1
|
Li M, Houben T, Bitorina AV, Meesters DM, Israelsen M, Kjærgaard M, Koek GH, Hendrikx T, Verbeek J, Krag A, Thiele M, Shiri-Sverdlov R. Plasma cathepsin D as an early indicator of alcohol-related liver disease. JHEP Rep 2024; 6:101117. [PMID: 39263329 PMCID: PMC11388167 DOI: 10.1016/j.jhepr.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims People who drink alcohol excessively are at increased risk of developing metabolic dysfunction and alcohol-related liver disease (MetALD) or the more severe form alcohol-related liver disease (ALD). One of the most significant challenges concerns the early detection of MetALD/ALD. Previously, we have demonstrated that the lysosomal enzyme cathepsin D (CTSD) is an early marker for metabolic dysfunction-associated steatohepatitis (MASH). Here, we hypothesized that plasma CTSD can also serve as an early indicator of MetALD/ALD. Methods We included 303 persistent heavy drinkers classified as having MetALD or ALD (n = 152) and abstinent patients with a history of excessive drinking (n = 151). Plasma CTSD levels of patients with MetALD/ALD without decompensation were compared with 40 healthy controls. Subsequently, the relationship between plasma CTSD levels and hepatic histological scores was established. Receiver-operating characteristic curves were generated to assess the precision of plasma CTSD levels in detecting MetALD/ALD. Lastly, plasma CTSD levels were compared between abstainers and drinkers. Results Plasma CTSD levels were higher in patients with MetALD/ALD compared to healthy controls. While hepatic disease parameters (AST/ALT ratio, liver stiffness measurement) were higher at advanced histopathological stages (assessed by liver biopsy), plasma CTSD levels were already elevated at early histopathological stages. Furthermore, combining plasma CTSD levels with liver stiffness measurement and AST/ALT ratio yielded enhanced diagnostic precision (AUC 0.872) in detecting MetALD/ALD in contrast to the utilization of CTSD alone (AUC 0.804). Plasma CTSD levels remained elevated in abstainers. Conclusion Elevated levels of CTSD in the circulation can serve as an early indicator of MetALD/ALD. Impact and implications Alcohol-related liver disease is the leading cause of liver disease-related morbidity and mortality worldwide. However, the currently available non-invasive methods to diagnose MetALD/ALD are only able to detect advanced stages of MetALD/ALD. Here, we demonstrate that plasma levels of the lysosomal enzyme cathepsin D are already elevated at early stages of MetALD/ALD. Moreover, cathepsin D levels outperformed the currently available non-invasive methods to detect MetALD/ALD. Plasma levels of cathepsin D could therefore be a useful non-invasive marker for detection of MetALD/ALD.
Collapse
Affiliation(s)
- Mengying Li
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Albert V. Bitorina
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Dennis M. Meesters
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Mads Israelsen
- Center for Liver Research, Odense University Hospital and University of Southern Denmark, Kloevervaenget 10, entrance 112, DK-5000 Odense, Denmark
| | - Maria Kjærgaard
- Center for Liver Research, Odense University Hospital and University of Southern Denmark, Kloevervaenget 10, entrance 112, DK-5000 Odense, Denmark
| | - Ger H. Koek
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Jef Verbeek
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Belgium; Department of Gastroenterology & Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Aleksander Krag
- Center for Liver Research, Odense University Hospital and University of Southern Denmark, Kloevervaenget 10, entrance 112, DK-5000 Odense, Denmark
| | - Maja Thiele
- Center for Liver Research, Odense University Hospital and University of Southern Denmark, Kloevervaenget 10, entrance 112, DK-5000 Odense, Denmark
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| |
Collapse
|
2
|
Chen T, Qin X, Jiang J, He B. Diagnostic indicators and lifestyle interventions of metabolic-associated fatty liver disease. Front Nutr 2024; 11:1424246. [PMID: 38946789 PMCID: PMC11211376 DOI: 10.3389/fnut.2024.1424246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
MAFLD has become a major global health problem and is the leading cause of liver disease worldwide. The disease progresses from a simple fatty liver to gradual fibrosis, which progresses to cirrhosis and even hepatocellular liver cancer. However, the methods currently used for diagnosis are invasive and do not facilitate clinical assessment of the condition. As a result, research on markers for the diagnosis of MAFLD is increasing. In addition, there are no clinical medications for the treatment of MAFLD, and lifestyle interventions remain effective in the prevention and treatment of MAFLD. In this review, we attempt to make a summary of the emerging diagnostic indicators and effective lifestyle interventions for MAFLD and to provide new insights into the diagnosis and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianzhu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jianping Jiang
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Meroni M, De Caro E, Chiappori F, Longo M, Paolini E, Mosca E, Merelli I, Lombardi R, Badiali S, Maggioni M, Orro A, Mezzelani A, Valenti L, Fracanzani AL, Dongiovanni P. Hepatic and adipose tissue transcriptome analysis highlights a commonly deregulated autophagic pathway in severe MASLD. Obesity (Silver Spring) 2024; 32:923-937. [PMID: 38439203 DOI: 10.1002/oby.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT. METHODS We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples. Circulating cathepsin D (CTSD), a lysosomal protease, was measured by ELISA, whereas the autophagy-lysosomal pathway was assessed by Western blot in hepatic and VAT samples (n = 20). RESULTS Inflammation, extracellular matrix remodeling, and mitochondrial dysfunction were upregulated in severe MASLD in both tissues, whereas autophagy and oxidative phosphorylation were reduced. Tissue comparative analysis revealed 13 deregulated genes, including CTSD, which showed the most robust diagnostic accuracy in discriminating mild and severe MASLD. CTSD expression correlated with circulating protein, whose increase was further validated in 432 histologically characterized MASLD patients, showing a high accuracy in foreseeing severe liver injury. In addition, the assessment of serum CTSD increased the performance of fibrosis 4 in diagnosing advanced disease. CONCLUSIONS By comparing the hepatic and VAT transcriptome during MASLD, we refined the concept by which CTSD may represent a potential biomarker of severe disease.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia De Caro
