1
|
Rubino E, Italia M, Giorgio E, Boschi S, Dimartino P, Pippucci T, Roveta F, Cambria CM, Elia G, Marcinnò A, Gallone S, Rogaeva E, Antonucci F, Brusco A, Gardoni F, Rainero I. Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease. Alzheimers Res Ther 2025; 17:21. [PMID: 39810256 PMCID: PMC11730494 DOI: 10.1186/s13195-024-01661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant. METHODS Affected and unaffected members from a Northern Italian family were included. Genomic DNA from family members was extracted and initially screened for pathogenic mutations in APP, PSEN1, and PSEN2, and screened for 77 genes associated with neurodegenerative conditions using NeuroX array assay. Exome sequencing was performed on three affected individuals and two healthy relatives. Bioinformatics analyses were conducted. Functional analysis was performed using primary neuronal cultures, and the impact of the variant was assessed through immunocytochemistry and electrophysiology. RESULTS Pathogenic variants were not identified in APP, PSEN1, or PSEN2, nor in the 77 genes in NeuroX array assay. Exome Sequencing revealed the c.3215C > T p.(A1072V) variant in GRIN2C gene (NM 000835.6), encoding for the glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 2C (GluN2C). This variant segregated in 6 available AD patients in the family and was absent in 9 healthy relatives. Primary rat hippocampal neurons overexpressing GluN2CA1072V showed an increase in NMDAR-induced currents, suggesting altered glutamatergic transmission. Surface expression assays demonstrated an elevated surface/total ratio of the mutant GluN2C, correlating with the increased NMDAR current. Additionally, immunocytochemistry revealed in neurons expressing the mutant variant a reduced colocalization between the GluN2C subunit and 14-3-3 proteins, which are known to facilitate membrane trafficking of NMDARs. DISCUSSION We identified a rare missense variant in GRIN2C associated with late-onset autosomal dominant Alzheimer's disease. These findings highlight the role of GluN2C-containing NMDARs in glutamatergic signaling and their potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy.
| | - Maria Italia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Paola Dimartino
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria, Via Albertoni 15, Bologna, 40138, Italy
| | - Fausto Roveta
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Clara Maria Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Gabriella Elia
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Andrea Marcinnò
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Salvatore Gallone
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, King's College Circle 1, Toronto, ON, M5S1A8, Canada
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, Vedano al Lambro, 20854, Italy
| | - Alfredo Brusco
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Medical Genetics Unit, Città della Salute e della Scienza di Torino, University Hospital, Via Santena 19, Turin, 10126, Italy
- Molecular Biotechnology Center Guido Tarone, University of Turin, Piazza Nizza 44B, Turin, 10126, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
2
|
Ascic E, Marigo M, David L, Frisch Herrik K, Grupe M, Hougaard C, Mørk A, Jones CR, Badolo L, Frederiksen K, Boonen HCM, Jensen HS, Kilburn JP. Advancements in NMDA Receptor-Targeted Antidepressants: From d-Cycloserine Discovery to Preclinical Efficacy of Lu AF90103. J Med Chem 2024; 67:20135-20155. [PMID: 39560374 DOI: 10.1021/acs.jmedchem.4c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The discovery of d-cycloserine (DCS), a partial agonist of the NMDA receptor that exhibits antidepressant effects without the psychotomimetic effects of ketamine, has fueled interest in new NMDA-targeting antidepressants. Our objective was to identify potent partial agonists mirroring DCS, particularly tailored for the GluN2B subtype of the NMDA receptor. Through a structure-based drug design approach, we discovered compound 42d. This compound acts as a partial agonist of the GluN1/GluN2B complex, exhibiting 24% efficacy, and has an EC50 value of 78 nM. Subsequent investigations led us to 42e (Lu AF90103), a methyl ester prodrug of 42d capable of penetrating the blood-brain barrier, as confirmed by rat microdialysis studies. In different rat in vivo models relevant to neuropsychiatric diseases, administering 42e led to 42d demonstrating both acute effects, observed in a seizure model and EEG, and lasting effects in the stress-sensitive hippocampal pathway and an antidepressant-sensitive model.
Collapse
Affiliation(s)
- Erhad Ascic
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Mauro Marigo
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Laurent David
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Kjartan Frisch Herrik
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Morten Grupe
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Charlotte Hougaard
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Arne Mørk
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Christopher R Jones
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Lassina Badolo
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Kristen Frederiksen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Harrie C M Boonen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - Henrik Sindal Jensen
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| | - John Paul Kilburn
- Neuroscience Drug Discovery Denmark, H. Lundbeck A/S, 9 Ottiliavej, Valby, DK-2500 Copenhagen, Denmark
| |
Collapse
|
3
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
4
|
Cimino M, Feligioni M. The selective disruption of the JNK2/Syntaxin-1A interaction by JGRi1 protects against NMDA-evoked toxicity in SH-SY5Y cells. Neurochem Int 2024; 179:105824. [PMID: 39098765 DOI: 10.1016/j.neuint.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets. We previously reported non-conventional intracellular signaling triggered by which, upon activation, promotes the interaction between JNK2 and STX1A which enhances the rate of vesicular secretion. We developed a cell-permeable peptide, named JGRi1, able to disrupt such interaction, thus reducing vesicular secretion. In this work, to selectively study the effect of JGRi1 in a much simpler system, we employed neuroblastoma cells, SH-SY5Y. We found that SH-SY5Y cells express the components of the NMDA receptor-JNK2 axis and that the NMDA stimulus increases the rate of vesicle release. Both JGRi1 and memantine protected SH-SY5Y cells from NMDA toxicity, but only JGRi1 reduced the interaction between JNK2 and STX1A. Both drugs successfully reduced NMDA-induced vesicle release, although, unlike memantine, JGRi1 did not prevent calcium influx. NMDA treatment induced JNK2 expression, but not JNK1 or JNK3, which was prevented by both JGRi1 and memantine, suggesting that JNK2 may be specifically involved in the response to NMDA. In conclusion, being JGRi1 able to protect cells against NMDA toxicity by interfering with JNK2/STX1A interaction, it could be considered a novel pharmacological tool to counteract excitotoxicity.
