitro biofilm models. Deletion of the BL-BGC significantly increased biofilm pH as compared to the parent strain, while other virulence and fitness properties remained unchanged. Intriguingly, BL-BGC containing strains produced more acid, a key cariogenic feature, and less biofilm than the model cariogenic strain S. mutans UA159, suggesting the importance of this BL-BGC in S. mutans-mediated cariogenesity. The structure of any BL-BGC derived metabolites, their functions, and mechanistic connection with acid production remain to be elucidated. Nevertheless, this study is the first to report the clinical significance of a BL-BGC in S. mutans. This study also highlights pangenomic diversity, which is likely to affect phenotype and virulence.
Collapse
Affiliation(s)
- S S Momeni
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S M Beno
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - A Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - T Ghazal
- Department of Preventive and Community Dentistry, University of Iowa, Iowa City, IA, USA
| | - N K Childers
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Cariogenic Streptococcus mutans Produces Tetramic Acid Strain-Specific Antibiotics That Impair Commensal Colonization. ACS Infect Dis 2020; 6:563-571. [PMID: 31906623 PMCID: PMC7150634 DOI: 10.1021/acsinfecdis.9b00365] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Streptococcus mutans is a common constituent of dental plaque
and a major etiologic agent of dental caries (tooth decay). In this
study, we elucidated the biosynthetic pathway encoded by muc, a hybrid polyketide synthase and nonribosomal peptide synthetase
(PKS/NRPS) biosynthetic gene cluster (BGC), present in a number of
globally distributed S. mutans strains. The
natural products synthesized by muc included three N-acyl tetramic acid compounds (reutericyclin and two novel
analogues) and an unacylated tetramic acid (mutanocyclin). Furthermore,
the enzyme encoded by mucF was identified as a novel
class of membrane-associated aminoacylases and was responsible for
the deacylation of reutericyclin to mutanocyclin. A large number of
hypothetical proteins across a broad diversity of bacteria were homologous
to MucF, suggesting that this may represent a large family of unexplored
acylases. Finally, S. mutans utilized the reutericyclin
produced by muc to impair the growth of neighboring
oral commensal bacteria. Since S. mutans must
be able to out-compete these health-associated organisms to persist
in the oral microbiota and cause disease, the competitive advantage
conferred by muc suggests that this BGC is likely
to be involved in S. mutans ecology and therefore
dental plaque dysbiosis and the resulting caries pathogenesis.
Collapse
|
33
|
Wang M, Xie Z, Tang S, Chang EL, Tang Y, Guo Z, Cui Y, Wu B, Ye T, Chen Y. Reductase of Mutanobactin Synthetase Triggers Sequential C-C Macrocyclization, C-S Bond Formation, and C-C Bond Cleavage. Org Lett 2020; 22:960-964. [PMID: 31917593 DOI: 10.1021/acs.orglett.9b04501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutanobactins (MUBs) and their congeners that contain a macrocycle and/or a thiazepane ring are lipopeptides from Streptococcus mutans, a major causative agent of dental caries. Here we show that the C-terminal reductase domain of MubD releases the lipohexapeptide intermediates in an aldehyde form, which enables a spontaneous C-C macrocyclization. In the presence of a thiol group, the macrocyclized MUBs can further undergo spontaneous C-S bond formation and C-C bond cleavage to generate diverse MUB congeners.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhoujie Xie
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Shoubin Tang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Ee Ling Chang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Yue Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Bian Wu
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School, Tsinghua University Shenzhen International Graduate School , Shenzhen 518055 , China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
34
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
35
|