- Life and Medical Sciences Institute (LIMES), University of Bonn, Germany/System Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Federica Chiappori
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Rosa Lombardi
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Alessandra Mezzelani
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Kulik U, Moesta C, Spanel R, Borlak J. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts. Transl Res 2024; 264:33-65. [PMID: 37722450 DOI: 10.1016/j.trsl.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Orthotopic liver transplantation (OLT) is a lifesaving procedure. However, grafts may fail due to primary nonfunction (PNF). In the past, we demonstrated PNFs to be mainly associated with fatty allografts, and given its unpredictable nature, the development of a disease model is urgently needed. In an effort to investigate mechanism of fatty allograft-associated PNFs, we induced fatty liver disease in donor animals by feeding rats a diet deficient in methionine and choline (MCD). We performed OLT with allografts of different grades of hepatic steatosis and compared the results to healthy ones. We assessed liver function by considering serum biochemistries, and investigated genome wide responses following OLT of healthy and fatty allograft-associated PNFs. Furthermore, we performed immunohistochemistry to evaluate markers of oxidative stress and reperfusion injury, inflammation, glycolysis and gluconeogenesis, lactate transport, and its utilization as part of the Cori cycle. Strikingly, PNFs are strictly lipid content dependent. Nonetheless, a fat content of ≤17% and an increase in the size of hepatocytes of ≤11% (ballooning) greatly improved outcome of OLTs and the hepatic microcirculation. Mechanistically, PNFs arise from a dysfunctional Cori cycle with complete ablation of the lactate transporter SLC16A1. Thus, lipid-laden hepatocytes fail to perform gluconeogenesis via lactate reutilization, and the resultant hyperlactatemia and lactic acidosis causes cardiac arrhythmogenicity and death. Furthermore, the genomic and immunohistochemistry investigations underscore a dysfunctional Krebs cycle with impaired energy metabolism in lipid-burdened mitochondria. Together, we show fatty allografts to be highly vulnerable towards ischemia/reperfusion-injury, and stabilizing the Cori cycle is of critical importance to avert PNFs.
Collapse
Affiliation(s)
- Ulf Kulik
- Department of General, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Caroline Moesta
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Shah R, Zhong J, Massier L, Tanriverdi K, Hwang SJ, Haessler J, Nayor M, Zhao S, Perry AS, Wilkins JT, Shadyab AH, Manson JE, Martin L, Levy D, Kooperberg C, Freedman JE, Rydén M, Murthy VL. Targeted Proteomics Reveals Functional Targets for Early Diabetes Susceptibility in Young Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004192. [PMID: 38323454 PMCID: PMC10940209 DOI: 10.1161/circgen.123.004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.
Collapse
Affiliation(s)
- Ravi Shah
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Jiawei Zhong
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Lucas Massier
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kahraman Tanriverdi
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Nayor
- Sections of Preventive Medicine & Epidemiology & Cardiovascular Medicine, Dept of Medicine, Dept of Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA & Framingham Heart Study, Framingham, MA
| | | | - Andrew S. Perry
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | | | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health & Human Longevity Science, Univ of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa Martin
- George Washington Univ School of Medicine & Health Sciences
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Jane E. Freedman
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Mikael Rydén
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
8
|
Reinshagen M, Kabisch S, Pfeiffer AF, Spranger J. Liver Fat Scores for Noninvasive Diagnosis and Monitoring of Nonalcoholic Fatty Liver Disease in Epidemiological and Clinical Studies. J Clin Transl Hepatol 2023; 11:1212-1227. [PMID: 37577225 PMCID: PMC10412706 DOI: 10.14218/jcth.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and type 2 diabetes and independently contributes to long-term complications. Being often asymptomatic but reversible, it would require population-wide screening, but direct diagnostics are either too invasive (liver biopsy), costly (MRI) or depending on the examiner's expertise (ultrasonography). Hepatosteatosis is usually accommodated by features of the metabolic syndrome (e.g. obesity, disturbances in triglyceride and glucose metabolism), and signs of hepatocellular damage, all of which are reflected by biomarkers, which poorly predict NAFLD as single item, but provide a cheap diagnostic alternative when integrated into composite liver fat indices. Fatty liver index, NAFLD LFS, and hepatic steatosis index are common and accurate indices for NAFLD prediction, but show limited accuracy for liver fat quantification. Other indices are rarely used. Hepatic fibrosis scores are commonly used in clinical practice, but their mandatory reflection of fibrotic reorganization, hepatic injury or systemic sequelae reduces sensitivity for the diagnosis of simple steatosis. Diet-induced liver fat changes are poorly reflected by liver fat indices, depending on the intervention and its specific impact of weight loss on NAFLD. This limited validity in longitudinal settings stimulates research for new equations. Adipokines, hepatokines, markers of cellular integrity, genetic variants but also simple and inexpensive routine parameters might be potential components. Currently, liver fat indices lack precision for NAFLD prediction or monitoring in individual patients, but in large cohorts they may substitute nonexistent imaging data and serve as a compound biomarker of metabolic syndrome and its cardiometabolic sequelae.