Collapse
Affiliation(s)
- M Cimino
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - M Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| |
Collapse
|
5
|
Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024; 50:868-884. [PMID: 38415801 DOI: 10.1002/biof.2048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Acute organophosphorus compound (OP) poisoning induces symptoms of the cholinergic crises with the occurrence of severe epileptic seizures. Seizures are induced by hyperstimulation of the cholinergic system, but are enhanced by hyperactivation of the glutamatergic system. Overstimulation of muscarinic cholinergic receptors by the elevated acetylcholine causes glutamatergic hyperexcitation and an increased influx of Ca2+ into neurons through a type of ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptors (NMDAR). These excitotoxic signaling processes generate reactive oxygen species, oxidative stress, and activation of the neuroinflammatory response, which can lead to recurrent epileptic seizures, neuronal cell death, and long-term neurological damage. In this review, we illustrate the NMDAR structure, complexity of subunit composition, and the various receptor properties that change accordingly. Although NMDARs are in normal physiological conditions important for controlling synaptic plasticity and mediating learning and memory functions, we elaborate the detrimental role NMDARs play in neurotoxicity of OPs and focus on the central role NMDAR inhibition plays in suppressing neurotoxicity and modulating the inflammatory response. The limited efficacy of current medical therapies for OP poisoning concerning the development of pharmacoresistance and mitigating proinflammatory response highlights the importance of NMDAR inhibitors in preventing neurotoxic processes and points to new avenues for exploring therapeutics for OP poisoning.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Pineau L, Buhler E, Tarhini S, Bauer S, Crepel V, Watrin F, Cardoso C, Represa A, Szepetowski P, Burnashev N. Pathogenic MTOR somatic variant causing focal cortical dysplasia drives hyperexcitability via overactivation of neuronal GluN2C N-methyl-D-aspartate receptors. Epilepsia 2024; 65:2111-2126. [PMID: 38717560 DOI: 10.1111/epi.18000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Genetic variations in proteins of the mechanistic target of rapamycin (mTOR) pathway cause a spectrum of neurodevelopmental disorders often associated with brain malformations and with intractable epilepsy. The mTORopathies are characterized by hyperactive mTOR pathway and comprise tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type II. How hyperactive mTOR translates into abnormal neuronal activity and hypersynchronous network remains to be better understood. Previously, the role of upregulated GluN2C-containing glutamate-gated N-methyl-D-aspartate receptors (NMDARs) has been demonstrated for germline defects in the TSC genes. Here, we questioned whether this mechanism would expand to other mTORopathies in the different context of a somatic genetic variation of the MTOR protein recurrently found in FCD type II. METHODS We used a rat model of FCD created by in utero electroporation of neural progenitors of dorsal telencephalon with expression vectors encoding either the wild-type or the pathogenic MTOR variant (p.S2215F). In this mosaic configuration, patch-clamp whole-cell recordings of the electroporated, spiny stellate neurons and extracellular recordings of the electroporated areas were performed in neocortical slices. Selective inhibitors were used to target mTOR activity and GluN2C-mediated currents. RESULTS Neurons expressing the mutant protein displayed an excessive activation of GluN2C NMDAR-mediated spontaneous excitatory postsynaptic currents. GluN2C-dependent increase in spontaneous spiking activity was detected in the area of electroporated neurons in the mutant condition and was restricted to a critical time window between postnatal days P9 and P20. SIGNIFICANCE Somatic MTOR pathogenic variant recurrently found in FCD type II resulted in overactivation of GluN2C-mediated neuronal NMDARs in neocortices of rat pups. The related and time-restricted local hyperexcitability was sensitive to subunit GluN2C-specific blockade. Our study suggests that GluN2C-related pathomechanisms might be shared in common by mTOR-related brain disorders.
Collapse
Affiliation(s)
- Louison Pineau
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Emmanuelle Buhler
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Sarah Tarhini
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Sylvian Bauer
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Valérie Crepel
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Françoise Watrin
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Alfonso Represa
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Pierre Szepetowski
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| | - Nail Burnashev
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille University, Marseille, France
| |
Collapse
|
7
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Dembeck M, Dieterich DC, Fendt M. The GluN2C/D-specific positive allosteric modulator CIQ rescues delay-induced working memory deficits in mice. Behav Brain Res 2024; 456:114716. [PMID: 37839756 DOI: 10.1016/j.bbr.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Working memory is of short duration and is, therefore, particularly sensitive to time delays. Moreover, NMDA receptors are significantly involved in working memory. In the present study, we tested whether a commonly used measure of working memory, spontaneous alternation in the Y-maze, is sensitive to time delays and, if so, whether impairments due to time-delay can be rescued by treatment with CIQ, a positive allosteric modulator of the GluN2C/D subunits of NMDA receptor. Our results indicate that the effects of time delay do depend on the performance of the individual mice under basal condition. Those mice that performed well under basal conditions showed impaired spontaneous alternations when tested with a 45-s delay. Treatment with CIQ resulted in an improvement of spontaneous alternations, regardless of delay, sex, or basal performance. On the one hand, our study shows that repeated measures of individual behavior can better control the effects of confounding factors such as time delays. On the other hand, our study also highlights the potential of GluN2C/D-specific positive allosteric modulators in the treatment of human disorders associated with working memory deficits, such as schizophrenia.
Collapse
Affiliation(s)
- Marianne Dembeck
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
9
|
Pineau L, Burnashev N. Functional Analysis of NMDAR Subunit Components in Postsynaptic Currents of Identified Cells and Synapses in Brain Slices. Methods Mol Biol 2024; 2799:139-150. [PMID: 38727906 DOI: 10.1007/978-1-0716-3830-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.
Collapse
Affiliation(s)
- Louison Pineau
- Mediterranean Institute of Neurobiology (INMED), INSERM, Aix-Marseille University, Marseille, France
| | - Nail Burnashev
- Mediterranean Institute of Neurobiology (INMED), INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
10
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
11
|
Hernandez G, Kouwenhoven WM, Poirier E, Lebied K, Lévesque D, Rompré PP. Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors. PLoS One 2023; 18:e0293564. [PMID: 37930965 PMCID: PMC10627466 DOI: 10.1371/journal.pone.0293564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Glutamate relays a reward signal from the dorsal raphe (DR) to the ventral tegmental area (VTA). However, the role of the different subtypes of N-methyl-D-aspartate (NMDA) receptors is complex and not clearly understood. Therefore, we measured NMDA receptors subunits expression in limbic brain areas. In addition, we studied the effects of VTA down-regulation of GluN2C NMDA receptor on the reward signal that arises from DR electrical stimulation. METHODS Using qPCR, we identified the relative composition of the different Grin2a-d subunits of the NMDA receptors in several brain areas. Then, we used fluorescent in situ hybridization (FISH) to evaluate the colocalization of Grin2c and tyrosine hydroxylase (TH) mRNA in VTA neurons. To assess the role of GluN2C in brain stimulation reward, we downregulated this receptor using small interfering RNA (siRNA) in rats self-stimulating for electrical pulses delivered to the DR. To delineate further the specific role of GluN2C in relaying the reward signal, we pharmacologically altered the function of VTA NMDA receptors by bilaterally microinjecting the NMDA receptor antagonist PPPA. RESULTS We identified GluN2C as the most abundant subunit of the NMDA receptor expressed in the VTA. FISH revealed that about 50% of TH-positive neurons colocalize with Grin2c transcript. siRNA manipulation produced a selective down-regulation of the GluN2C protein subunit and a significant reduction in brain stimulation reward. Interestingly, PPPA enhanced brain stimulation reward, but only in rats that received the nonactive RNA sequence. CONCLUSION The present results suggest that VTA glutamate neurotransmission relays a reward signal initiated by DR stimulation by acting on GluN2C NMDA receptors.
