1
|
Wang Y, Wang Y, Zhong H, Xiong L, Song J, Zhang X, He T, Zhou X, Li L, Zhen D. Recent progress of UCNPs-MoS 2 nanocomposites as a platform for biological applications. J Mater Chem B 2024; 12:5024-5038. [PMID: 38712810 DOI: 10.1039/d3tb02958a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yiru Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Huimei Zhong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Lihao Xiong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jiayi Song
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xinyu Zhang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ting He
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiayu Zhou
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Xu C, Law SK, Leung AWN. Comparison of the Differences between Two-Photon Excitation, Upconversion, and Conventional Photodynamic Therapy on Cancers in In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:663. [PMID: 38931331 PMCID: PMC11206628 DOI: 10.3390/ph17060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for several diseases. It combines light energy with a photosensitizer (PS) to destroy the targeted cells or tissues. A PS itself is a non-toxic substance, but it becomes toxic to the target cells through the activation of light at a specific wavelength. There are some limitations of PDT, although it has been used in clinical studies for a long time. Two-photon excitation (TPE) and upconversion (UC) for PDT have been recently developed. A TPE nanoparticle-based PS combines the advantages of TPE and nanotechnology that has emerged as an attractive therapeutic agent for near-infrared red (NIR) light-excited PDT, whilst UC is also used for the NIR light-triggered drug release, activation of 'caged' imaging, or therapeutic molecules during PDT process for the diagnosis, imaging, and treatment of cancers. METHODS Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any language constraints. TPE and UCNP were evaluated to determine if they had different effects from PDT on cancers. All eligible studies were analyzed and summarized in this review. RESULTS TPE-PDT and UCNP-PDT have a high cell or tissue penetration ability through the excitation of NIR light to activate PS molecules. This is much better than the conventional PDT induced by visible or ultraviolet (UV) light. These studies showed a greater PDT efficacy, which was determined by enhanced generation of reactive oxygen species (ROS) and reduced cell viability, as well as inhibited abnormal cell growth for the treatment of cancers. CONCLUSIONS Conventional PDT involves Type I and Type II reactions for the generation of ROS in the treatment of cancer cells, but there are some limitations. Recently, TPE-PDT and UCNP-PDT have been developed to overcome these problems with the help of nanotechnology in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | |
Collapse
|
3
|
Errani F, Invernizzi A, Herok M, Bochenkova E, Stamm F, Corbeski I, Romanucci V, Di Fabio G, Zálešák F, Caflisch A. Proteolysis Targeting Chimera Degraders of the METTL3-14 m 6A-RNA Methyltransferase. JACS AU 2024; 4:713-729. [PMID: 38425900 PMCID: PMC10900215 DOI: 10.1021/jacsau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Methylation of adenine N6 (m6A) is the most frequent RNA modification. On mRNA, it is catalyzed by the METTL3-14 heterodimer complex, which plays a key role in acute myeloid leukemia (AML) and other types of blood cancers and solid tumors. Here, we disclose the first proteolysis targeting chimeras (PROTACs) for an epitranscriptomics protein. For designing the PROTACs, we made use of the crystal structure of the complex of METTL3-14 with a potent and selective small-molecule inhibitor (called UZH2). The optimization of the linker started from a desfluoro precursor of UZH2 whose synthesis is more efficient than that of UZH2. The first nine PROTAC molecules featured PEG- or alkyl-based linkers, but only the latter showed cell penetration. With this information in hand, we synthesized 26 PROTACs based on UZH2 and alkyl linkers of different lengths and rigidity. The formation of the ternary complex was validated by a FRET-based biochemical assay and an in vitro ubiquitination assay. The PROTACs 14, 20, 22, 24, and 30, featuring different linker types and lengths, showed 50% or higher degradation of METTL3 and/or METTL14 measured by Western blot in MOLM-13 cells. They also showed substantial degradation on three other AML cell lines and prostate cancer cell line PC3.