Collapse
Affiliation(s)
- Mona Reinshagen
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Andreas F.H. Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| |
Collapse
|
9
|
Wang B, Zhang Q, Wu L, Deng C, Luo M, Xie Y, Wu G, Chen W, Sheng Y, Zhu P, Qin G. Data-independent acquisition-based mass spectrometry(DIA-MS) for quantitative analysis of patients with chronic hepatitis B. Proteome Sci 2023; 21:9. [PMID: 37280603 DOI: 10.1186/s12953-023-00209-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic hepatitis B is a significant public health problem and complex pathologic process, and unraveling the underlying mechanisms and pathophysiology is of great significance. Data independent acquisition mass spectrometry (DIA-MS) is a label-free quantitative proteomics method that has been successfully applied to the study of a wide range of diseases. The aim of this study was to apply DIA-MS for proteomic analysis of patients with chronic hepatitis B. We performed comprehensive proteomics analysis of protein expression in serum samples from HBV patients and healthy controls by using DIA-MS. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein network analysis were performed on differentially expressed proteins and were further combined with literature analysis. We successfully identified a total of 3786 serum proteins with a high quantitative performance from serum samples in this study. We identified 310 differentially expressed proteins (DEPs) (fold change > 1.5 and P value < 0.05 as the criteria for a significant difference) between HBV and healthy samples. A total of 242 upregulated proteins and 68 downregulated proteins were among the DEPs. Some protein expression levels were significantly elevated or decreased in patients with chronic hepatitis B, indicating a relation to chronic liver disease, which should be further investigated.
Collapse
Affiliation(s)
- Bo Wang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lili Wu
- Department of Gastroenterology, Suining First Pepole's Hospital, Suining, 629000, Sichuan, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiyan Luo
- College of Graduate, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu Xie
- College of Graduate, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Wu
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wen Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Peng Zhu
- Department of Gastroenterology, Suining First Pepole's Hospital, Suining, 629000, Sichuan, China
| | - Gang Qin
- Department of Gastroenterology, Suining First Pepole's Hospital, Suining, 629000, Sichuan, China.
| |
Collapse
|
10
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
12
|
Mokkala K, Gustafsson J, Vahlberg T, Vreugdenhil ACE, Ding L, Shiri-Sverdlov R, Plat J, Laitinen K. Serum CathepsinD in pregnancy: Relation with metabolic and inflammatory markers and effects of fish oils and probiotics. Nutr Metab Cardiovasc Dis 2022; 32:1292-1300. [PMID: 35304048 DOI: 10.1016/j.numecd.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Elevated circulating levels of CathepsinD (CatD) have been linked to metabolic deviations including liver inflammation. We investigated 1) whether supplementation with probiotics and/or fish oil affects CatD and 2) whether the CatD concentration would associate with gestational diabetes (GDM), low-grade inflammation, lipid metabolism, body fat % and dietary composition. METHODS AND RESULTS Overweight/obese pregnant women (n = 438) were randomized into fish oil + placebo, probiotics + placebo, fish oil + probiotics or placebo + placebo groups. Fish oil contained 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid and probiotics were Lacticaseibacillusrhamnosus HN001 (formerly Lactobacillusrhamnosus HN001) and Bifidobacteriumanimalis ssp. lactis 420, 1010 colony-forming units each). Serum CatD levels were analysed by ELISA, GlycA and lipid metabolites by NMR, high sensitive C-reactive protein (hsCRP) by immunoassay, and intakes of energy yielding nutrients and n-3 and n-6 fatty acids from food diaries at both early and late pregnancy. GDM was diagnosed by OGTT. CatD concentrations did not differ between the intervention groups or by GDM status. Multivariable linear models revealed that body fat % and GlycA affected CatD differently in healthy women and those with GDM. CONCLUSION The serum CatD concentration of pregnant women was not modified by this dietary intervention. Serum CatD was influenced by two parameters, body fat and low grade inflammation, which were dependent on the woman's GDM status. CLINICAL TRIAL REG. NO: NCT01922791, clinicaltrials.gov (secondary analysis).
Collapse
Affiliation(s)
- Kati Mokkala
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Johanna Gustafsson
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Institute of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| | - Anita C E Vreugdenhil
- Department of Pediatrics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Lingling Ding
- Department of Molecular Genetics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Kirsi Laitinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland; Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
13
|
Faradina A, Tseng SH, Tung TH, Huang SY, Lee YC, Skalny AV, Tinkov AA, Chen SH, Chuang YK, Chang JS. High-dose ferric citrate supplementation attenuates omega-3 polyunsaturated fatty acid biosynthesis via downregulating delta 5 and 6 desaturases in rats with high-fat diet-induced obesity. Food Funct 2021; 12:11819-11828. [PMID: 34787162 DOI: 10.1039/d1fo02680a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is associated with an increased risk of an iron deficiency; however, a synergistic relationship between iron and lipid homeostasis was also observed. The aim of this study was to investigate the effects of pharmacological doses of iron supplementation on omega 3 (n-3) and omega 6 (n-6) polyunsaturated fatty acids (PUFAs). Sprague-Dawley (SD) rats were fed a normal diet or a 50% high-fat diet (HFD) without or with pharmacological doses of ferric citrate (0.25, 1, or 2 g ferric iron per kg diet) for 12 weeks, and erythrocyte profiles of n-3 and n-6 PUFAs were quantitated. Ferric citrate supplementation showed dose-related effects on liver inflammation, liver iron accumulation, and increasing circulating levels of iron, erythrocyte degradation biomarkers LVV-hemorphin-7, malondialdehyde (MDA), and insulin. Obese rats supplemented with 2 g ferric iron per kg diet also had decreased levels of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and total n-3 PUFAs compared to rats fed a normal diet or HFD alone. A western blotting analysis revealed that iron-mediated downregulation of n-3 PUFA-converting enzymes (Δ5 and Δ6 desaturases) only occurred at high dosages (≥1 g ferric iron per kg diet). A Spearman correlation analysis showed that total liver iron and serum LVV-hemorphin-7 and MDA were negatively correlated with n-3 PUFAs and their converting enzymes (Δ5 and Δ6 desaturases) (all p < 0.05). In conclusion, obese rats that received high-dose ferric citrate supplementation (>1 g of ferric iron per kg diet) exhibited decreased n-3 PUFA levels via downregulation of expressions of Δ5 and Δ6 desaturase enzymes.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Anatoly V Skalny
- Laboratory of Molecular Dietology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| | - Alexey A Tinkov
- Laboratory of Molecular Dietology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kun Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, Taiwan
| |
Collapse
|
14
|
Ruiz-Blázquez P, Pistorio V, Fernández-Fernández M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol 2021; 75:1192-1202. [PMID: 34242696 DOI: 10.1016/j.jhep.2021.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; University of Naples Federico II, Naples, Italy
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; IDIBAPS, Barcelona, Spain; CiberEHD, Spain.
