1
|
Prosnier L, Rojas E, Valéro O, Médoc V. Chronic Broadband Noise Increases the Fitness of a Laboratory-Raised Freshwater Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9461-9470. [PMID: 40350607 DOI: 10.1021/acs.est.5c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Although there is an increasing interest in the effects of anthropogenic noise on underwater wildlife, most studies focus on marine mammals and fish, while many other taxa of substantial ecological importance are still overlooked. This is the case for zooplankton species, which ensure the coupling between primary producers and fishes in pelagic food webs. Here, we measured lifespan, reproduction, and mobility of laboratory-raised water fleas Daphnia magna, a widespread freshwater zooplankton species, in response to continuous broadband noise. Surprisingly, we found a significant increase in survival and fecundity, leading to a higher individual fitness when considering total offspring production and a slight increase in the population growth rate according to the Euler-Lotka equation. Exposed water fleas were found to be slower than control individuals, and we discussed potential links between mobility and fitness. Our results can have implications in aquaculture and for in-lab studies (e.g., in ecotoxicology) where the acoustic environment receives little attention. Chronic broadband noise can be associated with certain human activities, but the consequences for natural Daphnia populations might differ as reduced velocity could have negative outcomes when considering competition and predation. Our work is one of the few showing an effect of noise on individual fitness and suggests that noise should be better accounted for in laboratory studies.
Collapse
Affiliation(s)
- Loïc Prosnier
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
- France Travail, 42000 Saint-Etienne, France
| | - Emilie Rojas
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7018 Trondheim, Norway
| | - Olivier Valéro
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
| | - Vincent Médoc
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
| |
Collapse
|
2
|
Williams R, Cox KD, Amon D, Ashe E, Chapuis L, Erbe C, de Vos A, Nielsen KA, Collins MS, Smith C, Washburn T, Young KF, Clark CW. Noise from deep-sea mining in the Clarion-Clipperton Zone, Pacific Ocean will impact a broad range of marine taxa. MARINE POLLUTION BULLETIN 2025; 218:118135. [PMID: 40381439 DOI: 10.1016/j.marpolbul.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Deep-sea mining activities in the Clarion-Clipperton Zone (CCZ), Pacific Ocean, are expected to generate continuous noise pollution across multiple depth zones, with potential impacts on biodiversity. Impact studies have primarily focused on sediment plumes and habitat destruction, leaving consequences of industrial-scale deep-sea mining noise largely unexplored. Many marine taxa, including invertebrates, fish, and mammals, rely on sound for communication, navigation, and predator avoidance. Our systematic literature review highlights that noise sensitivity is widespread across taxa, yet only 35 % of taxonomic classes known in the CCZ have been studied for noise impacts. Soniferous fish, which rely on acoustic communication, are particularly vulnerable to noise. Chronic exposure to mining noise may have cascading ecological consequences, disrupting key behaviors and physiological processes in an environment characterized by low anthropogenic stressors. By identifying knowledge gaps and quantifying taxa likely to be vulnerable to industrial noise, this review provides the foundation to guide evidence-based management required to safeguard deep-sea ecosystems. Given the uncertainty surrounding deep-sea biotic responses to prolonged noise exposure, we emphasize the urgent need for a transparent transfer of knowledge on noise characteristics of deep-sea mining. These data are essential for assessing risks from mining noise to species, communities, and ecosystem functions and services.
Collapse
Affiliation(s)
- Rob Williams
- Oceans Initiative, 117 E. Louisa St. #135, Seattle, WA 98102, USA.
| | - Kieran D Cox
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Diva Amon
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA; SpeSeas, D'Abadie, Trinidad and Tobago
| | - Erin Ashe
- Oceans Initiative, 117 E. Louisa St. #135, Seattle, WA 98102, USA
| | - Lucille Chapuis
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia
| | - Asha de Vos
- Oceanswell, Colombo 7, Sri Lanka and the University of Western Australia Oceans Institute, Crawley, WA 6009, Australia
| | | | | | - Craig Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, United States of America
| | - Travis Washburn
- Department of Physical and Environmental Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA
| | - Kirsten F Young
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Devon, United Kingdom
| | - Christopher W Clark
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell University (Emeritus), Ithaca, NY 14850, USA
| |
Collapse
|
3
|
Davies HL, Cox KD, Murchy KA, Shafer HM, Looby A, Juanes F. Marine and Freshwater Sounds Impact Invertebrate Behavior and Physiology: A Meta-Analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17593. [PMID: 39582363 PMCID: PMC11586707 DOI: 10.1111/gcb.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
The diversity of biotic and abiotic sounds that fill underwater ecosystems has become polluted by anthropogenic noise in recent decades. Yet, there is still great uncertainty surrounding how different acoustic stimuli influence marine and freshwater (i.e., aquatic) communities. Despite capabilities to detect and produce sounds, aquatic invertebrates are among the most understudied taxa within the field of soundscape ecology. We conducted a meta-analysis to understand how sounds from various sources influence the behavior and physiology of aquatic invertebrates. We extracted 835 data points from 46 studies conducted in 15 countries. The resulting data included 50 species, a range of experimental conditions, and four sound categories: anthropogenic, environmental, synthetic, and music. We used meta-analytic multivariate mixed-effect models to determine how each sound category influenced aquatic invertebrates and if responses were homogeneous across taxa. Our analyses illustrate that anthropogenic noise and synthetic sounds have detrimental impacts on aquatic invertebrate behavior and physiology, and that environmental sounds have slightly beneficial effects on their behavior. Defence responses were the most impacted behaviors, while the most prominent physiological responses were related to biochemistry, genetics, and morphology. Additionally, arthropods and molluscs exhibited the most pronounced physiological responses to anthropogenic and synthetic noise. These findings support the conclusion that many invertebrate species are sensitive to changes in aquatic soundscapes, which can cause adverse or favorable consequences to individuals and populations, dependent on the sound source. This quantitative synthesis highlights the necessity of including marine and freshwater invertebrates in acoustic exposure studies, aquatic ecosystem assessments, and emerging noise pollution policies.