Wang W, Zhu S, Zhang G, Wu F, Ban J, Wang L. Antibacterial and thermomechanical properties of experimental dental resins containing quaternary ammonium monomers with two or four methacrylate groups. RSC Adv 2019; 9:40681-40688. [PMID: 35542684 PMCID: PMC9082395 DOI: 10.1039/c9ra07788j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Resins with strong antibacterial and thermomechanical properties are critical for application in oral cavities. In this study, we first evaluated the antibacterial effect of an unfilled resin incorporating 1, 4, and 7 mass% of quaternary ammonium salt (QAS) monomers containing two methacrylate groups (MAE-DB) and four methacrylate groups (TMH-DB) against Streptococcus mutans, and tested the cytotoxicity and thermomechanical properties of the 4 mass% MAE-DB and TMH-DB modified resin materials. A neat resin without a QAS monomer served as the control. As the concentration of both QAS monomers increases, the formation of a Streptococcus mutans biofilm on the experimental material is increasingly inhibited. The results of colony forming unit counts and the metabolic activity showed that both the MAE-DB and TMH-DB modified resins have a strong bactericidal effect on the bacteria in a biofilm, but no bactericidal effect on the bacteria in a solution. The viability-staining and morphology results also demonstrate that the bacteria deform, lyse, shrink, and die on the surface of the two QAS-modified resins. Cytotoxicity results show that the addition of TMH-DB can reduce the cytotoxicity of the resin, while the addition of MAE-DB increases the cytotoxicity of the resin. DMA results show that a TMH-DB modified resin has a higher storage modulus than a MAE-DB modified resin owing to its better crosslink density. The two groups of experimental resins showed a similar glass transition temperature. These data indicate that the two QAS monomers can impart similar antibacterial properties upon contact with a dental resin, whereas TMH-DB can endow the resin with a higher crosslink density and storage modulus than MAE-DB because it has more polymerizable groups. Resins with strong antibacterial and thermomechanical properties are critical for application in oral cavities.![]()
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Stomatology, No. 903 Hospital of PLA Lingyin Road 14 Hangzhou 310000 People's Republic of China + 86 571 8734 0983 + 86 571 8734 0983
| | - Sailing Zhu
- Department of Stomatology, No. 903 Hospital of PLA Lingyin Road 14 Hangzhou 310000 People's Republic of China + 86 571 8734 0983 + 86 571 8734 0983
| | - Guoqing Zhang
- Department of Stomatology, No. 903 Hospital of PLA Lingyin Road 14 Hangzhou 310000 People's Republic of China + 86 571 8734 0983 + 86 571 8734 0983
| | - Fan Wu
- Department of Stomatology, No. 903 Hospital of PLA Lingyin Road 14 Hangzhou 310000 People's Republic of China + 86 571 8734 0983 + 86 571 8734 0983
| | - Jinghao Ban
- School of Stomatology, Fourth Military Medical University Xi'an People's Republic of China
| | - Limin Wang
- Department of Stomatology, No. 903 Hospital of PLA Lingyin Road 14 Hangzhou 310000 People's Republic of China + 86 571 8734 0983 + 86 571 8734 0983
| |
Collapse
|
36
|
Abstract
Dental caries is closely related to a dysbiosis of the microbial consortia of supragingival oral biofilms driven by a sugar-frequent and acidic-pH environment. The pH is a key factor affecting the homeostasis of supragingival biofilms seen in health. There is increasing interest on the ecological dynamics of the oral microbiome and how a dysbiotic microbiota can be successfully replaced by health-beneficial flora. The concept of preventing the microbial dysbiosis related to caries through modulation of sugar intake and pH has fully emerged.
Collapse
Affiliation(s)
- Marcelle M Nascimento
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, University of Florida, 1395 Center Drive, Room D9-6, PO Box 100415, Gainesville, FL 32610-0415, USA.
| |
Collapse
|
37
|
An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat Commun 2019; 10:3665. [PMID: 31413323 PMCID: PMC6694145 DOI: 10.1038/s41467-019-11673-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe Streptococcus mutans UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of S. mutans UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria. Anaerobic bacteria represent a rich source of biological and chemical diversity but are difficult to cultivate and there is a lack of heterologous expression systems. Here the authors develop an expression system based on S. mutans UA159 for biosynthetic gene clusters from anaerobic bacteria.