Collapse
Affiliation(s)
- Giovanni Hernandez
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Willemieke M. Kouwenhoven
- Département de Pharmacologie et Physiologie (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Emmanuelle Poirier
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Karim Lebied
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Daniel Lévesque
- Département de Pharmacie (Faculté de Pharmacie), Université de Montréal, Montréal, QC, Canada
| | - Pierre-Paul Rompré
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Arkhipov VI, Chernomorets IY, Zhuikova NS, Fedorov DA, Pershina EV. The Role of NMDA Receptor Subunits in the Effect of Memantine on the Brain of Healthy Animals. Bull Exp Biol Med 2023; 175:446-449. [PMID: 37768458 DOI: 10.1007/s10517-023-05882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 09/29/2023]
Abstract
The non-competitive NMDA glutamate receptor antagonist memantine has neuroprotective properties and is the first non-cholinergic drug approved for the treatment of Alzheimer's disease. The purpose of this work was to test the hypothesis that injections of memantine to healthy animals can affect the subunit composition of NMDA receptors in the brain, which may explain the effects of its chronic administration. For this, the expression of subunits GluN1, GluN2A, GluN2B, and GluN2C was studied in the hippocampus and prefrontal cortex of rats after single or five subchronic injections of memantine. The results showed that the GluN2C subunit (GRIN2C) plays an important role in the effects of memantine; against the background of memantine treatment, the expression of this subunit markedly decreased in the prefrontal cortex, but not in the hippocampus, which significantly affected the excitation/inhibition balance in cortical structures.
Collapse
Affiliation(s)
- V I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - I Yu Chernomorets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - N S Zhuikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - D A Fedorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - E V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
13
|
Bechthold E, Grey L, Diamant E, Schmidt J, Steigerwald R, Zhao F, Hansen KB, Bunch L, Clausen RP, Wünsch B. In vitro ADME characterization of a very potent 3-acylamino-2-aminopropionic acid-derived GluN2C-NMDA receptor agonist and its ester prodrugs. Biol Chem 2023; 404:255-265. [PMID: 36427206 PMCID: PMC10012426 DOI: 10.1515/hsz-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12a-c of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12a-c showed higher lipophilicity (higher logD 7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12a-c were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12a-c. The isopropyl ester 12c showed a promising logD 7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.
Collapse
Affiliation(s)
- Elena Bechthold
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Lucie Grey
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Emil Diamant
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Judith Schmidt
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Ruben Steigerwald
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhua West Road, Lixia District, Ji’nan, Shandong, 250012, China
| | - Kasper B. Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT59812, USA
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| |
Collapse
|
14
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2022.9050020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.
Collapse
Affiliation(s)
- Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaohui Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
16
|
Taksokhan A, Kim K. Lateral Preoptic Hypothalamus: A Window to Understanding Insomnia. J Neurosci 2023; 43:682-684. [PMID: 36725343 PMCID: PMC9899078 DOI: 10.1523/jneurosci.1560-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Anita Taksokhan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Kyungwook Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
17
|
Chen H, Dong Y, Wu Y, Yi F. Targeting NMDA receptor signaling for therapeutic intervention in brain disorders. Rev Neurosci 2023:revneuro-2022-0096. [PMID: 36586105 DOI: 10.1515/revneuro-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.
Collapse
Affiliation(s)
- He Chen
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuanping Dong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yun Wu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
18
|
Al-Absi AR, Thambiappa SK, Khan AR, Glerup S, Sanchez C, Landau AM, Nyengaard JR. Df(h22q11)/+ mouse model exhibits reduced binding levels of GABA A receptors and structural and functional dysregulation in the inhibitory and excitatory networks of hippocampus. Mol Cell Neurosci 2022; 122:103769. [PMID: 35988854 DOI: 10.1016/j.mcn.2022.103769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The 22q11.2 hemizygous deletion confers high risk for multiple neurodevelopmental disorders. Inhibitory signaling, largely regulated through GABAA receptors, is suggested to serve a multitude of brain functions that are disrupted in the 22q11.2 deletion syndrome. We investigated the putative deficit of GABAA receptors and the potential substrates contributing to the inhibitory and excitatory dysregulations in hippocampal networks of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. The Df(h22q11)/+ mice exhibited impairments in several hippocampus-related functional domains, represented by impaired spatial memory and sensory gating functions. Autoradiography using the [3H]muscimol tracer revealed a significant reduction in GABAA receptor binding in the CA1 and CA3 subregions, together with a loss of GAD67+ interneurons in CA1 of Df(h22q11)/+ mice. Furthermore, electrophysiology recordings exhibited significantly higher neuronal activity in CA3, in response to the GABAA receptor antagonist, bicuculline, as compared with wild type mice. Density and volume of dendritic spines in pyramidal neurons were reduced and Sholl analysis also showed a reduction in the complexity of basal dendritic tree in CA1 and CA3 subregions of Df(h22q11)/+ mice. Overall, our findings demonstrate that hemizygous deletion in the 22q11.2 locus leads to dysregulations in the inhibitory circuits, involving reduced binding levels of GABAA receptors, in addition to functional and structural modulations of the excitatory networks of hippocampus.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Sakeerthi Kethees Thambiappa
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Ahmad Raza Khan
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India.
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Denmark.
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark.
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| |
Collapse
|
19
|
Shelkar GP, Gandhi PJ, Liu J, Dravid SM. Cocaine preference and neuroadaptations are maintained by astrocytic NMDA receptors in the nucleus accumbens. SCIENCE ADVANCES 2022; 8:eabo6574. [PMID: 35867797 PMCID: PMC9307248 DOI: 10.1126/sciadv.abo6574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cocaine-associated memories induce cravings and interfere with the ability of users to cease cocaine use. Reducing the strength of cue-drug memories by facilitating extinction may have therapeutic value for the treatment of cocaine addiction. Here, we demonstrate the expression of GluN1/2A/2C NMDA receptor currents in astrocytes in the nucleus accumbens core. Selective ablation of GluN1 subunit from astrocytes in the nucleus accumbens enhanced extinction of cocaine preference memory but did not affect cocaine conditioning or reinstatement. Repeated cocaine exposure up-regulated GluN2C subunit expression and increased astrocytic NMDA receptor currents. Furthermore, intra-accumbal inhibition of GluN2C/2D-containing receptors and GluN2C subunit deletion facilitated extinction of cocaine memory. Cocaine-induced neuroadaptations including dendritic spine maturation and AMPA receptor recruitment were absent in GluN2C knockout mice. Impaired retention of cocaine preference memory in GluN2C knockout mice was restored by exogenous administration of recombinant glypican 4. Together, these results identify a previously unknown astrocytic GluN2C-containing NMDA receptor mechanism underlying maintenance of cocaine preference memory.