Collapse
Affiliation(s)
- Hailey L. Davies
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Kieran D. Cox
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of Biological SciencesSimon Fraser University, 8888 University Dr WBurnabyBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Kelsie A. Murchy
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Hailey M. Shafer
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Audrey Looby
- Nature Coast Biological StationInstitute of Food and Agricultural Sciences, University of FloridaCedar KeyFloridaUSA
- Fisheries and Aquatic SciencesInstitute of Food and Agricultural Sciences, University of FloridaGainesvilleFloridaUSA
| | - Francis Juanes
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
4
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
5
|
Holst S, Tiseo GR, Djeghri N, Sötje I. Approaches and findings in histological and micromorphological research on Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:99-192. [PMID: 39547756 DOI: 10.1016/bs.amb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The substantial development of microscopic techniques and histological examination methods during the past five decades allowed for many new insights into the histology and microanatomy of Rhizostomeae. The present review focuses on new findings about histologically important structures: nerves, senses, muscles, gonads, zooxanthellae and nematocysts. Different ontogenetic stages of rhizostome species were included in the literature research, supplemented with the authors' unpublished data and figures. The overview of the research results reveals that the application of chemo- and immunohistochemical techniques have provided deeper insights into neuronal and sensory structures and their interconnections. Modern microscopic methods led to new findings on the histological gonadal organization and details of the processes of gametogenesis, fertilization, cleavage, gastrulation, and brooding. Advanced optical methods also allowed for a better understanding of Rhizostomeae-zooxanthellae associations and the morphology and function of nematocysts. Improvements in molecular biology allowed for more precise identification of zooxanthellae associated with rhizostome species. Although there has been significant progress in all of the research subjects covered here, we identify several knowledge gaps and conclude with some recommendations for future research.
Collapse
Affiliation(s)
- Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany.
| | - Gisele R Tiseo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, Continuous Plankton Recorder Survey, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Ilka Sötje
- University of Hamburg, Institute for Cell and Systems Biology of Animals (IZS), Hamburg, Germany
| |
Collapse
|
6
|
Williams BR, McAfee D, Connell SD. Anthropogenic noise disrupts acoustic cues for recruitment. Proc Biol Sci 2024; 291:20240741. [PMID: 39043238 PMCID: PMC11265905 DOI: 10.1098/rspb.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Anthropogenic noise is rising and may interfere with natural acoustic cues used by organisms to recruit. Newly developed acoustic technology provides enriched settlement cues to boost recruitment of target organisms navigating to restoration sites, but can it boost recruitment in noise-polluted sites? To address this dilemma, we coupled replicated aquarium experiments with field experiments. Under controlled and replicated laboratory conditions, acoustic enrichment boosted recruitment by 2.57 times in the absence of anthropogenic noise, but yielded comparable recruitment in its presence (i.e. no boosting effect). Using the same technique, we then tested the replicability of these responses in real-world settings where independently replicated 'sites' are unfeasible owing to the inherent differences in soundscapes. Again, acoustic enrichment increased recruitment where anthropogenic noise was low (by 3.33 times), but had no effect at a site of noise pollution. Together, these coupled laboratory-to-field outcomes indicate that anthropogenic noise can mask the signal of acoustic enrichment. While noise pollution may reduce the effectiveness of acoustic enrichment, some of our reported observations suggest that anthropogenic noise per se might also provide an attractive cue for oyster larvae to recruit. These findings underscore the complexity of larval behavioural responses to acoustic stimuli during recruitment processes.
Collapse
Affiliation(s)
- Brittany R. Williams
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
| | - Dominic McAfee
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| |
Collapse
|
7
|
Prosnier L. Zooplankton as a model to study the effects of anthropogenic sounds on aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172489. [PMID: 38621539 DOI: 10.1016/j.scitotenv.2024.172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.
Collapse
Affiliation(s)
- Loïc Prosnier
- Faculté des Sciences et Techniques, University of Saint Etienne, Saint-Etienne, France; France Travail, Saint-Etienne, France.