Collapse
Affiliation(s)
- Francesco Errani
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Annalisa Invernizzi
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Marcin Herok
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Fiona Stamm
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Ivan Corbeski
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Valeria Romanucci
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - Giovanni Di Fabio
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - František Zálešák
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
4
|
Chen H, Ding B, Ma P, Lin J. Recent progress in upconversion nanomaterials for emerging optical biological applications. Adv Drug Deliv Rev 2022; 188:114414. [PMID: 35809867 DOI: 10.1016/j.addr.2022.114414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 02/08/2023]
Abstract
The recent advances of upconversion nanoparticles (UCNPs) have made them the ideal "partner" for a variety of biological applications. In this review, we describe the emerging biological optical applications of UCNPs, focus on their potential therapeutic advantages. Firstly, we briefly review the development and mechanisms of upconversion luminescence, including organic and inorganic UCNPs. Next, in the section on UCNPs for imaging and detection, we list the development of UCNPs in visualization, temperature sensing, and detection. In the section on therapy, recent results are described concerning optogenetics and neurotherapy. Tumor therapy is another major part of this section, including the synergistic application of phototherapy such as photoimmunotherapy. In a special section, we briefly cover the integration of UCNPs in therapeutics. Finally, we present our understanding of the limitations and prospects of applications of UCNPs in biological fields, hoping to provide a more comprehensive understanding of UCNPs and attract more attention.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Hu Y, Wang Y, Wang R, Zhang W, Hua R. Designing stimuli-responsive upconversion nanoparticles based on an inner filter effect mimetic immunoassay for phenylketonuria accuracy diagnosis. Colloids Surf B Biointerfaces 2022; 217:112642. [PMID: 35728371 DOI: 10.1016/j.colsurfb.2022.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism caused by an inherited deficiency in L-phenylalanine-4-hydroxylase (PAH) activity. It is usually controlled by diet and monitored regularly with markers, as PKU is not curable. However, conventional methods for target biomarker analysis are invasive and labor intensive. Here, we report a rapid and sensitive, mimetic immunoassay for detecting phenylpyruvate (PhPY) based on stimuli-responsive upconversion nanoparticles with an inner filter effect (IFE). The strong and specific binding of PhPY and Fe3+ forms a complex with maximum absorption at approximately 640 nm. Upon the addition of LiYF4:Er,Ho@LiYF4 UCNPs (maximum emission at 699 nm), the inner filter effect is triggered along with a concurrent decrease in fluorescence. The proposed method demonstrates ultra sensitivity with a detection limit of 79.63 μg L-1, which is superior to most reported methods, thereby enabling phenylpyruvate assays on human urine.
Collapse
Affiliation(s)
- Yang Hu
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, PR China
| | - Yiting Wang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, PR China
| | - Ru Wang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, PR China
| | - Wei Zhang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, PR China
| | - Ruinian Hua
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, PR China.
| |
Collapse
|
6
|
Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake In Vitro and In Vivo. Acta Biomater 2022; 147:403-413. [PMID: 35605956 DOI: 10.1016/j.actbio.2022.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022]
Abstract
The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a physical barrier to regulate and prevent the uptake of endogenous metabolites and xenobiotics. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. Therefore, there is considerable interest in identifying drug carriers that can maintain the biostability of therapeutic molecules and target their transport across the BBB. In this regard, upconversion nanoparticles (UCNPs) have become popular as a nanoparticle-based solution to this problem, with the additional benefit that they display unique properties for in vivo visualization. The majority of studies to date have explored basic spherical UCNPs for drug delivery applications. However, the biophysical properties of UCNPs, cell uptake and BBB transport have not been thoroughly investigated. In this study, we described a one-pot seed-mediated approach to precisely control longitudinal growth to produce bright UCNPs with various aspect ratios. We have systematically evaluated the effects of the physical aspect ratios and PEGylation of UCNPs on cellular uptake in different cell lines and an in vivo zebrafish model. We found that PEGylated the original UCNPs can enhance their biostability and cell uptake capacity. We identify an optimal aspect ratio for UCNP uptake into several different types of cultured cells, finding that this is generally in the ratio of 2 (length/width). This data provides a crucial clue for further optimizing UCNPs as a drug carrier to deliver therapeutic agents into the CNS. STATEMENT OF SIGNIFICANCE: The central nervous system (CNS) is protected by the blood-brain barrier (BBB), which acts as a highly selective semipermeable barrier of endothelial cells to regulate and prevent the uptake of toxins and pathogens. However, the BBB prevents most non-lipophilic drugs from reaching the CNS following systematic administration. The proposed research is significant because identifying the aspect ratio of drug carriers that maintains the biostability of therapeutic molecules and targets their transport across the blood-brain barrier (BBB) is crucial for designing an efficient drug delivery system. Therefore, this research provides a vital clue for further optimizing UCNPs as drug carriers to deliver therapeutic molecules into the brain.
Collapse
|
7
|
Cao Y, Wu J, Zheng X, Lu Y, Piper JA, Lu Y, Packer NH. Assessing the activity of antibodies conjugated to upconversion nanoparticles for immunolabeling. Anal Chim Acta 2022; 1209:339863. [DOI: 10.1016/j.aca.2022.339863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
|
8
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
9
|
Patel M, Meenu M, Pandey JK, Kumar P, Patel R. Recent development in upconversion nanoparticles and their application in optogenetics: A review. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Chen H, Tang W, Liu Y, Wang L. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF 4:Yb,Tm@NaYF 4 upconversion nanoparticles composite luminescent probe. Food Chem 2021; 367:130660. [PMID: 34390907 DOI: 10.1016/j.foodchem.2021.130660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/12/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
In this work, a quantitative image analysis method based on cyanine dye-upconversion nanoparticles composite luminescent nanoprobe for the detection of nitrite was developed. The nanoprobe was constructed by combining the NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) and the new cyanine dye IR-790. The upconversion nanoparticles transferred energy to IR-790, resulting in the luminescence quenching, while the luminescence of UCNPs was recovered after adding NO2-. The increase in photons was related to the concentration of NO2-. Under the optimal experimental conditions, the detection range was 0.20-140 μM and the limit of detection was 0.030 μM. The measurement for NO2- can be completed in 29 min. The method has the characteristics of fast response (~0.1 s), low sample consumption (10 μL) and powerful data support (550 frame time series images). Furthermore, the quantitative image analysis method was successfully applied for the analysis of nitrite in environmental water and food samples.