Collapse
Affiliation(s)
- Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Pauravi J. Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | | |
Collapse
|
20
|
Discrimination of motor and sensorimotor effects of phencyclidine and MK-801: Involvement of GluN2C-containing NMDA receptors in psychosis-like models. Neuropharmacology 2022; 213:109079. [PMID: 35561792 DOI: 10.1016/j.neuropharm.2022.109079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Non-competitive NMDA receptor (NMDA-R) antagonists like ketamine, phencyclidine (PCP) and MK-801 are routinely used as pharmacological models of schizophrenia. However, the NMDA-R subtypes, neuronal types (e.g., GABA vs. glutamatergic neurons) and brain regions involved in psychotomimetic actions are not fully understood. PCP activates thalamo-cortical circuits after NMDA-R blockade in reticular thalamic GABAergic neurons. GluN2C subunits are densely expressed in thalamus and cerebellum. Therefore, we examined their involvement in the behavioral and functional effects elicited by PCP and MK-801 using GluN2C knockout (GluN2CKO) and wild-type mice, under the working hypothesis that psychotomimetic effects should be attenuated in mutant mice. PCP and MK-801 induced a disorganized and meandered hyperlocomotion in both genotypes. Interestingly, stereotyped behaviors like circling/rotation, rearings and ataxia signs were dramatically reduced in GluN2CKO mice, indicating a better motor coordination in absence of GluN2C subunits. In contrast, other motor or sensorimotor (pre-pulse inhibition of the startle response) aspects of the behavioral syndrome remained unaltered by GluN2C deletion. PCP and MK-801 evoked a general pattern of c-fos activation in mouse brain (including thalamo-cortical networks) but not in the cerebellum, where they markedly reduced c-fos expression, with significant genotype differences paralleling those in motor coordination. Finally, resting-state fMRI showed an enhanced cortico-thalamic-cerebellar connectivity in GluN2CKO mice, less affected by MK-801 than controls. Hence, the GluN2C subunit allows the dissection of the behavioral alterations induced by PCP and MK-801, showing that some motor effects (in particular, motor incoordination), but not deficits in sensorimotor gating, likely depend on GluN2C-containing NMDA-R blockade in cerebellar circuits.
Collapse
|
21
|
Herold C, Ockermann PN, Amunts K. Behavioral Training Related Neurotransmitter Receptor Expression Dynamics in the Nidopallium Caudolaterale and the Hippocampal Formation of Pigeons. Front Physiol 2022; 13:883029. [PMID: 35600306 PMCID: PMC9114877 DOI: 10.3389/fphys.2022.883029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Learning and memory are linked to dynamic changes at the level of synapses in brain areas that are involved in cognitive tasks. For example, changes in neurotransmitter receptors are prerequisite for tuning signals along local circuits and long-range networks. However, it is still unclear how a series of learning events promotes plasticity within the system of neurotransmitter receptors and their subunits to shape information processing at the neuronal level. Therefore, we investigated the expression of different glutamatergic NMDA (GRIN) and AMPA (GRIA) receptor subunits, the GABAergic GABARG2 subunit, dopaminergic DRD1, serotonergic 5HTR1A and noradrenergic ADRA1A receptors in the pigeon's brain. We studied the nidopallium caudolaterale, the avian analogue of the prefrontal cortex, and the hippocampal formation, after training the birds in a rewarded stimulus-response association (SR) task and in a simultaneous-matching-to-sample (SMTS) task. The results show that receptor expression changed differentially after behavioral training compared to an untrained control group. In the nidopallium caudolaterale, GRIN2B, GRIA3, GRIA4, DRD1D, and ADRA1A receptor expression was altered after SR training and remained constantly decreased after the SMTS training protocol, while GRIA2 and DRD1A decreased only under the SR condition. In the hippocampal formation, GRIN2B decreased and GABARG2 receptor expression increased after SR training. After SMTS sessions, GRIN2B remained decreased, GABARG2 remained increased if compared to the control group. None of the investigated receptors differed directly between both conditions, although differentially altered. The changes in both regions mostly occur in favor of the stimulus response task. Thus, the present data provide evidence that neurotransmitter receptor expression dynamics play a role in the avian prefrontal cortex and the hippocampal formation for behavioral training and is uniquely, regionally and functionally associated to cognitive processes including learning and memory.
Collapse
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp N. Ockermann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany
| |
Collapse
|
22
|
Gawande DY, Kumar S Narasimhan K, Bhatt JM, Pavuluri R, Kesherwani V, Suryavanshi PS, Shelkar GP, Dravid SM. Glutamate delta 1 receptor regulates autophagy mechanisms and affects excitatory synapse maturation in the somatosensory cortex. Pharmacol Res 2022; 178:106144. [PMID: 35304260 PMCID: PMC9090310 DOI: 10.1016/j.phrs.2022.106144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
The glutamate delta family of receptors is composed of GluD1 and GluD2 and serve as synaptic organizers. We have previously demonstrated several autism-like molecular and behavioral phenotypes including an increase in dendritic spines in GluD1 knockout mice. Based on previous reports we evaluated whether disruption of autophagy mechanisms may account for these phenotypes. Mouse model with conditional deletion of GluD1 from excitatory neurons in the corticolimbic regions was utilized. GluD1 loss led to overactive Akt-mTOR pathway, higher p62 and a lower LC3-II/LC3-I ratio in the somatosensory cortex suggesting reduced autophagy. Excitatory elements were increased in number but had immature phenotype based on puncta size, lower AMPA subunit GluA1 expression and impaired development switch from predominantly GluN2B to mixed GluN2A/GluN2B subunit expression. Overactive Akt-mTOR signaling and impaired autophagy was also observed in dorsal striatum upon conditional ablation of GluD1 and in the prefrontal cortex and hippocampus in constitutive knockout. Finally, cognitive deficits in novel object recognition test and fear conditioning were observed in mice with conditional ablation of GluD1 from the corticolimbic regions. Together, these results demonstrate a novel function of GluD1 in the regulation of autophagy pathway which may underlie autism phenotypes and is relevant to the genetic association of GluD1 coding, GRID1 gene with autism and other developmental disorders.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Jay M Bhatt
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Varun Kesherwani
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Pratyush S Suryavanshi
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
23
|
Jing PB, Chen XH, Lu HJ, Gao YJ, Wu XB. Enhanced function of NR2C/2D-containing NMDA receptor in the nucleus accumbens contributes to peripheral nerve injury-induced neuropathic pain and depression in mice. Mol Pain 2022; 18:17448069211053255. [PMID: 35057644 PMCID: PMC8785348 DOI: 10.1177/17448069211053255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. In this study, spinal nerve ligation (SNL) induced a persistent sensory abnormity and depressive-like behavior. The whole-cell patch clamp recording on medium spiny neurons (MSNs) in the NAc showed that the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) was significantly increased when membrane potential held at −40 to 0 mV in mice after 14 days of SNL operation. In addition, selective inhibition of NR2C/2D-containing NMDARs with PPDA caused a larger decrease on peak amplitude of NMDAR-EPSCs in SNL than that in sham-operated mice. Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.