| |
Collapse
|
8
|
Solé M. Statocyst Ultrastructure in the Norwegian Lobster ( Nephrops norvegicus). BIOLOGY 2024; 13:325. [PMID: 38785807 PMCID: PMC11117954 DOI: 10.3390/biology13050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Statocyst anatomy and fine morphology in Norwegian lobster (Nephrops norvegicus) are studied for the first time using scanning and transmission electron microscopy. N. norvegicus exhibits sensory setae projecting from the statocyst inner cavity floor into a mass of sand granules (statoconia) embedded in a gelatinous substance. The setae are distributed in four areas: a curved field made up of an inner single row and an outer double row that run on a circle around the medial and lateral rim of the central depression, a small setal field in the posterior part, a large setal field, opposite to the small field, and a short row, running internally and lying parallel to the inner single row, next to the small setal field. A study of the fine morphology of the statocyst sensory setae shows that the structure of the setae in the different areas is similar, with a bulb (the proximal portion of the sensillum), a setal shaft, a tooth (the smooth portion of the bulb), a fulcrum (a transverse fold), and filamentous hairs. The hair cells are firmly implanted within the cuticular layer. Although the type of innervation of the statocyst was not determined in the present study, the close taxonomic position of the lobster to that of the crayfish and crab would suggest that the setae in N. norvegicus are pure mechanoreceptors rather than sensory cells.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya, BarcelonaTech. Rambla Exposició s/n, 08800 Vilanova i la Geltrú, Barcelona, Spain
| |
Collapse
|
9
|
Tu Z, Tang L, Khan FU, Hu M, Shen H, Wang Y. Low-frequency noise impairs righting reflex behavior by disrupting central nervous system in the sea slug Onchidium reevesii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170552. [PMID: 38309332 DOI: 10.1016/j.scitotenv.2024.170552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Anthropogenic noise has significantly increased due to human activities, posing a threat to the health and survival of marine organisms. However, current studies have often emphasized its effects on the physiological aspects of marine organisms, while ignored the relationship between the neuroendocrine system and behavior. This study aimed to evaluate the righting behavior and relevant physiological functions of the central nervous system (CNS) in sea slug (Onchidium reevesii) exposed to low-frequency noise and subsequent noise removal. The duration of the sea slugs' righting reflex increased with longer noise exposure time. The degree of neuronal cell damage and apoptosis were significantly increased and relevant gene expressions were affected (Glu, AChE, FMRFamide and CaMKII) (P < 0.05). After the removal of noise, the righting reflex speed gradually recovered, and the degree of neuronal cell damage, apoptosis and the expression levels of genes continued to decrease. Pearson correlation analysis showed that the righting time was positively correlated with CNS tissue and DNA damage, apoptosis rate, and negatively correlated with the expression levels of genes. Therefore, low-frequency noise exposure causes damage to the CNS of sea slugs, subsequently impairing their normal behavior. Sea slugs exhibited partial recovery within 384 h after removing noise. These findings provide valuable insights into the effects of low-frequency noise on the CNS and behavior of marine invertebrates.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Solé M, De Vreese S, Fortuño JM, van der Schaar M. Artificial sound impact could put at risk hermit crabs and their symbiont anemones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165756. [PMID: 37499834 DOI: 10.1016/j.scitotenv.2023.165756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The sea anemone Calliactis parasitica, which is found in the East Atlantic (Portugal to Senegal) and the Mediterranean Sea, forms a symbiotic relationship with the red hermit crab, Dardanus calidus, in which the anemone provides protection from predators such as the octopus while it gains mobility, and possibly food scraps, from the hermit crab. Acoustic pollution is recognised by the scientific community as a growing threat to ocean inhabitants. Recent findings on marine invertebrates showed that exposure to artificial sound had direct behavioural, physiological and ultrastructural consequences. In this study we assess the impact of artificial sound (received level 157 ± 5 dB re 1 μPa2 with peak levels up to 175 dB re 1 μPa2) on the red hermit crab and its symbiotic sea anemone. Scanning electron microscopy analyses revealed lesions in the statocyst of the red hermit crab and in the tentacle sensory epithelia of its anemone when exposed to low-intensity, low-frequency sounds. These ultrastructural changes under situations of acoustic stress in symbiotic partners belonging to different phyla is a new issue that may limit their survival capacity, and a new challenge in assessing the effects of acoustic disturbance in the oceanic ecosystem. Despite the lesions found in the red hermit crab, its righting reflex time was not as strongly affected showing only an increase in the range of righting times. Given that low-frequency sound levels in the ocean are increasing and that reliable bioacoustic data on invertebrates is very scarce, in light of the results of the present study, we argue that anthropogenic sound effects on invertebrates species may have direct consequences in the entire ecosystem.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain.
| | - Steffen De Vreese
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain; Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy
| | - José-Manuel Fortuño
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), 08003, Barcelona, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| |
Collapse
|
11
|
Solé M, De Vreese S, Sánchez AM, Fortuño JM, van der Schaar M, Sancho N, André M. Cross-sensory interference assessment after exposure to noise shows different effects in the blue crab olfactory and sound sensing capabilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162260. [PMID: 36841409 DOI: 10.1016/j.scitotenv.2023.162260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Underwater noise pollution is an increasing threat to marine ecosystems. Marine animals use sound in communication and orientation processes. The introduction of anthropogenic noise in their habitat can interfere with sound production and reception as well as with the acquisition of vital information through other sensory systems. In the blue crab (Callinectes sapidus), the statocyst is responsible for acoustic perception, and it is housed at the base of its first pair of antennae (antennule). The sensilla of the distal part of these antennule hosts the olfactory system, which is key for foraging. Given the anatomical proximity of the two sensory regions, we evaluated the possible interference of sound exposure with the crab ability to find food, by using an aquatic maze, and looked at the potential impairment of the righting reflex as well as at ultrastructural damages in statocysts. Although a significant effect was observed when looking at the time used by the animal to recover its habitual position ("righting reflex"), which was associated to lesions in the statocyst sensory epithelia, the time required to find food did not increase after the exposure to sound. When the crabs were exposed to natural sounds (marine background noise and sounds of their predators: Micropogonias undulates and Sciaenops ocellatus) they did not show significant differences in foraging behaviour. Although we found no unequivocal evidence of a negative impact of sound on olfactory capabilities, the study showed a clear righting reflex impairment correlated with ultrastructural damages of the statocysts. We argue that crab populations that cannot easily avoid noise sources due to their specific coastal distributions may incur in significant direct fitness costs (e.g. impairment of complex reflexes). This integrated approach to sound effect assessment could be used as a model for other invertebrate species to effectively monitor noise impact in marine environments.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain.