| |
Collapse
|
15
|
Cazanave SC, Warren AD, Pacula M, Touti F, Zagorska A, Gural N, Huang EK, Sherman S, Cheema M, Ibarra S, Bates J, Billin AN, Liles JT, Budas GR, Breckenridge DG, Tiniakos D, Ratziu V, Daly AK, Govaere O, Anstee QM, Gelrud L, Luther J, Chung RT, Corey KE, Winckler W, Bhatia S, Kwong GA. Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Sci Transl Med 2021; 13:eabe8939. [PMID: 34669440 DOI: 10.1126/scitranslmed.abe8939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | | | | | - Nil Gural
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | - Jamie Bates
- Gilead Sciences Inc., Foster City, CA 94404, USA
| | | | - John T Liles
- Gilead Sciences Inc., Foster City, CA 94404, USA
| | | | | | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Vlad Ratziu
- Sorbonne Université, ICAN (Institute of Cardiometabolism And Nutrition), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne University, INSERM UMRS 1138 CRC, Paris 75013, France
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Louis Gelrud
- Bon Secours St Mary's Hospital, Richmond VA 23226, USA
| | - Jay Luther
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T Chung
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Kathleen E Corey
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sangeeta Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabriel A Kwong
- Glympse Bio Inc., Cambridge, MA 02138, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Ding L, De Munck TJI, Oligschlaeger Y, Verbeek J, Koek GH, Houben T, Shiri-Sverdlov R. Insulin resistance is positively associated with plasma cathepsin D activity in NAFLD patients. Biomol Concepts 2021; 12:110-115. [PMID: 34370929 DOI: 10.1515/bmc-2021-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022] Open
Abstract
Previous studies associated plasma cathepsin D (CTSD) activity with hepatic insulin resistance in overweight and obese humans. Insulin resistance is a major feature of non-alcoholic fatty liver disease (NAFLD) and is one of the multiple hits determining the progression towards non-alcoholic steatohepatitis (NASH). In line, we have previously demonstrated that plasma CTSD levels are increased in NASH patients. However, it is not known whether insulin resistance associates with plasma CTSD activity in NAFLD. To increase our understanding regarding the mechanisms by which insulin resistance mediates NAFLD, fifty-five liver biopsy or MRI-proven NAFLD patients (BMI>25kg/m2) were included to investigate the link between plasma CTSD activity to insulin resistance in NAFLD. We concluded that HOMA-IR and plasma insulin levels are independently associated with plasma CTSD activity in NAFLD patients (standardized coefficient β: 0.412, 95% Cl: 0.142~0.679, p=0.004 and standardized coefficient β: 0.495, 95% Cl: 0.236~0.758, p=0.000, respectively). Together with previous studies, these data suggest that insulin resistance may link to NAFLD via elevation of CTSD activity in plasma. As such, these data pave the way for testing CTSD inhibitors as a pharmacological treatment of NAFLD.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Toon J I De Munck
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Ger H Koek
- Department of visceral and transplantation surgery, Klinikum, RWTH, Aachen, Germany
| | - Tom Houben
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| |
Collapse
|
17
|
Yadati T, Houben T, Bitorina A, Oligschlaeger Y, Gijbels MJ, Mohren R, Lütjohann D, Khurana P, Goyal S, Kulkarni A, Theys J, Cillero-Pastor B, Shiri-Sverdlov R. Inhibition of Extracellular Cathepsin D Reduces Hepatic Lipid Accumulation and Leads to Mild Changes in Inflammationin NASH Mice. Front Immunol 2021; 12:675535. [PMID: 34335574 PMCID: PMC8323051 DOI: 10.3389/fimmu.2021.675535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background & Aims The lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known. In the current study, we evaluated the underlying mechanisms of extracellular and intracellular CTSD fractions in NASH-related metabolic inflammation using specific small-molecule inhibitors. Methods Low-density lipoprotein receptor knock out (Ldlr-/-) mice were fed a high-fat, high cholesterol (HFC) diet for ten weeks to induce NASH. Further, to investigate the effects of CTSD inhibition, mice were injected either with an intracellular (GA-12) or extracellular (CTD-002) CTSD inhibitor or vehicle control at doses of 50 mg/kg body weight subcutaneously once in two days for ten weeks. Results Ldlr-/- mice treated with extracellular CTSD inhibitor showed reduced hepatic lipid accumulation and an associated increase in faecal bile acid levels as compared to intracellular CTSD inhibitor-treated mice. Furthermore, in contrast to intracellular CTSD inhibition, extracellular CTSD inhibition switched the systemic immune status of the mice to an anti-inflammatory profile. In line, label-free mass spectrometry-based proteomics revealed that extra- and intracellular CTSD fractions modulate proteins belonging to distinct metabolic pathways. Conclusion We have provided clinically translatable evidence that extracellular CTSD inhibition shows some beneficial metabolic and systemic inflammatory effects which are distinct from intracellular CTSD inhibition. Considering that intracellular CTSD inhibition is involved in essential physiological processes, specific inhibitors capable of blocking extracellular CTSD activity, can be promising and safe NASH drugs.