Collapse
Affiliation(s)
- Peng-Bo Jing
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Hong Chen
- Department of Anesthesiology, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
24
|
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 2021; 199:108805. [PMID: 34560056 PMCID: PMC8525401 DOI: 10.1016/j.neuropharm.2021.108805] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.
Collapse
Affiliation(s)
- Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology, and Otolaryngology, University of Colorado, School of Medicine and Children's Hospital Colorado, United States.
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, United States
| | - Ilona Krey
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| | - Chad R Camp
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Johannes Lemke
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
25
|
Chipman PH, Fung CCA, Pazo Fernandez A, Sawant A, Tedoldi A, Kawai A, Ghimire Gautam S, Kurosawa M, Abe M, Sakimura K, Fukai T, Goda Y. Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. eLife 2021; 10:70818. [PMID: 34693906 PMCID: PMC8594917 DOI: 10.7554/elife.70818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.
Collapse
Affiliation(s)
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | | | - Angelo Tedoldi
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Kawai
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | | | | | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| |
Collapse
|
26
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
27
|
Shelkar GP, Liu J, Dravid SM. Astrocytic NMDA Receptors in the Basolateral Amygdala Contribute to Facilitation of Fear Extinction. Int J Neuropsychopharmacol 2021; 24:907-919. [PMID: 34363482 PMCID: PMC8598288 DOI: 10.1093/ijnp/pyab055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Enhancement of N-methyl-D-aspartate (NMDA) receptor function using glycine-site agonist D-cycloserine is known to facilitate fear extinction, providing a means to augment cognitive behavioral therapy in anxiety disorders. A novel class of glycine-site agonists has recently been identified, and we have found that the prototype, AICP, is more effective than D-cycloserine in modulating neuronal function. METHODS Using novel glycine-site agonist AICP, local infusion studies, and genetic models, we elucidated the role of GluN2C-containing receptors in fear extinction. RESULTS We tested the effect of intracerebroventricular injection of AICP on fear extinction and found a robust facilitation of fear extinction. This effect was dependent on GluN2C subunit, consistent with superagonist action of AICP at GluN2C-containing receptors. Local infusion studies in wild-type and GluN2C knockout mice suggested that AICP produces its effect via GluN2C-containing receptors in the basolateral amygdala (BLA). Furthermore, consistent with astrocytic expression of GluN2C subunit in the amygdala, we found that AICP did not facilitate fear extinction in mice with conditional deletion of obligatory GluN1 subunit from astrocytes. Importantly, chemogenetic activation of astrocytes in the basolateral amygdala facilitated fear extinction. Acutely, AICP was found to facilitate excitatory neurotransmission in the BLA via presynaptic GluN2C-dependent mechanism. Immunohistochemical studies suggest that AICP-mediated facilitation of fear extinction involves synaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor GluA1 subunit. CONCLUSION These results identify a unique role of astrocytic NMDA receptors composed of GluN2C subunit in extinction of conditioned fear memory and demonstrate that further development of recently identified superagonists of GluN2C-containing receptors may have utility for anxiety disorders.
Collapse
Affiliation(s)
- Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA,Correspondence: Gajanan P. Shelkar, PhD, Department of Pharmacology and Neuroscience, Creighton University, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA ()
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
28
|
Gawande DY, Shelkar GP, Liu J, Ayala AD, Pavuluri R, Choi D, Smith Y, Dravid SM. Glutamate Delta-1 Receptor Regulates Inhibitory Neurotransmission in the Nucleus Accumbens Core and Anxiety-Like Behaviors. Mol Neurobiol 2021; 58:4787-4801. [PMID: 34173171 DOI: 10.1007/s12035-021-02461-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Abstract
Glutamate delta-1 receptor (GluD1) is a member of the ionotropic glutamate receptor family expressed at excitatory synapses and functions as a synaptogenic protein by interacting with presynaptic neurexin. We have previously shown that GluD1 plays a role in the maintenance of excitatory synapses in a region-specific manner. Loss of GluD1 leads to reduced excitatory neurotransmission in medium spiny neurons (MSNs) in the dorsal striatum, but not in the ventral striatum (both core and shell of the nucleus accumbens (NAc)). Here, we found that GluD1 loss leads to reduced inhibitory neurotransmission in MSNs of the NAc core as evidenced by a reduction in the miniature inhibitory postsynaptic current frequency and amplitude. Presynaptic effect of GluD1 loss was further supported by an increase in paired pulse ratio of evoked inhibitory responses indicating reduced release probability. Furthermore, analysis of GAD67 puncta indicated a reduction in the number of putative inhibitory terminals. The changes in mIPSC were independent of cannabinoid or dopamine signaling. A role of feed-forward inhibition was tested by selective ablation of GluD1 from PV neurons which produced modest reduction in mIPSCs. Behaviorally, local ablation of GluD1 from NAc led to hypolocomotion and affected anxiety- and depression-like behaviors. When GluD1 was ablated from the dorsal striatum, several behavioral phenotypes were altered in opposite manner compared to GluD1 ablation from NAc. Our findings demonstrate that GluD1 regulates inhibitory neurotransmission in the NAc by a combination of pre- and postsynaptic mechanisms which is critical for motor control and behaviors relevant to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Anna D Ayala
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Diane Choi
- Yerkes National Primate Research Center, Atlanta, GA, 30329, USA
- UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA, 30329, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, GA, 30329, USA
- UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA, 30329, USA
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
29
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
30
|
Histamine H 1 receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nat Commun 2021; 12:1142. [PMID: 33602941 PMCID: PMC7893046 DOI: 10.1038/s41467-021-21476-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Negative symptoms in schizophrenia strongly contribute to poor functional outcomes, however its pathogenesis is still unclear. Here, we found that histamine H1 receptor (H1R) expression in basal forebrain (BF) cholinergic neurons was decreased in patients with schizophrenia having negative symptoms. Deletion of H1R gene in cholinergic neurons in mice resulted in functional deficiency of cholinergic projections from the BF to the prefrontal cortex and in the formation of sensorimotor gating deficit, social impairment and anhedonia-like behavior. These behavioral deficits can be rescued by re-expressing H1R or by chemogenetic activation of cholinergic neurons in the BF. Direct chemogenetic inhibition of BF cholinergic neurons produced such behavioral deficits and also increased the susceptibility to hyperlocomotion. Our results suggest that the H1R deficiency in BF cholinergic neurons is critical for sensorimotor gating deficit, social impairments and anhedonia-like behavior. This finding may help to understand the genetic and biochemical bases of negative symptoms in schizophrenia. Social impairment and anhedonia are common negative symptoms in patients with schizophrenia. Here, the authors show that the histamine H1 receptor in cholinergic neurons in the basal forebrain has a critical role in sensorimotor gating, social behaviour, and anhedonia-like behaviour in mice.