Collapse
|
38
|
Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 2019; 15:813-821. [PMID: 31308532 PMCID: PMC6642696 DOI: 10.1038/s41589-019-0313-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2019] [Indexed: 12/01/2022]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Alon Dolev
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Gianmaria Califano
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Pablo Moreno
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
| |
Collapse
|
39
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
40
|
Aleti G, Baker JL, Tang X, Alvarez R, Dinis M, Tran NC, Melnik AV, Zhong C, Ernst M, Dorrestein PC, Edlund A. Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease. mBio 2019; 10:e00321-19. [PMID: 30992349 PMCID: PMC6469967 DOI: 10.1128/mbio.00321-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023] Open
Abstract
Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world's most common chronic diseases.IMPORTANCE The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world's most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases.
Collapse
Affiliation(s)
- Gajender Aleti
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Xiaoyu Tang
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ruth Alvarez
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Márcia Dinis
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Nini C Tran
- School of Dentistry, The University of California, Los Angeles, California, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Cuncong Zhong
- Department of Electric Engineering and Computer Science, The University of Kansas, Lawrence, Kansas, USA
| | - Madeleine Ernst
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, USA
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
41
|
Nahurira R, Wang J, Yan Y, Jia Y, Fan S, Khokhar I, Eltoukhy A. In silico genome analysis reveals the metabolic versatility and biotechnology potential of a halotorelant phthalic acid esters degrading Gordonia alkanivorans strain YC-RL2. AMB Express 2019; 9:21. [PMID: 30715639 PMCID: PMC6362181 DOI: 10.1186/s13568-019-0733-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
Members of genus Gordonia are known to degrade various xenobitics and produce secondary metabolites. The genome of a halotorelant phthalic acid ester (PAEs) degrading actinobacterium Gordonia alkanivorans strain YC-RL2 was sequenced using Biosciences RS II platform and Single Molecular Real-Time (SMRT) technology. The reads were assembled de novo by hierarchical genome assembly process (HGAP) algorithm version 2. Genes were annotated by NCBI Prokaryotic Genome Annotation Pipeline. The generated genome sequence was 4,979,656 bp with an average G+C content of 67.45%. Calculation of ANI confirmed previous classification that strain YC-RL2 is G. alkanivorans. The sequences were searched against KEGG and COG databases; 3132 CDSs were assigned to COG families and 1808 CDSs were predicted to be involved in 111 pathways. 95 of the KEGG annotated genes were predicted to be involved in the degradation of xenobiotics. A phthalate degradation operon could not be identified in the genome indicating that strain YC-RL2 possesses a novel way of phthalate degradation. A total of 203 and 22 CDSs were annotated as esterase/hydrolase and dioxygenase genes respectively. A total of 53 biosynthetic gene clusters (BGCs) were predicted by antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) bacterial version 4.0. The genome also contained putative genes for heavy metal metabolism. The strain could tolerate 1 mM of Cd2+, Co2+, Cu2+, Ni2+, Zn2+, Mn2+ and Pb2+ ions. These results show that strain YC-RL2 has a great potential to degrade various xenobiotics in different environments and will provide a rich genetic resource for further biotechnological and remediation studies.
Collapse
Affiliation(s)
- Ruth Nahurira
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Junhuan Wang
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yanchun Yan
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yang Jia
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shuanghu Fan
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ibatsam Khokhar
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Adel Eltoukhy
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Ding W, Zhang W, Wang R, Sun Y, Pei B, Gao Z, Qian PY. Distribution, diversity and functional dissociation of the mac genes in marine biofilms. BIOFOULING 2019; 35:230-243. [PMID: 30950294 DOI: 10.1080/08927014.2019.1593384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacteria produce metamorphosis-associated contractile (MAC) structures to induce larval metamorphosis in Hydroides elegans. The distribution and diversity of mac gene homologs in marine environments are largely unexplored. In the present study mac genes were examined in marine environments by analyzing 101 biofilm and 91 seawater metagenomes. There were more mac genes in biofilms than in seawater, and substratum type, location, or sampling time did not affect the mac genes in biofilms. The mac gene clusters were highly diverse and often incomplete while the three MAC components co-occurred with other genes of different functions. Genomic analysis of four Pseudoalteromonas and two Streptomyces strains revealed the mac genes transfers among different microbial taxa. It is proposed that mac genes are more specific to biofilms; gene transfer among different microbial taxa has led to highly diverse mac gene clusters; and in most cases, the three MAC components function individually rather than forming a complex.