Collapse
Affiliation(s)
- Tulasi Yadati
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Albert Bitorina
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Marion J Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ronny Mohren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
18
|
Ding L, De Munck TJI, Oligschlaeger Y, dos Reis IM, Verbeek J, Koek GH, Houben T, Shiri-Sverdlov R. Myosteatosis in NAFLD patients correlates with plasma Cathepsin D. Biomol Concepts 2021; 12:27-35. [DOI: 10.1515/bmc-2021-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Abstract
Previously, we have shown that hepatic lipid accumulation induces the secretion of cathepsin D (CTSD), and that plasma CTSD levels are associated with increased inflammation and disease severity in nonalcoholic fatty liver disease (NAFLD). Although it is clear that the liver is a major source of plasma CTSD, it is unknown whether other metabolically active organs such as the muscle, also associate with plasma CTSD levels in NAFLD patients. Therefore, the aim of this study was to explore the relation between lipid accumulation in the muscle (myosteatosis) and plasma CTSD levels in forty-five NAFLD patients. We observed that hepatic steatosis positively associated with plasma CTSD levels, confirming the previously established link between plasma CTSD and the liver. Furthermore, a positive association between myosteatosis and plasma CTSD levels was observed, which was independent of sex, age, BMI, waist circumference and hepatic steatosis. By establishing a positive association between myosteatosis and plasma CTSD levels, our findings suggest that, in addition to the liver, the muscle is also linked to plasma CTSD levels in NAFLD patients. The observed link between myosteatosis and plasma CTSD levels supports the concept of a significant role of the skeletal muscle in metabolic disturbances in metabolic syndrome-related disorders.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| | - Toon. J. I. De Munck
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| | - Inês Magro dos Reis
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology , University Hospitals KU Leuven , Herestraat 49 , Leuven Leuven , Belgium
| | - Ger. H. Koek
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
- Department of internal medicine, division of gastroenterology and hepatology , Maastricht University Medical Center . P. Debyelaan 25 , HX Maastricht , the Netherlands
| | - Tom Houben
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht University Medical Center+ , Universiteitssingel 50 , Maastricht , the Netherlands
| |
Collapse
|
19
|
Ding L, Houben T, Oligschlaeger Y, Bitorina AV, Verwer BJ, Tushuizen ME, Shiri-Sverdlov R. Plasma Cathepsin D Activity Rather Than Levels Correlates With Metabolic Parameters of Type 2 Diabetes in Male Individuals. Front Endocrinol (Lausanne) 2020; 11:575070. [PMID: 33101209 PMCID: PMC7554511 DOI: 10.3389/fendo.2020.575070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 02/01/2023] Open
Abstract
Objective Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance. Previous studies in patients demonstrated that plasma levels of cathepsin D (CTSD), which is optimally active in the acidic environment of lysosomes, correlate with insulin resistance. As plasma pH is slightly reduced in type 2 diabetic patients and we have previously shown that plasma CTSD activity is causally linked to insulin levels in vivo, it is likely that the activity of CTSD in plasma will be increased in type 2 diabetes compared to healthy individuals. However, so far the interaction between CTSD activity and levels to postprandial metabolic derangements in type 2 diabetes is not known. Methods Eighteen type 2 diabetes and 16 age-matched healthy males were given 2 consecutive standardized mixed meals, after which blood samples were collected. Plasma metabolic parameters as well as CTSD levels and activity were measured, and changes in plasma pH was assessed. Results In line with the elevation of plasma free fatty acids (FFA) levels in male type 2 diabetics patients, plasma pH in type 2 diabetic individuals was decreased compared to male healthy individuals. While plasma CTSD levels were similar, plasma CTSD activity was increased in male type 2 diabetic compared to male healthy individuals. Besides, plasma CTSD activity rather than levels significantly correlated with indicators of type 2 diabetes (HbA1c, HOMA-IR and glucose). Furthermore, FFA was also independently associated with plasma CTSD activity (standardized β = 0.493, p = 0.007). Conclusions Despite similar plasma CTSD levels, type 2 diabetic male individuals showed increased plasma CTSD activity compared to healthy males, which was independently linked to plasma FFA levels. Our data therefore point toward plasma CTSD as a metabolic regulator in male type 2 diabetes.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht Universtiy, Maastricht, Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht Universtiy, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht Universtiy, Maastricht, Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht Universtiy, Maastricht, Netherlands
| | - Bart J. Verwer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht Universtiy, Maastricht, Netherlands
| |
Collapse
|
20
|
Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020; 9:cells9071679. [PMID: 32668602 PMCID: PMC7407943 DOI: 10.3390/cells9071679] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.
Collapse
|
21
|
NAFLD Preclinical Models: More than a Handful, Less of a Concern? Biomedicines 2020; 8:biomedicines8020028. [PMID: 32046285 PMCID: PMC7167756 DOI: 10.3390/biomedicines8020028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.