Collapse
|
31
|
Shah K, King GD, Jiang H. A chromatin modulator sustains self-renewal and enables differentiation of postnatal neural stem and progenitor cells. J Mol Cell Biol 2021; 12:4-16. [PMID: 31065682 PMCID: PMC7052987 DOI: 10.1093/jmcb/mjz036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022] Open
Abstract
It remains unknown whether H3K4 methylation, an epigenetic modification associated with gene activation, regulates fate determination of the postnatal neural stem and progenitor cells (NSPCs). By inactivating the Dpy30 subunit of the major H3K4 methyltransferase complexes in specific regions of mouse brain, we demonstrate a crucial role of efficient H3K4 methylation in maintaining both the self-renewal and differentiation capacity of postnatal NSPCs. Dpy30 deficiency disrupts development of hippocampus and especially the dentate gyrus and subventricular zone, the major regions for postnatal NSC activities. Dpy30 is indispensable for sustaining the self-renewal and proliferation of NSPCs in a cell-intrinsic manner and also enables the differentiation of mouse and human neural progenitor cells to neuronal and glial lineages. Dpy30 directly regulates H3K4 methylation and the induction of several genes critical in neurogenesis. These findings link a prominent epigenetic mechanism of gene expression to the fundamental properties of NSPCs and may have implications in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kushani Shah
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Liu J, Shelkar GP, Sarode LP, Gawande DY, Zhao F, Clausen RP, Ugale RR, Dravid SM. Facilitation of GluN2C-containing NMDA receptors in the external globus pallidus increases firing of fast spiking neurons and improves motor function in a hemiparkinsonian mouse model. Neurobiol Dis 2021; 150:105254. [PMID: 33421565 PMCID: PMC8063913 DOI: 10.1016/j.nbd.2021.105254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson’s disease (PD). The knowledge of contribution of NMDA receptors to GPe function is limited. Here, we demonstrate that fast spiking neurons in the GPe express NMDA receptor currents sensitive to GluN2C/GluN2D-selective inhibitors and glycine site agonist with higher efficacy at GluN2C-containing receptors. Furthermore, using a novel reporter model, we demonstrate the expression of GluN2C subunits in PV neurons in the GPe which project to subthalamic nuclei. GluN2D subunit was also found to localize to PV neurons in GPe. Ablation of GluN2C subunit does not affect spontaneous firing of fast spiking neurons. In contrast, facilitating the function of GluN2C-containing receptors using glycine-site NMDA receptor agonists, D-cycloserine (DCS) or AICP, increased the spontaneous firing frequency of PV neurons in a GluN2C-dependent manner. Finally, we demonstrate that local infusion of DCS or AICP into the GPe improved motor function in a mouse model of PD. Together, these results demonstrate that GluN2C-containing receptors and potentially GluN2D-containing receptors in the GPe may serve as a therapeutic target for alleviating motor dysfunction in PD and related disorders.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Fabao Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rasmus Praetorius Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Shashank Manohar Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America.
| |
Collapse
|
33
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
34
|
Mitogen-activated protein kinase (MAPK) signalling corresponds with distinct behavioural profiles in a rat model of maternal immune activation. Behav Brain Res 2020; 396:112876. [PMID: 32846206 DOI: 10.1016/j.bbr.2020.112876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Dysfunction within the mitogen-activated protein kinase (MAPK) cascade has been recognised as a pathological feature of schizophrenia, however the possible mechanistic connection to the disease phenotype remains unexplored. Using the maternal immune activation (MIA) rat model of schizophrenia, the present study investigated the involvement of prefrontal cortex (PFC) MAPK in sensorimotor gating and adaptive learning deficits via western blot, pre-pulse inhibition (PPI) testing, and a contingency degradation operant task, respectively. Principle findings identified a negative relationship between basal MAPK expression and PPI exclusively in MIA rats, suggesting a modulatory role for MAPK in sensorimotor gating pathology. In addition, the correlation between MAPK and adaptive learning capacity observed in control rats was absent for rats exposed to MIA. Findings are considered with respect to the glutamatergic NMDA hypofunction theory of schizophrenia, as well as the critical role of PFC in contingency learning.
Collapse
|
35
|
Liu J, Shelkar GP, Gandhi PJ, Gawande DY, Hoover A, Villalba RM, Pavuluri R, Smith Y, Dravid SM. Striatal glutamate delta-1 receptor regulates behavioral flexibility and thalamostriatal connectivity. Neurobiol Dis 2020; 137:104746. [PMID: 31945419 PMCID: PMC7204410 DOI: 10.1016/j.nbd.2020.104746] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022] Open
Abstract
Impaired behavioral flexibility and repetitive behavior is a common phenotype in autism and other neuropsychiatric disorders, but the underlying synaptic mechanisms are poorly understood. The trans-synaptic glutamate delta (GluD)-Cerebellin 1-Neurexin complex, critical for synapse formation/maintenance, represents a vulnerable axis for neuropsychiatric diseases. We have previously found that GluD1 deletion results in reversal learning deficit and repetitive behavior. In this study, we show that selective ablation of GluD1 from the dorsal striatum impairs behavioral flexibility in a water T-maze task. We further found that striatal GluD1 is preferentially found in dendritic shafts, and more frequently associated with thalamic than cortical glutamatergic terminals suggesting localization to projections from the thalamic parafascicular nucleus (Pf). Conditional deletion of GluD1 from the striatum led to a selective loss of thalamic, but not cortical, terminals, and reduced glutamatergic neurotransmission. Optogenetic studies demonstrated functional changes at thalamostriatal synapses from the Pf, but no effect on the corticostriatal system, upon ablation of GluD1 in the dorsal striatum. These studies suggest a novel molecular mechanism by which genetic variations associated with neuropsychiatric disorders may impair behavioral flexibility, and reveal a unique principle by which GluD1 subunit regulates forebrain circuits.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Pauravi J Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Andrew Hoover
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Rosa M Villalba
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA; Dept. Neurology, Emory University, Atlanta, GA 30329, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
36
|
Parente DJ, Morris SM, McKinstry RC, Brandt T, Gabau E, Ruiz A, Shinawi M. Sorting nexin 27 (SNX27) variants associated with seizures, developmental delay, behavioral disturbance, and subcortical brain abnormalities. Clin Genet 2019; 97:437-446. [PMID: 31721175 DOI: 10.1111/cge.13675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022]
Abstract
Sorting nexin 27 (SNX27) influences the composition of the cellular membrane via regulation of selective endosomal recycling. Molecular analysis indicates that SNX27 regulates numerous cellular processes through promiscuous interactions with its receptor cargos. SNX27 deficient (Snx27 -/- ) mice exhibit reduced embryonic survival, marked postnatal growth restriction and lethality. Haploinsufficient mice (Snx27 +/- ) show a less severe phenotype, with deficits in learning, memory, synaptic transmission and neuronal plasticity. One family previously reported with a homozygous SNX27 frameshift variant (c.515_516del;p.His172Argfs*6), exhibited infantile intractable myoclonic epilepsy, axial hypotonia, startle-like movements, cardiac septal defects, global developmental delay, failure to thrive, recurrent chest infections, persistent hypoxemia and early death secondary to respiratory failure. Here, we report two additional patients with compound heterozygous SNX27 variants, that are predicted to be damaging: (a) c.510C>G;p.Tyr170* and c.1295G>A;p.Cys432Tyr, and (b) c.782dupT;p.Leu262Profs*6 and c.989G>A;p.Arg330His. They exhibit global developmental delay, behavioral disturbance, epilepsy, some dysmorphic features and subcortical white matter abnormalities. In addition, possible connective tissue involvement was noted. Epilepsy, developmental delays and subcortical white matter abnormalities appear to be core features of SNX27-related disorders. We correlate the observed phenotype with available in vitro, in vivo and proteomic data and suggest additional possible molecular mediators of SNX27-related pathology.