| | - Steffen De Vreese
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain; Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy
| | - Antonio M Sánchez
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| | - José-Manuel Fortuño
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), 08003 Barcelona, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| | - Núria Sancho
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| | - Michel André
- Laboratory of Applied Bioacoustics, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Barcelona, Spain
| |
Collapse
|
12
|
Gigot M, Olivier F, Cervello G, Tremblay R, Mathias D, Meziane T, Chauvaud L, Bonnel J. Pile driving and drilling underwater sounds impact the metamorphosis dynamics of Pecten maximus (L., 1758) larvae. MARINE POLLUTION BULLETIN 2023; 191:114969. [PMID: 37148589 DOI: 10.1016/j.marpolbul.2023.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/08/2023]
Abstract
One of the biggest challenges of the 21st century is to reduce carbon emissions and offshore wind turbines seem to be an efficient solution. However, during the installation phase, high levels of noise are emitted whose impacts remain not well known, particularly on benthic marine invertebrates displaying a bentho-planktonic life-cycle. For one century, larval settlement and subsequent recruitment has been considered as a key topic in ecology as it determines largely population renewal. Whereas several recent studies have shown that trophic pelagic but also natural soundscape cues could trigger bivalve settlement, the role of anthropogenic noise remains poorly documented. Therefore, we conducted experiments to assess potential interacting effects of diet and pile driving or drilling sounds on the great scallop (Pecten maximus) larval settlement. We demonstrate here that pile driving noise stimulates both growth and metamorphosis as well as it increases the total lipid content of competent larvae. Conversely, drilling noise reduces both survival and metamorphosis rates. For the first time, we provide evidence of noise impacts associated to MREs installation on P. maximus larvae and discuss about potential consequences on their recruitment.
Collapse
Affiliation(s)
- Mathilde Gigot
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) UMR 6539, Université de Brest, CNRS, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Frédéric Olivier
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA) UMR 8067, MNHN/SU/UNICAEN/UA/CNRS/IRD, 61 Rue Buffon, 75005 Paris, France.
| | - Gauthier Cervello
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 2Z9, Canada.
| | - Réjean Tremblay
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 2Z9, Canada.
| | - Delphine Mathias
- Société d'Observation Multi-Modale de l'Environnement, 38 rue Jim Sevellec, 29200 Brest, France
| | - Tarik Meziane
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA) UMR 8067, MNHN/SU/UNICAEN/UA/CNRS/IRD, 61 Rue Buffon, 75005 Paris, France.
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) UMR 6539, Université de Brest, CNRS, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Julien Bonnel
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering Department, Woods Hole, MA 02543, USA.
| |
Collapse
|
13
|
Marine Noise Effects on Juvenile Sparid Fish Change among Species and Developmental Stages. DIVERSITY 2023. [DOI: 10.3390/d15010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Marine noise is an emerging pollutant inducing a variety of negative impacts on many animal taxa, including fish. Fish population persistence and dynamics rely on the supply of early life stages, which are often very sensitive to disturbance. Impacts of marine noise pollution (MNP) on juvenile fish have rarely been investigated in temperate regions. This is particularly true for the Mediterranean Sea, which is considered as an MNP hotspot due to intensive maritime traffic. In this study, we investigate the relationship between MNP related to boat traffic and (i) assemblage structure and (ii) the density of juvenile fishes (post-settlers at different stages) belonging to the Sparidae family. We quantified MNP produced by boating at four coastal locations in the French Riviera (NW Mediterranean Sea) by linearly combining five variables into a ‘noise index’ (NI): (i) boat visitation, (ii) number of boat passages/hour, (iii) the instantaneous underwater noise levels of passing boats, (iv) continuous boat underwater noise levels and (v) duration of exposure to boat noise. Then, using the NI, we identified an MNP gradient. By using juvenile fish visual censuses (running a total of 1488 counts), we found that (i) the assemblage structure and (ii) the density patterns of three fish species (i.e., Diplodus sargus, D. puntazzo, D. vulgaris) changed along the MNP gradient. Specifically, the density of early D. sargus post-settlers was negatively related to MNP, while late post-settler densities of D. puntazzo and, less evidently, D. vulgaris tended to decrease more rapidly with decreasing MNP. Our findings suggest the following potential impacts of MNP on juvenile sparids related to coastal boat traffic: (i) idiosyncratic effects on density depending on the species and the developmental stage (early vs. late post-settlers); (ii) negative effects on recruitment, due to possible alteration of late post-settlement movement patterns.
Collapse
|
14
|
Solé M, De Vreese S, Fortuño JM, van der Schaar M, Sánchez AM, André M. Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119853. [PMID: 35985436 DOI: 10.1016/j.envpol.2022.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 μPa2 and 167 dB re 1 μPa2, respectively). However, sound pressure levels's lower than 163 dB re 1 μPa2 were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), Vilanova i la Geltrú, Barcelona, 08800, Spain
| | - Steffen De Vreese
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), Vilanova i la Geltrú, Barcelona, 08800, Spain; Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, 35020, Italy
| | - José-Manuel Fortuño
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Barcelona, 08003, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), Vilanova i la Geltrú, Barcelona, 08800, Spain
| | - Antonio M Sánchez
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), Vilanova i la Geltrú, Barcelona, 08800, Spain
| | - Michel André
- Laboratory of Applied Bioacoustics, Technical University of Catalonia-BarcelonaTech (UPC), Vilanova i la Geltrú, Barcelona, 08800, Spain.
| |
Collapse
|
15
|
Komyakova V, Jaffrés JBD, Strain EMA, Cullen-Knox C, Fudge M, Langhamer O, Bender A, Yaakub SM, Wilson E, Allan BJM, Sella I, Haward M. Conceptualisation of multiple impacts interacting in the marine environment using marine infrastructure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154748. [PMID: 35337877 DOI: 10.1016/j.scitotenv.2022.154748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.