Collapse
Affiliation(s)
- Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Wei Tang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yunchun Liu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
11
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Osuchowski M, Osuchowski F, Latos W, Kawczyk-Krupka A. The Use of Upconversion Nanoparticles in Prostate Cancer Photodynamic Therapy. Life (Basel) 2021; 11:life11040360. [PMID: 33921611 PMCID: PMC8073589 DOI: 10.3390/life11040360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic Therapy (PDT) is a cancer treatment that uses light, a photosensitizer, and oxygen to destroy tumors. This article is a review of approaches to the treatment of prostate cancer applying upconversion nanoparticles (UCNPs). UCNPs have become a phenomenon that are rapidly gaining recognition in medicine. They have proven to be highly selective and specific and present a powerful tool in the diagnosis and treatment of prostate cancer. Prostate cancer is a huge health problem in Western countries. Its early detection can significantly improve patients’ prognosis, but currently used diagnostic methods leave much to be desired. Recently developed methodologies regarding UCNP research between the years 2021 and 2014 for prostate cancer PDT will also be discussed. Current limitations in PDT include tissue irradiation with visible wavelengths that have a short tissue penetration depth. PDT with the objectives to synthesize UCNPs composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue is a subject of intense research in prostate cancer.
Collapse
Affiliation(s)
- Michał Osuchowski
- College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (M.O.); (F.O.)
| | - Filip Osuchowski
- College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (M.O.); (F.O.)
| | | | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence:
| |
Collapse
|
13
|
Chen H, Wanying Xia, Gao Q, Wang L. Sensitive quantitative image analysis of bisulfite based on near-infrared upconversion luminescence total internal reflection platform. Talanta 2021; 224:121928. [DOI: 10.1016/j.talanta.2020.121928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023]
|
14
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
15
|
Le XT, Youn YS. Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles. Arch Pharm Res 2020; 43:134-152. [DOI: 10.1007/s12272-020-01208-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
|
16
|
Hou F, Liu H, Zhang Y, Gao Z, Sun S, Tang Y, Guo H. Upconversion nanoparticles-labelled immunochromatographic assay for quantitative biosensing. NEW J CHEM 2020. [DOI: 10.1039/d0nj03156a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative determination of FMDV antibody using immunochromatographic strips with high sensitivity and specificity was achieved within 20 minutes.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Zhendong Gao
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| |
Collapse
|
17
|
Mickert MJ, Farka Z, Kostiv U, Hlaváček A, Horák D, Skládal P, Gorris HH. Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay. Anal Chem 2019; 91:9435-9441. [DOI: 10.1021/acs.analchem.9b02872] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Zdeněk Farka
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
- CEITEC—Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Uliana Kostiv
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Antonín Hlaváček
- Institute of Analytical Chemistry, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Petr Skládal
- CEITEC—Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
19
|
Zhou Y, Chen Y, He H, Liao J, Duong HT, Parviz M, Jin D. A homogeneous DNA assay by recovering inhibited emission of rare earth ions-doped upconversion nanoparticles. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Li K, Hong E, Wang B, Wang Z, Zhang L, Hu R, Wang B. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis Photodyn Ther 2018; 25:177-192. [PMID: 30579991 DOI: 10.1016/j.pdpdt.2018.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The detection and treatment of cancer cells at an early stage are crucial for prolonging the survival time and improving the quality of life of patients. Upconversion nanoparticles (UCNPs) have unique physical and chemical advantages and likely provide a platform for detecting and treating cancer cells at an early stage. In this paper, the principle of UCNPs as chemical sensors based on fluorescence resonance energy transfer (FRET) has been briefly introduced. Research progress in such chemical sensors for detecting and analyzing bioactive substances and heavy metal ions at the subcellular level has been summarized. The principle of UCNP-based nanoprobe-targeting of cancer cells has been described. The research progress in using nanocomposites for cancer cell detection, namely cancer cell targeted imaging and tissue staining, has been discussed. In the field of cancer treatment, the principles and research progress of UCNPs in photodynamic therapy and photothermal therapy of cancer cells are systematically discussed. Finally, the prospects for UCNPs and remaining challenges to UCNP application in the field of cancer diagnosis and treatment are briefly described. This review provides powerful theoretical guidance and useful practical information for the research and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Kunmeng Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ruixia Hu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Baiqi Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; The Key Laboratory of Environment, Nutrion and Public Health of Tianjin, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