Collapse
Affiliation(s)
- Daniel J Parente
- Department of Family Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert C McKinstry
- Pediatric Radiology and Pediatric Neuroradiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Mao Z, He S, Mesnard C, Synowicki P, Zhang Y, Chung L, Wiesman AI, Wilson TW, Monaghan DT. NMDA receptors containing GluN2C and GluN2D subunits have opposing roles in modulating neuronal oscillations; potential mechanism for bidirectional feedback. Brain Res 2019; 1727:146571. [PMID: 31786200 DOI: 10.1016/j.brainres.2019.146571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
NMDA receptor (NMDAR) antagonists such as ketamine, can reproduce many of the symptoms of schizophrenia. A reliable indicator of NMDAR channel blocker action in vivo is the augmentation of neuronal oscillation power. Since the coordinated and rhythmic activation of neuronal assemblies (oscillations) is necessary for perception, cognition and working memory, their disruption (inappropriate augmentation or inhibition of oscillatory power or inter-regional coherence) both in psychiatric conditions and with NMDAR antagonists may reflect the underlying defects causing schizophrenia symptoms. NMDAR antagonists and knockout (KO) mice were used to evaluate the role of GluN2C and GluN2D NMDAR subunits in generating NMDAR antagonist-induced oscillations. We find that basal oscillatory power was elevated in GluN2C-KO mice, especially in the low gamma frequencies while there was no statistically significant difference in basal oscillations between WT and GluN2D-KO mice. Compared to wildtype (WT) mice, NMDAR channel blockers caused a greater increase in oscillatory power in GluN2C-KO mice and were relatively ineffective in inducing oscillations in GluN2D-KO mice. In contrast, preferential blockade of GluN2A- and GluN2B-containing receptors induced oscillations that did not appear to be changed in either KO animal. We propose a model wherein NMDARs containing GluN2C in astrocytes and GluN2D in interneurons serve to detect local cortical excitatory synaptic activity and provide excitatory and inhibitory feedback, respectively, to local populations of postsynaptic excitatory neurons and thereby bidirectionally modulate oscillatory power.
Collapse
Affiliation(s)
- Zhihao Mao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Shengxi He
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Christopher Mesnard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Paul Synowicki
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Yuning Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Lucy Chung
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
38
|
Liu J, Shelkar GP, Zhao F, Clausen RP, Dravid SM. Modulation of burst firing of neurons in nucleus reticularis of the thalamus by GluN2C-containing NMDA receptors. Mol Pharmacol 2019; 96:mol.119.116780. [PMID: 31160332 PMCID: PMC6620419 DOI: 10.1124/mol.119.116780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The GluN2C subunit of the NMDA receptor is enriched in the neurons in nucleus reticularis of the thalamus (nRT), but its role in regulating their function is not well understood. We found that deletion of GluN2C subunit did not affect spike frequency in response to depolarizing current injection or hyperpolarization-induced rebound burst firing of nRT neurons. D-cycloserine or CIQ (GluN2C/GluN2D positive allosteric modulator) did not affect the depolarization-induced spike frequency in nRT neurons. A newly identified highly potent and efficacious co-agonist of GluN1/GluN2C NMDA receptors, AICP, was found to reduce the spike frequency and burst firing of nRT neurons in wildtype but not GluN2C knockout. This effect was potentially due to facilitation of GluN2C-containing receptors because inhibition of NMDA receptors by AP5 did not affect spike frequency in nRT neurons. We evaluated the effect of intracerebroventricular injection of AICP. AICP did not affect basal locomotion or prepulse inhibition but facilitated MK-801-induced hyperlocomotion. This effect was observed in wildtype but not in GluN2C knockout mice demonstrating that AICP produces GluN2C-selective effects in vivo Using a chemogenetic approach we examined the role of nRT in this behavioral effect. Gq or Gi coupled DREADDs were selectively expressed in nRT neurons using cre-dependent viral vectors and PV-Cre mouse line. We found that similar to AICP effect, activation of Gq but not Gi coupled DREADD facilitated MK-801-induced hyperlocomotion. Together, these results identify a unique role of GluN2C-containing receptors in the regulation of nRT neurons and suggest GluN2C-selective in vivo targeting of NMDA receptors by AICP. SIGNIFICANCE STATEMENT: The nucleus reticularis of the thalamus composed of GABAergic neurons is termed as guardian of the gateway and is an important regulator of corticothalamic communication which may be impaired in autism, non-convulsive seizures and other conditions. We found that strong facilitation of tonic activity of GluN2C subtype of NMDA receptors using AICP, a newly identified glycine-site agonist of NMDA receptors, modulates the function of reticular thalamus neurons. AICP was also able to produce GluN2C-dependent behavioral effects in vivo. Together, these finding identify a novel mechanism and a pharmacological tool to modulate activity of reticular thalamic neurons in disease states.
Collapse
|
39
|
Shelkar GP, Pavuluri R, Gandhi PJ, Ravikrishnan A, Gawande DY, Liu J, Stairs DJ, Ugale RR, Dravid SM. Differential effect of NMDA receptor GluN2C and GluN2D subunit ablation on behavior and channel blocker-induced schizophrenia phenotypes. Sci Rep 2019; 9:7572. [PMID: 31110197 PMCID: PMC6527682 DOI: 10.1038/s41598-019-43957-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
The GluN2C- and GluN2D-containing NMDA receptors are distinct from GluN2A- and GluN2B-containing receptors in many aspects including lower sensitivity to Mg2+ block and lack of desensitization. Recent studies have highlighted the unique contribution of GluN2C and GluN2D subunits in various aspects of neuronal and circuit function and behavior, however a direct comparison of the effect of ablation of these subunits in mice on pure background strain has not been conducted. Using knockout-first strains for the GRIN2C and GRIN2D produced on pure C57BL/6N strain, we compared the effect of partial or complete ablation of GluN2C and GluN2D subunit on various behaviors relevant to mental disorders. A large number of behaviors described previously in GluN2C and GluN2D knockout mice were reproduced in these mice, however, some specific differences were also observed possibly representing strain effects. We also examined the response to NMDA receptor channel blockers in these mouse strains and surprisingly found that unlike previous reports GluN2D knockout mice were not resistant to phencyclidine-induced hyperlocomotion. Interestingly, the GluN2C knockout mice showed reduced sensitivity to phencyclidine-induced hyperlocomotion. We also found that NMDA receptor channel blocker produced a deficit in prepulse inhibition which was prevented by a GluN2C/2D potentiator in wildtype and GluN2C heterozygous mice but not in GluN2C knockout mice. Together these results demonstrate a unique role of GluN2C subunit in schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Gajanan P Shelkar
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Pauravi J Gandhi
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Dinesh Y Gawande
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA
| | | | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, NE, 68178, USA.