Collapse
|
22
|
Ding L, Goossens GH, Oligschlaeger Y, Houben T, Blaak EE, Shiri-Sverdlov R. Plasma cathepsin D activity is negatively associated with hepatic insulin sensitivity in overweight and obese humans. Diabetologia 2020; 63:374-384. [PMID: 31690989 PMCID: PMC6946744 DOI: 10.1007/s00125-019-05025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/13/2019] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance in skeletal muscle and liver plays a major role in the pathophysiology of type 2 diabetes. The hyperinsulinaemic-euglycaemic clamp is considered the gold standard for assessing peripheral and hepatic insulin sensitivity, yet it is a costly and labour-intensive procedure. Therefore, easy-to-measure, cost-effective approaches to determine insulin sensitivity are needed to enable organ-specific interventions. Recently, evidence emerged that plasma cathepsin D (CTSD) is associated with insulin sensitivity and hepatic inflammation. Here, we aimed to investigate whether plasma CTSD is associated with hepatic and/or peripheral insulin sensitivity in humans. METHODS As part of two large clinical trials (one designed to investigate the effects of antibiotics, and the other to investigate polyphenol supplementation, on insulin sensitivity), 94 overweight and obese adults (BMI 25-35 kg/m2) previously underwent a two-step hyperinsulinaemic-euglycaemic clamp (using [6,6-2H2]glucose) to assess hepatic and peripheral insulin sensitivity (per cent suppression of endogenous glucose output during the low-insulin-infusion step, and the rate of glucose disappearance during high-insulin infusion [40 mU/(m2 × min)], respectively). In this secondary analysis, plasma CTSD levels, CTSD activity and plasma inflammatory cytokines were measured. RESULTS Plasma CTSD levels were positively associated with the proinflammatory cytokines IL-8 and TNF-α (IL-8: standardised β = 0.495, p < 0.001; TNF-α: standardised β = 0.264, p = 0.012). Plasma CTSD activity was negatively associated with hepatic insulin sensitivity (standardised β = -0.206, p = 0.043), independent of age, sex, BMI and waist circumference, but it was not associated with peripheral insulin sensitivity. However, plasma IL-8 and TNF-α were not significantly correlated with hepatic insulin sensitivity. CONCLUSIONS/INTERPRETATION We demonstrate that plasma CTSD activity, but not systemic inflammation, is inversely related to hepatic insulin sensitivity, suggesting that plasma CTSD activity may be used as a non-invasive marker for hepatic insulin sensitivity in humans.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Tom Houben
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Hendrikx T, Binder CJ. Oxidation-Specific Epitopes in Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020; 11:607011. [PMID: 33362721 PMCID: PMC7756077 DOI: 10.3389/fendo.2020.607011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
An improper balance between the production and elimination of intracellular reactive oxygen species causes increased oxidative stress. Consequently, DNA, RNA, proteins, and lipids are irreversibly damaged, leading to molecular modifications that disrupt normal function. In particular, the peroxidation of lipids in membranes or lipoproteins alters lipid function and promotes formation of neo-epitopes, such as oxidation-specific epitopes (OSEs), which are found to be present on (lipo)proteins, dying cells, and extracellular vesicles. Accumulation of OSEs and recognition of OSEs by designated pattern recognition receptors on immune cells or soluble effectors can contribute to the development of chronic inflammatory diseases. In line, recent studies highlight the involvement of modified lipids and OSEs in different stages of the spectrum of non-alcoholic fatty liver disease (NAFLD), including inflammatory non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. Targeting lipid peroxidation products shows high potential in the search for novel, better therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Tim Hendrikx
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria
- *Correspondence: Christoph J. Binder,
| |
Collapse
|
24
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease and a major cause of related complications such as cirrhosis and hepatocellular carcinoma (HCC). NAFLD progresses through the stages of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. However, NAFLD usually cannot be diagnosed in a timely manner, which is largely attributed to the asymptomatic features of NAFLD patients and the lack of an effective and accurate noninvasive screening approach. Although liver biopsy has been recognized as a gold standard for diagnosing NAFLD, this approach is not suitable for screening and monitoring NAFLD because of its high cost and invasiveness. Several noninvasive screening and diagnostic systemic assessments have been developed in recent years for NAFLD evaluation. Here we summarize the current status and methods for NAFLD diagnosis, including both noninvasive (imaging, biomarkers) and invasive (liver biopsy) assessments. We further discuss the advantages and disadvantages of these developed diagnostic approaches for NAFLD.
Collapse
Affiliation(s)
- Jia-Zhen Zhang
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
25
|
Association between Lysosomal Dysfunction and Obesity-Related Pathology: A Key Knowledge to Prevent Metabolic Syndrome. Int J Mol Sci 2019; 20:ijms20153688. [PMID: 31357643 PMCID: PMC6696452 DOI: 10.3390/ijms20153688] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity causes various health problems, such as type 2 diabetes, non-alcoholic fatty liver disease, and cardio- and cerebrovascular diseases. Metabolic organs, particularly white adipose tissue (WAT) and liver, are deeply involved in obesity. WAT contains many adipocytes with energy storage capacity and secretes adipokines depending on the obesity state, while liver plays pivotal roles in glucose and lipid metabolism. This review outlines and underscores the relationship between obesity and lysosomal functions, including lysosome biogenesis, maturation and activity of lysosomal proteases in WAT and liver. It has been revealed that obesity-induced abnormalities of lysosomal proteases contribute to inflammation and cellular senescence in adipocytes. Previous reports have demonstrated obesity-induced ectopic lipid accumulation in liver is associated with abnormality of lysosomal proteases as well as other lysosomal enzymes. These studies demonstrate that lysosomal dysfunction in WAT and liver underlies part of the obesity-related pathology, raising the possibility that strategies to modulate lysosomal function may be effective in preventing or treating the metabolic syndrome.
Collapse
|
26
|
Inhibiting Extracellular Cathepsin D Reduces Hepatic Steatosis in Sprague⁻Dawley Rats †. Biomolecules 2019; 9:biom9050171. [PMID: 31060228 PMCID: PMC6571693 DOI: 10.3390/biom9050171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
Dietary and lifestyle changes are leading to an increased occurrence of non-alcoholic fatty liver disease (NAFLD). Using a hyperlipidemic murine model for non-alcoholic steatohepatitis (NASH), we have previously demonstrated that the lysosomal protease cathepsin D (CTSD) is involved with lipid dysregulation and inflammation. However, despite identifying CTSD as a major player in NAFLD pathogenesis, the specific role of extracellular CTSD in NAFLD has not yet been investigated. Given that inhibition of intracellular CTSD is highly unfavorable due to its fundamental physiological function, we here investigated the impact of a highly specific and potent small-molecule inhibitor of extracellular CTSD (CTD-002) in the context of NAFLD. Treatment of bone marrow-derived macrophages with CTD-002, and incubation of hepatic HepG2 cells with a conditioned medium derived from CTD-002-treated macrophages, resulted in reduced levels of inflammation and improved cholesterol metabolism. Treatment with CTD-002 improved hepatic steatosis in high fat diet-fed rats. Additionally, plasma levels of insulin and hepatic transaminases were significantly reduced upon CTD-002 administration. Collectively, our findings demonstrate for the first time that modulation of extracellular CTSD can serve as a novel therapeutic modality for NAFLD.