Collapse
Affiliation(s)
- Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia.
| | - Jasmine B D Jaffrés
- C&R Consulting, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Coco Cullen-Knox
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Maree Fudge
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; College of Business and Economics, University of Tasmania, Australia
| | - Olivia Langhamer
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Anke Bender
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Siti M Yaakub
- Sustainability & Climate Solutions Department, DHI Water & Environment (S), Singapore
| | - Eloise Wilson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | | | - Marcus Haward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; Blue Economy Cooperative Research Centre, PO Box 897, Launceston, Tasmania 7250, Australia
| |
Collapse
|
16
|
Li X, Ma X, Chen X, Wang T, Liu Q, Wang Y, Li Z, Höfer J, Li F, Xiao L, Sun X, Mo J. The medusa of Aurelia coerulea is similar to its polyp in molecular composition and different from the medusa of Stomolophus meleagris in toxicity. Toxicon 2022; 210:89-99. [PMID: 35183571 DOI: 10.1016/j.toxicon.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The incidents of Aurelia sp. stinging have recently increased because of a bloom in offshore area. However, their symptoms are much milder than those from another scyphozoan jellyfish, Stomolophus meleagris. METHODS The molecular composition of the medusa and polyp of Aurelia coerulea was analyzed by sequencing the transcriptome and proteome. The toxicity of tentacle extract from A. coerulea medusa (A-TE) and S. meleagris medusa (S-TE) was measured by the survival rates of mice, their blood indexes, and integrity of red blood cells. RESULTS The medusa and polyp of A. coerulea are similar in molecular composition, while their gene expressions are significantly different at both transcriptome and proteome levels. A-TE displayed no in vitro hemolysis and caused mild damage to the liver, heart and kidney instead of lethality. In contrast, S-TE showed strong hemolytic toxicity, and lethal effect with serious damage to the liver, heart and kidney. The toxin screening in the medusae showed that there were similar toxin categories though the number of toxin species in A. coerulea was larger than that in S. meleagris. Among them, lactotransferrin and venom prothrombin activator were the two predominant protein toxins in the medusae of A. coerulea and S. meleagris, respectively. CONCLUSIONS A. coerulea medusa and polyp have similar molecular compositions, though there are observable morphological differences. The toxicity of A. coerulea medusa is significantly weaker than that of S. meleagris medusa of which the variation in toxin expressions is feasibly an important reason.
Collapse
Affiliation(s)
- Xiaoya Li
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xueqi Ma
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xintong Chen
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, 030801, Shanxi, PR China.
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Zhezhe Li
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; College of Pharmacy, Xinjiang Medical University, Wulumuqi, Xinjiang, 830054, China.
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Fangbing Li
- National Key Laboratory of Medical Immunology &Institute of Immunology, Navy Medical University, Shanghai, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xuejun Sun
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Jinggang Mo
- Department of Hepatobiliary Surgery Taizhou Central Hospital, 999 Donghai Road, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
17
|
Virto LR, Dumez H, Romero C, Bailly D. How can ports act to reduce underwater noise from shipping? Identifying effective management frameworks. MARINE POLLUTION BULLETIN 2022; 174:113136. [PMID: 34952408 DOI: 10.1016/j.marpolbul.2021.113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
This paper aims to find mechanisms to align commercial interests with underwater noise reductions from commercial shipping. Through a survey and a series of interviews with representative stakeholders, we find that while acknowledging the wide variations in ports' specificities, port actions could support the reduction in underwater noise emissions from commercial shipping through changes in hull, propeller and engine design, and through operational measures associated with reduced speed, change of route and travel in convoy. Though the impact of underwater noise emissions on marine fauna is increasingly shown to be serious and wide-spread, there is uncertainty in the mechanisms, the contexts, and the levels which should lead to action, requiring precautionary management. Vessels owners are already dealing with significant investment and operating costs to comply with fuel, ballast water, NOx and CO2 requirements. To be successful, underwater noise programs should align with these factors. Based on a multiple criteria decision making (MCDM) approach, we find a set of compromise solutions for a wide range of stakeholders. Ports could propose actions such as discounted port fees and reduced ship waiting times at ports, both depending on underwater noise performance. Cooperation between ports to scale up actions through environmental indexes and classification societies' notations, and integration with other ports' actions could help support this. However, few vessels know their underwater noise baseline as there are very few hydrophone stations, and measurement methodologies are not standardized. Costs increase and availability decreases dramatically if the vessel buyer wants to improve the noise profile. Local demands regarding airborne noise close to airports boosted global pressure on the aviation industry to adopt existing quieting technology. This experience of the aviation noise control could inform the underwater noise process.
Collapse
Affiliation(s)
- Laura Recuero Virto
- Centre for the Law and Economics of the Sea (UMR M101 AMURE), European Institute for Marine Studies, Rue Dumont d'Urville, 29280 Plouzané, France; Interdisciplinary Institute for Innovation (UMR 9217 i3), École Polytechnique, Bâtiment Ensta, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France.
| | - Hervé Dumez
- Interdisciplinary Institute for Innovation (UMR 9217 i3), École Polytechnique, Bâtiment Ensta, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France.
| | - Carlos Romero
- ETS Ingenieros de Montes, Forestales y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Denis Bailly
- Centre for the Law and Economics of the Sea (UMR M101 AMURE), European Institute for Marine Studies, Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
18
|
Ozment E, Tamvacakis AN, Zhou J, Rosiles-Loeza PY, Escobar-Hernandez EE, Fernandez-Valverde SL, Nakanishi N. Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity. eLife 2021; 10:74336. [PMID: 34939935 PMCID: PMC8846589 DOI: 10.7554/elife.74336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types – a lineage-specific sensory effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here, we show that the class IV POU homeodomain transcription factor (POU-IV) – an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria – controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes – including the transmembrane receptor-encoding gene polycystin 1 – specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.