Collapse
Affiliation(s)
- Wei Ding
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Weipeng Zhang
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Ruojun Wang
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Yanan Sun
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Bite Pei
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Zhaoming Gao
- b Sanya Institute of Deep-sea Science and Engineering , Chinese Academy of Sciences , Hainan , PR China
| | - Pei-Yuan Qian
- a Department of Ocean Science and Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| |
Collapse
|
43
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
44
|
Collins FWJ, Mesa-Pereira B, O'Connor PM, Rea MC, Hill C, Ross RP. Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard. Front Microbiol 2018; 9:1298. [PMID: 30013519 PMCID: PMC6036575 DOI: 10.3389/fmicb.2018.01298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Bacteria commonly produce narrow spectrum bacteriocins as a means of inhibiting closely related species competing for similar resources in an environment. The increasing availability of genomic data means that it is becoming easier to identify bacteriocins encoded within genomes. Often, however, the presence of bacteriocin genes in a strain does not always translate into biological antimicrobial activity. For example, when analysing the Lactobacillus pangenome we identified strains encoding ten pediocin-like bacteriocin structural genes which failed to display inhibitory activity. Nine of these bacteriocins were novel whilst one was identified as the previously characterized bacteriocin “penocin A.” The composition of these bacteriocin operons varied between strains, often with key components missing which are required for bacteriocin production, such as dedicated bacteriocin transporters and accessory proteins. In an effort to functionally express these bacteriocins, the structural genes for the ten pediocin homologs were cloned alongside the dedicated pediocin PA-1 transporter in both Escherichia coli and Lactobacillus paracasei heterologous hosts. Each bacteriocin was cloned with its native leader sequence and as a fusion protein with the pediocin PA-1 leader sequence. Several of these bacteriocins displayed a broader spectrum of inhibition than the original pediocin PA-1. We show how potentially valuable bacteriocins can easily be “reincarnated” from in silico data and produced in vitro despite often lacking the necessary accompanying machinery. Moreover, the study demonstrates how genomic datasets such as the Lactobacilus pangenome harbor a potential “arsenal” of antimicrobial activity with the possibility of being activated when expressed in more genetically amenable hosts.
Collapse
Affiliation(s)
- Fergus W J Collins
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Beatriz Mesa-Pereira
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:322-330. [PMID: 29702236 DOI: 10.1016/j.fsi.2018.04.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the probiotic potential of B. velezensis JW through experimental and genomic analysis approaches. Strain JW showed antimicrobial activity against a broad range of fish pathogenic bacteria including Aeromonas hydrophila, Aeromonas salmonicida, Lactococcus garvieae, Streptococcus agalactiae, and Vibrio Parahemolyticus. Fish (Carassius auratus) were fed with the diets containing 0 (control), 107, and 109 cfu/g of B. velezensis JW for 4 weeks. Various immune parameters were examined at 1, 2, 3, and 4 weeks of post-feeding. Results showed that JW supplemented diets significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), and glutathione peroxidase (GSH-PX) activity. The mRNA expression of immune-related genes in the head kidney of C. auratus was measured. Among them, the interferon gamma gene (IFN- γ) and tumor necrosis factor-α (TNF-α) showed higher expression after 3 and 4 weeks of feeding (P < 0.05). The expression of interleukin-1 (IL-1) only being significantly upregulated by 109 cfu/g of JW after 1 week of feeding (P < 0.05). The upregulation of interleukin-4 (IL-4) increased over time from 1st to 4th week. The expression of interleukin-10 (IL-10) and interleukin-12 (IL-12) showed an opposite expression pattern with IL-10 significantly upregulated and IL-12 significantly downregulated by JW containing diets at 2, 3, and 4 weeks of post-feeding (P < 0.05). Moreover, fish fed with JW supplemented diets showed significantly improved survival rate after A. hydrophila infection. The analysis of the genome of JW revealed several features aiding host health and being relevant to the GIT adaptation. Four bacteriocins, three Polyketide Synthetase (PKS), and five Nonribosomal Peptide-Synthetase (NRPS) gene clusters were identified in the genome. In summary, the above results clearly proved that B. velezensis JW has the potential to be developed as a probiotic agent in aquaculture.