Collapse
|
27
|
Kamarajah SK, Khoo S, Chan WK, Sthaneshwar P, Nik Mustapha NR, Mahadeva S. Limited applicability of cathepsin D for the diagnosis and monitoring of non-alcoholic steatohepatitis. JGH OPEN 2019; 3:417-424. [PMID: 31633048 PMCID: PMC6788371 DOI: 10.1002/jgh3.12178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023]
Abstract
Background and Aim To date, there are limited data on the applicability of cathepsin D for the diagnosis and monitoring of non‐alcoholic steatohepatitis (NASH). Methods This study included patients with biopsy‐proven non‐alcoholic fatty liver disease (NAFLD) diagnosed between November 2012 and October 2015. Serum cathepsin D levels were measured using the CatD enzyme‐linked immunosorbent assay (USCN Life Science, Wuhan, China) using stored samples collected on the same day of the liver biopsy procedure. The performance of cathepsin D in the diagnosis and monitoring of NASH was evaluated using receiver operating characteristic analysis. Results Data for 216 liver biopsies and 34 healthy controls were analyzed. The mean cathepsin D level was not significantly different between NAFLD patients and controls; between NASH and non‐NASH patients; and across the different steatosis, lobular inflammation, and hepatocyte ballooning grades. The area under receiver operating characteristic curve (AUROC) of cathepsin D for the diagnosis of NAFLD and NASH was 0.62 and 0.52, respectively. The AUROC of cathepsin D for the diagnosis of the different steatosis, lobular inflammation, and hepatocyte ballooning grades ranged from 0.51 to 0.58. Of the 216 liver biopsies, 152 were paired liver biopsies from 76 patients who had a repeat liver biopsy after 48 weeks. There was no significant change in the cathepsin D level at follow‐up compared to baseline in patients who had histological improvement or worsening for steatosis, lobular inflammation, and hepatocyte ballooning grades. Cathepsin D was poor for predicting improvement or worsening of steatosis and hepatocyte ballooning, with AUROC ranging from 0.47 to 0.54. It was fair for predicting worsening (AUROC 0.73) but poor for predicting improvement (AUROC 0.54) of lobular inflammation. Conclusion Cathepsin D was a poor biomarker for the diagnosis and monitoring of NASH in our cohort of Asian patients, somewhat inconsistent with previous observations in Caucasian patients. Further studies in different cohorts are needed to verify our observation.
Collapse
Affiliation(s)
- Sivesh K Kamarajah
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia.,College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Stanley Khoo
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Pavai Sthaneshwar
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | | | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
28
|
Contribution of the plasma and lymph Degradome and Peptidome to the MHC Ligandome. Immunogenetics 2018; 71:203-216. [PMID: 30343358 DOI: 10.1007/s00251-018-1093-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Every biological fluid, blood, interstitial fluid and lymph, urine, saliva, lacrimal fluid, nipple aspirate, and spinal fluid, contains a peptidome-degradome derived from the cellular secretome along with byproducts of the metabolic/catabolic activities of each parenchymal organ. Clement et al. (J Proteomics 78:172-187, 2013), Clement et al. (J Biol Chem 291:5576-5595, 2016), Clement et al. (PLoS One 5:e9863, 2010), Clement et al. (Trends Immunol 32:6-11, 2011), Clement et al. (Front Immunol 4:424, 2013), Geho et al. (Curr Opin Chem Biol 10, 50-55, 2006), Interewicz et al. (Lymphology 37:65‑72, 2004), Leak et al. (Proteomics 4:753‑765, 2004), Popova et al. (PLoS One 9:e110873, 2014), Zhou et al. (Electrophoresis 25:1289‑1298, 2004), D'Alessandro et al. (Shock 42:509‑517, 2014), Dzieciatkowska et al. (Shock 42:485‑498, 2014), Dzieciatkowska et al. (Shock 35:331‑338, 2011), Jordan et al. (J Surg Res 143:130‑135, 2007), Peltz et al. (Surgery 146:347‑357, 2009), Zurawel et al. (Clin Proteomics 8:1, 2011), Ling et al. (Clin Proteomics 6:175‑193, 2010), Sturm et al. (Nat Commun 4:1616, 2013). Over the last decade, qualitative and quantitative analysis of the biological fluids peptidome and degradome have provided a dynamic measurement of tissue homeostasis as well as the tissue response to pathological damage. Proteomic profiling has mapped several of the proteases and resulting degradation by-products derived from cell cycle progression, organ/tissue remodeling and cellular growth, physiological apoptosis, hemostasis, and angiogenesis. Currently, a growing interest lies in the degradome observed during pathological conditions such as cancer, autoimmune diseases, and immune responses to pathogens as a way to exploit biological fluids as liquid biopsies for biomarker discovery Dzieciatkowska et al. (Shock 42:485-498, 2014), Dzieciatkowska et al. (Shock 35:331-338, 2011), Ling et al. (Clin Proteomics 6:175-193, 2010), Ugalde et al. (Methods Mol Biol 622:3-29, 2010), Quesada et al. (Nucleic Acids Res 37:D239‑243, 2009), Cal et al. (Front Biosci 12, 4661-4669, 2007), Shen et al. (PLoS One 5:e13133, 2010a), Antwi et al. (Mol Immunol 46:2931-2937, 2009a), Antwi et al. (J Proteome Res 8:4722‑4731, 2009b), Bedin et al. (J Cell Physiol 231, 915‑925, 2016), Bery et al. (Clin Proteomics 11:13, 2014), Bhalla et al. (Sci Rep 7:1511, 2017), Fan et al. (Diagn Pathol 7:45, 2012a), Fang et