21
|
He H, Howard CB, Chen Y, Wen S, Lin G, Zhou J, Thurecht KJ, Jin D. Bispecific Antibody-Functionalized Upconversion Nanoprobe. Anal Chem 2018; 90:3024-3029. [DOI: 10.1021/acs.analchem.7b05341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Mackenzie LE, Goode JA, Vakurov A, Nampi PP, Saha S, Jose G, Millner PA. The theoretical molecular weight of NaYF 4 :RE upconversion nanoparticles. Sci Rep 2018; 8:1106. [PMID: 29348590 PMCID: PMC5773537 DOI: 10.1038/s41598-018-19415-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Upconversion nanoparticles (UCNPs) are utilized extensively for biomedical imaging, sensing, and therapeutic applications, yet the molecular weight of UCNPs has not previously been reported. Herein, we present a theory based upon the crystal structure of UCNPs to estimate the molecular weight of UCNPs: enabling insight into UCNP molecular weight for the first time. We estimate the theoretical molecular weight of various UCNPs reported in the literature, predicting that spherical NaYF4 UCNPs ~ 10 nm in diameter will be ~1 MDa (i.e. 106 g/mol), whereas UCNPs ~ 45 nm in diameter will be ~100 MDa (i.e. 108 g/mol). We also predict that hexagonal crystal phase UCNPs will be of greater molecular weight than cubic crystal phase UCNPs. Additionally we find that a Gaussian UCNP diameter distribution will correspond to a lognormal UCNP molecular weight distribution. Our approach could potentially be generalised to predict the molecular weight of other arbitrary crystalline nanoparticles: as such, we provide stand-alone graphic user interfaces to calculate the molecular weight both UCNPs and arbitrary crystalline nanoparticles. We expect knowledge of UCNP molecular weight to be of wide utility in biomedical applications where reporting UCNP quantity in absolute numbers or molarity will be beneficial for inter-study comparison and repeatability.
Collapse
Affiliation(s)
- Lewis E Mackenzie
- Department of Chemistry, Faculty of Sciences, Durham University, Durham, DH1 4ED, United Kingdom.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Jack A Goode
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alexandre Vakurov
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Padmaja P Nampi
- School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Gin Jose
- School of Chemical and Process Engineering, Faculty of Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Fu L, Morsch M, Shi B, Wang G, Lee A, Radford R, Lu Y, Jin D, Chung R. A versatile upconversion surface evaluation platform for bio-nano surface selection for the nervous system. NANOSCALE 2017; 9:13683-13692. [PMID: 28876356 DOI: 10.1039/c7nr03557h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is considerable interest in developing diagnostic nanotools for early detection and delivery of various therapeutic agents for treatment of neurodegenerative diseases. However, a key challenge remains in the selection of suitable surfaces to overcome the nano-bio interface issue, namely that many nanoparticle surfaces demonstrate instability when administered into biological environments and show substantial cytotoxicity to the central nervous system. In this study, we fabricated an evaluation platform for bio-nano surface selection based on the combination of upconversion nanoparticles (UCNPs), cultured neural cells and zebra fish, and systemically demonstrated how it can evaluate the suitability of nanoparticle surfaces for applications in the central nervous system. Firstly, we fabricated highly lanthanide-doped UCNPs, which generate the strongest tissue penetrable emission at 800 nm. We then functionalized these UCNPs with four popular surfaces for evaluation. Next, we systematically evaluated the spectral emission properties, biophysical stability, cytotoxicity and cell uptake capability of these surface-functionalized UCNPs in biological solutions or with cultured NSC-34 cells. Through these studies, PEG-COOH proved to be the superior surface modification. Accordingly, we further confirmed the bioavailability of unmodified and surface modified UCNPs in the spinal cord of living zebrafish. As predicted, PEG-UCNPs displayed excellent dispersal and uptake into spinal motor neurons in living zebrafish. Collectively, this study developed a versatile upconversion platform for systematic evaluation of nanoparticle surfaces, which can provide valuable information via systemic surface evaluation in vitro and in vivo for future construction of multifunctional nanosystems for theranostic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Libing Fu
- International Joint Centre for Biomedical Innovations, School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, Henan 475004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
25
|
Karimi M, Zangabad PS, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017; 139:4584-4610. [PMID: 28192672 PMCID: PMC5475407 DOI: 10.1021/jacs.6b08313] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Soodeh Baghaee-Ravari
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehdi Ghazadeh
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Hamid Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|