Collapse
Affiliation(s)
- Yanglei Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Zhenhua Zhang
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Fan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Huan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Lijun Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiwei Zha
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
46
|
Annual review of selected scientific literature: Report of the committee on scientific investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2017; 118:281-346. [DOI: 10.1016/j.prosdent.2017.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/19/2023]
|
47
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
48
|
Collins FWJ, O'Connor PM, O'Sullivan O, Gómez-Sala B, Rea MC, Hill C, Ross RP. Bacteriocin Gene-Trait matching across the complete Lactobacillus Pan-genome. Sci Rep 2017; 7:3481. [PMID: 28615683 PMCID: PMC5471241 DOI: 10.1038/s41598-017-03339-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Lactobacilli constitute a large genus of Gram-positive lactic acid bacteria which have widespread roles ranging from gut commensals to starters in fermented foods. A combination of in silico and laboratory-based screening allowed us to determine the overall bacteriocin producing potential of representative strains of each species of the genus. The genomes of 175 lactobacilli and 38 associated species were screened for the presence of antimicrobial producing genes and combined with screening for antimicrobial activity against a range of indicators. There also appears to be a link between the strains' environment and bacteriocin production, with those from the animal and human microbiota encoding over twice as many bacteriocins as those from other sources. Five novel bacteriocins were identified belonging to differing bacteriocin classes, including two-peptide bacteriocins (muricidin and acidocin X) and circular bacteriocins (paracyclicin). In addition, there was a clear clustering of helveticin type bacteriolysins in the Lactobacillus acidophilus group of species. This combined in silico and in vitro approach to screening has demonstrated the true diversity and complexity of bacteriocins across the genus. It also highlights their biological importance in terms of communication and competition between closely related strains in diverse complex microbial environments.
Collapse
Affiliation(s)
- Fergus W J Collins
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | - Mary C Rea
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Teagasc Moorepark, Fermoy, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
49
|
Krzyściak W, Papież M, Jurczak A, Kościelniak D, Vyhouskaya P, Zagórska-Świeży K, Skalniak A. Relationship between Pyruvate Kinase Activity and Cariogenic Biofilm Formation in Streptococcus mutans Biotypes in Caries Patients. Front Microbiol 2017; 8:856. [PMID: 28559883 PMCID: PMC5432537 DOI: 10.3389/fmicb.2017.00856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mutans (MS) and its biotype I are the strains most frequently found in dental plaque of young children. Our results indicate that in children pyruvate kinase (PK) activity increases significantly in dental plaque, and this corresponds with caries progression. The MS strains isolated in this study or their main glycolytic metabolism connected with PK enzymes might be useful risk factors for studying the pathogenesis and target points of novel therapies for dental caries. The relationship between PK activity, cariogenic biofilm formation and selected biotypes occurrence was studied. S. mutans dental plaque samples were collected from supragingival plaque of individual deciduous molars in 143 subjects. PK activity was measured at different time points during biofilm formation. Patients were divided into two groups: initial stage decay, and extensive decay. Non-parametric analysis of variance and analysis of covariance were used to determine the connections between S. mutans levels, PK activity and dental caries biotypes. A total of 143 strains were derived from subjects with caries. Biotyping data showed that 62, 23, 50, and 8 strains were classified as biotypes I, II, III, IV, respectively. PK activity in biotypes I, II, and IV was significantly higher in comparison to that in biotype III. The correlation between the level of S. mutans in dental plaque and PK activity was both statistically significant (p < 0.05) and positive. The greater the level of S. mutans in the biofilm (colony count and total biomass), the higher the PK activity; similarly, a low bacterial count correlated with low PK activity.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Monika Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical CollegeKrakow, Poland
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical CollegeKrakow, Poland
| | - Palina Vyhouskaya
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | | | - Anna Skalniak
- Genetics Laboratory, Department of Endocrinology, Jagiellonian University Medical CollegeKrakow, Poland
| |
Collapse
|