al. (Shock 34:291‑298, 2010), Fiedler et al. (Clin Cancer Res 15:3812‑3819, 2009), Fredolini et al. (AAPS J 12:504‑518, 2010), Greening et al. (Enzymes 42:27‑64, 2017), He et al. (PLoS One 8:e63724, 2013), Huang et al. (Int J Gynecol Cancer 28:355‑362, 2018), Hashiguchi et al. (Med Hypotheses 73:760‑763, 2009), Liotta and Petricoin (J Clin Invest 116:26‑30, 2006), Petricoin et al. (Nat Rev Cancer 6:961‑967, 2006), Shen et al. (J Proteome Res 9:2339‑2346, 2010a), Shen et al. (J Proteome Res 5:3154‑3160, 2006), Smith (Clin Proteomics 11:23, 2014), Wang et al. (Oncotarget 8:59376‑59386, 2017), Yang et al. (Clin Exp Med 12:79‑87, 2012a), Yang et al. (J Clin Lab Anal 26:148‑154, 2012b), Yang et al. (Anat Rec (Hoboken) 293:2027‑2033, 2010), Zapico-Muniz et al. (Pancreas 39:1293‑1298, 2010), Villanueva et al. (Mol Cell Proteomics 5:1840‑1852, 2006), Robbins et al. (J Clin Oncol 23:4835‑4837, 2005), Klupczynska et al. (Int J Mol Sci 17:410, 2016). In this review, we focus on the current knowledge of the degradome/peptidome observed in two main biological fluids (plasma and lymph) during physiological and pathological conditions and its importance for immune surveillance.
Collapse
|
29
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
30
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects 25% of the global adult population and is the most common chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is the active form of NAFLD, with hepatic necroinflammation and faster fibrosis progression. With an increasing number of patients developing NASH-related end-stage liver disease and pharmacological treatments on the horizon, there is a pressing need to develop NAFLD and NASH biomarkers for prognostication, selection of patients for treatment and monitoring. This requirement is particularly true as liver biopsy utility is limited by its invasive nature, poor patient acceptability and sampling variability. This article reviews current and potential biomarkers for different features of NAFLD, namely, steatosis, necroinflammation and fibrosis. For each biomarker, we evaluate its accuracy, reproducibility, responsiveness, feasibility and limitations. We cover biochemical, imaging and genetic biomarkers and discuss biomarker discovery in the omics era.
Collapse
|
31
|
Increased Cathepsin D Correlates with Clinical Parameters in Newly Diagnosed Type 2 Diabetes. DISEASE MARKERS 2017; 2017:5286408. [PMID: 29375176 PMCID: PMC5742441 DOI: 10.1155/2017/5286408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/24/2017] [Indexed: 12/17/2022]
Abstract
Background Cathepsin D has been recently implicated in insulin resistance and cardiovascular disease. This study was designed to investigate the relationship between cathepsin D and newly diagnosed type 2 diabetes. Methods Circulating cathepsin D levels and metabolic variables were measured in 98 cases and 98 controls. Myocardial performance index "Tei index" that reflects both left ventricular systolic and diastolic function was measured with Doppler echocardiography in cases. Results Newly diagnosed type 2 diabetes demonstrated significantly higher circulating cathepsin D concentrations than controls (median level: 227 ng/ml versus 174 ng/ml, P < 0.01). In newly diagnosed type 2 diabetes, a significant correlation was found between cathepsin D levels and HOMA-IR (homeostatic model assessment of insulin resistance) (r = 0.25, P = 0.01). In contrast, no significant correlation was found between cathepsin D levels and clinical parameters in the control group (all P > 0.05). Interestingly, correlation analysis revealed a positive association between cathepsin D levels and Tei index in type 2 diabetes (r = 0.22, P = 0.03). Conclusions Increased levels of circulating cathepsin D are closely linked with the presence of type 2 diabetes, and cathepsin D might serve as a novel biomarker for cardiac dysfunction in newly diagnosed type 2 diabetes.
Collapse
|
32
|
Cathepsin D regulates lipid metabolism in murine steatohepatitis. Sci Rep 2017; 7:3494. [PMID: 28615690 PMCID: PMC5471235 DOI: 10.1038/s41598-017-03796-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
Due to the obesity epidemic, non-alcoholic steatohepatitis (NASH) is a prevalent liver disease, characterized by fat accumulation and inflammation of the liver. However, due to a lack of mechanistic insight, diagnostic and therapeutic options for NASH are poor. Recent evidence has indicated cathepsin D (CTSD), a lysosomal enzyme, as a marker for NASH. Here, we investigated the function of CTSD in NASH by using an in vivo and in vitro model. In addition to diminished hepatic inflammation, inhibition of CTSD activity dramatically improved lipid metabolism, as demonstrated by decreased plasma and liver levels of both cholesterol and triglycerides. Mechanistically, CTSD inhibition resulted in an increased conversion of cholesterol into bile acids and an elevated excretion of bile acids via the feces, indicating that CTSD influences lipid metabolism. Consistent with these findings, treating Wt BMDMs with PepA in vitro showed a similar decrease in inflammation and an analogous effect on cholesterol metabolism. CONCLUSION CTSD is a key player in the development of hepatic inflammation and dyslipidemia. Therefore, aiming at the inhibition of the activity of CTSD may lead to novel treatments to combat NASH.
Collapse
|
33
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|