Collapse
Affiliation(s)
- Ethan Ozment
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Arianna N Tamvacakis
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Pablo Yamild Rosiles-Loeza
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| |
Collapse
|
19
|
Wale MA, Briers RA, Diele K. Marine invertebrate anthropogenic noise research - Trends in methods and future directions. MARINE POLLUTION BULLETIN 2021; 173:112958. [PMID: 34607127 DOI: 10.1016/j.marpolbul.2021.112958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Selecting the correct methods to answer one's chosen question is key to conducting rigorous, evidence-based science. A disciplines' chosen methods are constantly evolving to encompass new insights and developments. Analysing these changes can be a useful tool for identifying knowledge gaps and guiding future studies. Research on the impact of anthropogenic noise on marine invertebrates, a topic with specific methodological challenges, has undergone substantial changes since its beginning in 1982. Using this field as an example, we demonstrate the benefits of such method analysis and resulting framework which has the potential to increase conclusive power and comparability of future studies. We list taxa studied to date, use a range of descriptors to analyse the methods applied, and map changes in experimental design through time. Based upon our analysis, three research strategies are proposed as a best practice framework for investigating effects of noise on marine invertebrates and delivering policy-relevant information.
Collapse
Affiliation(s)
- M A Wale
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| | - R A Briers
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - K Diele
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| |
Collapse
|
20
|
An Acoustic Treatment to Mitigate the Effects of the Apple Snail on Agriculture and Natural Ecosystems. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Global change is the origin of increased occurrence of disturbance events in natural communities, with biological invasions constituting a major threat to ecosystem integrity and functioning. The apple snail (Pomacea maculata) is a freshwater gastropod mollusk from South America. Considered one of the 100 most harmful invasive species in the world, due to its voracity, resistance, and high reproductive rate, it has become a global problem for wetland crops. In Catalonia, it has affected the rice fields of the Ebre Delta since 2010 with significant negative impact on the local economy. As a gastropod mollusc it possesses statocysts consisting of a pair of sacs, one located on each side of the foot, that contain multiple calcium carbonate statoconia. This study shows the first ultrastructural images of pathological changes in the sensory epithelium of the statocyst of apple snail adults with an increase in the severity of the lesions over time after exposure to low frequency sounds. Sound-induced damage to the statocyst could likely result in an inhibition of its vital functions resulting in a potential reduction in the survival ability of the apple snail and lead to an effective mitigation method for reducing damage to rice fields.
Collapse
|
21
|
Sea Lice Are Sensitive to Low Frequency Sounds. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9070765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The salmon louse Lepeophtheirus salmonis is a major disease problem in salmonids farming and there are indications that it also plays a role in the decline of wild salmon stocks. This study shows the first ultrastructural images of pathological changes in the sensory setae of the first antenna and in inner tissues in different stages of L. salmonis development after sound exposure in laboratory and sea conditions. Given the current ineffectiveness of traditional methods to eradicate this plague, and the strong impact on the environment these treatments often provoke, the described response to sounds and the associated injuries in the lice sensory organs could represent an interesting basis for developing a bioacoustics method to prevent lice infection and to treat affected salmons.
Collapse
|
22
|
Abstract
The last hundred years have seen the introduction of many sources of artificial noise in the sea environment which have shown to negatively affect marine organisms. Little attention has been devoted to how much this noise could affect sessile organisms. Here, we report morphological and ultrastructural changes in seagrass, after exposure to sounds in a controlled environment. These results are new to aquatic plants pathology. Low-frequency sounds produced alterations in Posidonia oceanica root and rhizome statocysts, which sense gravity and process sound vibration. Nutritional processes of the plant were affected as well: we observed a decrease in the number of rhizome starch grains, which have a vital role in energy storage, as well as a degradation in the specific fungal symbionts of P. oceanica roots. This sensitivity to artificial sounds revealed how sound can potentially affect the health status of P. oceanica. Moreover, these findings address the question of how much the increase of ocean noise pollution may contribute in the future to the depletion of seagrass populations and to biodiversity loss. Solé et al. report morphological and ultrastructural changes in seagrass, after exposure to human generated noise. These data suggest that noise pollution can potentially affect the health status of seagrass and thereby contribute to the depletion of seagrass populations.
Collapse
|
23
|
Fujita S, Kuranaga E, Nakajima YI. Regeneration Potential of Jellyfish: Cellular Mechanisms and Molecular Insights. Genes (Basel) 2021; 12:758. [PMID: 34067753 PMCID: PMC8156412 DOI: 10.3390/genes12050758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023] Open
Abstract
Medusozoans, the Cnidarian subphylum, have multiple life stages including sessile polyps and free-swimming medusae or jellyfish, which are typically bell-shaped gelatinous zooplanktons that exhibit diverse morphologies. Despite having a relatively complex body structure with well-developed muscles and nervous systems, the adult medusa stage maintains a high regenerative ability that enables organ regeneration as well as whole body reconstitution from the part of the body. This remarkable regeneration potential of jellyfish has long been acknowledged in different species; however, recent studies have begun dissecting the exact processes underpinning regeneration events. In this article, we introduce the current understanding of regeneration mechanisms in medusae, particularly focusing on cellular behaviors during regeneration such as wound healing, blastema formation by stem/progenitor cells or cell fate plasticity, and the organism-level patterning that restores radial symmetry. We also discuss putative molecular mechanisms involved in regeneration processes and introduce a variety of novel model jellyfish species in the effort to understand common principles and diverse mechanisms underlying the regeneration of complex organs and the entire body.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Yu-ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Miyagi, Japan
| |
Collapse
|
24
|
Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, Juanes F. The soundscape of the Anthropocene ocean. Science 2021; 371:371/6529/eaba4658. [DOI: 10.1126/science.aba4658] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Arctic Research Centre, Department of Biology, Aarhus University, C.F. Møllers Allé 8, DK-8000 Århus C, Denmark
| | - Lucille Chapuis
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Shaun P. Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Reny P. Devassy
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Victor M. Eguiluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - Christine Erbe
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
| | - Timothy A. C. Gordon
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Harry R. Harding
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michelle N. Havlik
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mark Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Nathan D. Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - Jennifer L. Miksis-Olds
- Center for Acoustics Research and Education, University of New Hampshire, Durham, NH 03824, USA
| | - Miles Parsons
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Milica Predragovic
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Craig A. Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand
| | - Stephen D. Simpson
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | | | - Ilse C. Van Opzeeland
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Xiangliang Zhang
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
25
|
Di Franco E, Pierson P, Di Iorio L, Calò A, Cottalorda JM, Derijard B, Di Franco A, Galvé A, Guibbolini M, Lebrun J, Micheli F, Priouzeau F, Risso-de Faverney C, Rossi F, Sabourault C, Spennato G, Verrando P, Guidetti P. Effects of marine noise pollution on Mediterranean fishes and invertebrates: A review. MARINE POLLUTION BULLETIN 2020; 159:111450. [PMID: 32892911 DOI: 10.1016/j.marpolbul.2020.111450] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Marine noise pollution (MNP) can cause a multitude of impacts on many organisms, but information is often scattered and general outcomes difficult to assess. We have reviewed the literature on MNP impacts on Mediterranean fish and invertebrates. Both chronic and acute MNP produced by various human activities - e.g. maritime traffic, pile driving, air guns - were found to cause detectable effects on intra-specific communication, vital processes, physiology, behavioral patterns, health status and survival. These effects on individuals can extend to inducing population- and ecosystem-wide alterations, especially when MNP impacts functionally important species, such as keystone predators and habitat forming species. Curbing the threats of MNP in the Mediterranean Sea is a challenging task, but a variety of measures could be adopted to mitigate MNP impacts. Successful measures will require more accurate information on impacts and that effective management of MNP really becomes a priority in the policy makers' agenda.
Collapse
Affiliation(s)
- E Di Franco
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France.
| | - P Pierson
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - L Di Iorio
- CHORUS Institute, Phelma Minatec, 38016 Grenoble, France; Foundation of the Grenoble Institute of Technology, 38031 Grenoble, France
| | - A Calò
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20-22, 90123 Palermo, Italy
| | - J M Cottalorda
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - B Derijard
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - A Di Franco
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - A Galvé
- Université Côte d'Azur, CNRS, IRD, Observatoire de la Côte d'Azur, Géoazur, Sophia-Antipolis, France
| | - M Guibbolini
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - J Lebrun
- Université Côte d'Azur, CNRS, UMR 7271 I3S, Sophia Antipolis, France
| | - F Micheli
- Hopkins Marine Station and Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA
| | - F Priouzeau
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | | | - F Rossi
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - C Sabourault
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - G Spennato
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - P Verrando
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV, INSERM U1091 - CNRS UMR7277), Nice, France
| | - P Guidetti
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; CoNISMa (National Interuniversitary Consortium of Marine Sciences), P.le Flaminio 9, 00196 Rome, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
26
|
Müller RAJ, von Benda-Beckmann AM, Halvorsen MB, Ainslie MA. Application of kurtosis to underwater sound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:780. [PMID: 32872988 DOI: 10.1121/10.0001631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Regulations for underwater anthropogenic noise are typically formulated in terms of peak sound pressure, root-mean-square sound pressure, and (weighted or unweighted) sound exposure. Sound effect studies on humans and other terrestrial mammals suggest that in addition to these metrics, the impulsiveness of sound (often quantified by its kurtosis β) is also related to the risk of hearing impairment. Kurtosis is often used to distinguish between ambient noise and transients, such as echolocation clicks and dolphin whistles. A lack of standardization of the integration interval leads to ambiguous kurtosis values, especially for transient signals. In the current research, kurtosis is applied to transient signals typical for high-power underwater noise. For integration time (t2-t1), the quantity (t2-t1)/β is shown to be a robust measure of signal duration, closely related to the effective signal duration, τeff for sounds from airguns, pile driving, and explosions. This research provides practical formulas for kurtosis of impulsive sounds and compares kurtosis between measurements of transient sounds from different sources.
Collapse
|
27
|
Popper AN, Hawkins AD, Thomsen F. Taking the Animals' Perspective Regarding Anthropogenic Underwater Sound. Trends Ecol Evol 2020; 35:787-794. [PMID: 32466956 DOI: 10.1016/j.tree.2020.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Anthropogenic (man-made) sound has the potential to harm marine biota. Increasing concerns about these effects have led to regulation and mitigation, despite there being few data on which to base environmental management, especially for fishes and invertebrates. We argue that regulation and mitigation should always be developed by looking at potential effects from the perspectives of the animals and ecosystems exposed to the sounds. We contend that there is currently a need for far more data on which to base regulation and mitigation, as well as for deciding on future research priorities. This will require a process whereby regulators and researchers come together to identify and implement a strategy that links key scientific and regulatory questions.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
28
|
Bezares-Calderón LA, Berger J, Jékely G. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190376. [PMID: 31884914 PMCID: PMC7017336 DOI: 10.1098/rstb.2019.0376] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
29
|
Hu CS, Tkebuchava T. E-noise: An increasingly relevant health risk. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:311-314. [PMID: 31362866 DOI: 10.1016/j.joim.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
This article briefly reviews and discusses the current status of major non-communicable diseases (mNCDs), definition of e-noise, its possible link as a risk factor for cardiovascular diseases and other mNCDs, and proposes possible mechanisms and hypotheses on that link, and how to control e-noise in the future. E-noise is defined as signal from electronic products and instruments that emit radiation and electromagnetic fields. It includes not only the acoustic but also non-acoustic noise. Just like road traffic and aircraft noises, e-noise may not only lead to hearing loss and health problems such as fatigue, stress, irritability, headache, and insomnia, but may also endanger cardiovascular health and result in hypertension, ischemic heart disease (myocardial infarction), arrhythmia (atrial fibrillation) and stroke; brain and metabolic problems such as obesity and diabetes; mental and cognitive impairment; as well as changing of humans' long-evolved cortisol and circadian rhythms after long-term exposure. Even short-term exposure to excessive e-noise may lead to heightened stress responses and low quality of life. In conclusion, e-noise is a potential danger in our world, and further studies are needed of its effects on mechanisms of aging, disease, and human health.
Collapse
Affiliation(s)
- Chun-Song Hu
- Jiangxi Academy of Medical Science, Hospital of Nanchang University, Nanchang University, Nanchang 330006, Jiangxi Province, China.
| | | |
Collapse
|
30
|
Solé M, Monge M, André M, Quero C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci Rep 2019; 9:9340. [PMID: 31249355 PMCID: PMC6597576 DOI: 10.1038/s41598-019-45646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies, both in laboratory and sea conditions, have demonstrated damage after sound exposure in the cephalopod statocyst sensory epithelium, which secretes endolymph protein. Here, the proteomic analysis of the endolymph was performed before and after sound exposure to assess the effects of exposure to low intensity, low frequency sounds on the statocyst endolymph of the Mediterranean common cuttlefish (Sepia officinalis), determining changes in the protein composition of the statocyst endolymph immediately and 24 h after sound exposure. Significant differences in protein expression were observed, especially 24 h after exposure. A total of 37 spots were significantly different in exposed specimens, 17 of which were mostly related to stress and cytoskeletal structure. Among the stress proteins eight spots corresponding to eight hemocyanin isoforms were under-expressed possible due to lower oxygen consumption. In addition, cytoskeletal proteins such as tubulin alpha chain and intermediate filament protein were also down-regulated after exposure. Thus, endolymph analysis in the context of acoustic stress allowed us to establish the effects at the proteome level and identify the proteins that are particularly sensitive to this type of trauma.
Collapse
Affiliation(s)
- M Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain
| | - M Monge
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Edifici Collserola, 08035, Barcelona, Spain
| | - M André
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain.
| | - C Quero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
31
|
Blom EL, Kvarnemo C, Dekhla I, Schöld S, Andersson MH, Svensson O, Amorim MCP. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci Rep 2019; 9:5494. [PMID: 30940841 PMCID: PMC6445290 DOI: 10.1038/s41598-019-41786-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Anthropogenic underwater noise is a global pollutant of increasing concern but its impact on reproduction in fish is largely unknown. Hence, a better understanding of its consequences for this important link to fitness is crucial. Working in aquaria, we experimentally tested the impact of broadband noise exposure (added either continuously or intermittently), compared to a control, on the behaviour and reproductive success of the common goby (Pomatoschistus microps), a vocal fish with exclusive paternal care. Compared to the intermittent noise and control treatments, the continuous noise treatment increased latency to female nest inspection and spawning and decreased spawning probability. In contrast, many other female and male pre-spawning behaviours, and female ventilation rate (proxies for stress levels) did not differ among treatments. Therefore, it is likely that female spawning decisions were delayed by a reduced ability to assess male acoustic signals, rather than due to stress per se and that the silent periods in the intermittent noise treatment provided a respite where the females could assess the males. Taken together, we show that noise (of similar frequency range as anthropogenic boat noise) negatively affects reproductive success, particularly under a continuous noise exposure.
Collapse
Affiliation(s)
- Eva-Lotta Blom
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden.
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Box 460, SE-405 30, Gothenburg, Sweden
| | - Isabelle Dekhla
- Department of Marine Sciences, University of Gothenburg, Box 100, SE-405 30, Gothenburg, Sweden
| | - Sofie Schöld
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-603 80, Norrköping, Sweden
| | | | - Ola Svensson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Box 460, SE-405 30, Gothenburg, Sweden
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
32
|
Solé M, Lenoir M, Fortuño JM, van der Schaar M, André M. A critical period of susceptibility to sound in the sensory cells of cephalopod hatchlings. Biol Open 2018; 7:bio.033860. [PMID: 30291138 PMCID: PMC6215419 DOI: 10.1242/bio.033860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cephalopod statocyst and lateral line systems are sensory organs involved in orientation and balance. Lateral lines allow cephalopods to detect particle motion and are used for locating prey or predators in low light conditions. Here, we show the first analysis of damaged sensory epithelia in three species of cephalopod hatchlings (Sepia officinalis, Loligo vulgaris and Illex coindetii) after sound exposure. Our results indicate lesions in the statocyst sensory epithelia, similar to what was found in adult specimens. The novelty is that the severity of the lesions advanced more rapidly in hatchlings than in adult animals; i.e. the degree of lesions seen in hatchlings immediately after noise exposure would develop within 48 h in adults. This feature suggests a critical period of increased sensitivity to acoustic trauma in those species as has been described in developing mammalian cochlea and avian basilar papilla. The hair cells in the lateral lines of S. officinalis followed the same pattern of damage occurrence, while those of L. vulgaris and I. coindetii displayed a decreasing severity of damage after 24 h. These differences could be due to dissimilarities in size and life stages between the three species. Summary: We provide evidence of acoustic trauma in cephalopod hatchling sensory cells after sound exposure, whose damage increases faster than in adults, suggesting a critical period of sensitivity to anthropogenic noise in early stages.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| | - Marc Lenoir
- Department of Physiopathology and Therapy of Sensory and Motor Deficits INSERM U.1051, Institute of Neurosciences of Montpellier, 34000 Montpellier, France
| | - José-Manuel Fortuño
- Electron Microscopy Laboratory, Institute of Marine Sciences, Spanish National Research Council, E-08003 Barcelona, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| | - Michel André
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| |
Collapse
|
33
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|