| |
Collapse
|
40
|
Hanson E, Armbruster M, Lau LA, Sommer ME, Klaft ZJ, Swanger SA, Traynelis SF, Moss SJ, Noubary F, Chadchankar J, Dulla CG. Tonic Activation of GluN2C/GluN2D-Containing NMDA Receptors by Ambient Glutamate Facilitates Cortical Interneuron Maturation. J Neurosci 2019; 39:3611-3626. [PMID: 30846615 PMCID: PMC6510335 DOI: 10.1523/jneurosci.1392-18.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 02/03/2023] Open
Abstract
Developing cortical GABAergic interneurons rely on genetic programs, neuronal activity, and environmental cues to construct inhibitory circuits during early postnatal development. Disruption of these events can cause long-term changes in cortical inhibition and may be involved in neurological disorders associated with inhibitory circuit dysfunction. We hypothesized that tonic glutamate signaling in the neonatal cortex contributes to, and is necessary for, the maturation of cortical interneurons. To test this hypothesis, we used mice of both sexes to quantify extracellular glutamate concentrations in the cortex during development, measure ambient glutamate-mediated activation of developing cortical interneurons, and manipulate tonic glutamate signaling using subtype-specific NMDA receptor antagonists in vitro and in vivo We report that ambient glutamate levels are high (≈100 nm) in the neonatal cortex and decrease (to ≈50 nm) during the first weeks of life, coincident with increases in astrocytic glutamate uptake. Consistent with elevated ambient glutamate, putative parvalbumin-positive interneurons in the cortex (identified using G42:GAD1-eGFP reporter mice) exhibit a transient, tonic NMDA current at the end of the first postnatal week. GluN2C/GluN2D-containing NMDA receptors mediate the majority of this current and contribute to the resting membrane potential and intrinsic properties of developing putative parvalbumin interneurons. Pharmacological blockade of GluN2C/GluN2D-containing NMDA receptors in vivo during the period of tonic interneuron activation, but not later, leads to lasting decreases in interneuron morphological complexity and causes deficits in cortical inhibition later in life. These results demonstrate that dynamic ambient glutamate signaling contributes to cortical interneuron maturation via tonic activation of GluN2C/GluN2D-containing NMDA receptors.SIGNIFICANCE STATEMENT Inhibitory GABAergic interneurons make up 20% of cortical neurons and are critical to controlling cortical network activity. Dysfunction of cortical inhibition is associated with multiple neurological disorders, including epilepsy. Establishing inhibitory cortical networks requires in utero proliferation, differentiation, and migration of immature GABAergic interneurons, and subsequent postnatal morphological maturation and circuit integration. Here, we demonstrate that ambient glutamate provides tonic activation of immature, putative parvalbumin-positive GABAergic interneurons in the neonatal cortex via high-affinity NMDA receptors. When this activation is blocked, GABAergic interneuron maturation is disrupted, and cortical networks exhibit lasting abnormal hyperexcitability. We conclude that temporally precise activation of developing cortical interneurons by ambient glutamate is critically important for establishing normal cortical inhibition.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Zin-Juan Klaft
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Sharon A Swanger
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Jayashree Chadchankar
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
| |
Collapse
|
41
|
miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation. Sci Rep 2019; 9:3445. [PMID: 30837489 PMCID: PMC6401137 DOI: 10.1038/s41598-019-38910-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNA-124 (miR-124) is evolutionarily highly conserved among species and one of the most abundantly expressed miRNAs in the developing and mature central nervous system (CNS). Previous studies reported that miR-124 plays a role in CNS development, such as neuronal differentiation, maturation, and survival. However, the role of miR-124 in normal brain function has not yet been revealed. Here, we subjected miR-124-1+/− mice, to a comprehensive behavioral battery. We found that miR-124-1+/− mice showed impaired prepulse inhibition (PPI), methamphetamine-induced hyperactivity, and social deficits. Whole cell recordings using prefrontal cortex (PFC) slices showed enhanced synaptic transmission in layer 5 pyramidal cells in the miR-124-1+/− PFC. Based on the results of behavioral and electrophysiological analysis, we focused on genes involved in the dopaminergic system and identified a significant increase of Drd2 expression level in the miR-124-1+/− PFC. Overexpression or knockdown of Drd2 in the control or miR-124-1+/− PFC demonstrates that aberrant Drd2 signaling leads to impaired PPI. Furthermore, we identified that expression of glucocorticoid receptor gene Nr3c1, which enhances Drd2 expression, increased in the miR-124-1+/− PFC. Taken together, the current study suggests that miR-124 dosage modulates PFC function through repressing the Drd2 pathway, suggesting a critical role of miR-124 in normal PFC function.
Collapse
|
42
|
Taraschenko O, Fox HS, Pittock SJ, Zekeridou A, Gafurova M, Eldridge E, Liu J, Dravid SM, Dingledine R. A mouse model of seizures in anti-N-methyl-d-aspartate receptor encephalitis. Epilepsia 2019; 60:452-463. [PMID: 30740690 PMCID: PMC6684284 DOI: 10.1111/epi.14662] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Seizures develop in 80% of patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis, and these represent a major cause of morbidity and mortality. Anti-NMDAR antibodies have been linked to memory loss in encephalitis; however, their role in seizures has not been established. We determined whether anti-NMDAR antibodies from autoimmune encephalitis patients are pathogenic for seizures. METHODS We performed continuous intracerebroventricular infusion of cerebrospinal fluid (CSF) or purified immunoglobulin (IgG) from the CSF of patients with anti-NMDAR encephalitis or polyclonal rabbit anti-NMDAR IgG, in male C57BL/6 mice. Seizure status during a 2-week treatment was assessed with video-electroencephalography. We assessed memory, anxiety-related behavior, and motor function at the end of treatment and assessed the extent of neuronal damage and gliosis in the CA1 region of hippocampus. We also performed whole-cell patch recordings from the CA1 pyramidal neurons in hippocampal slices of mice with seizures. RESULTS Prolonged exposure to rabbit anti-NMDAR IgG, patient CSF, or human IgG purified from the CSF of patients with encephalitis induced seizures in 33 of 36 mice. The median number of seizures recorded in 2 weeks was 13, 39, and 35 per mouse in these groups, respectively. We observed only 18 brief nonconvulsive seizures in 11 of 29 control mice (median seizure count of 0) infused with vehicle (n = 4), normal CSF obtained from patients with noninflammatory central nervous system (CNS) conditions (n = 12), polyclonal rabbit IgG (n = 7), albumin (n = 3), and normal human IgG (n = 3). We did not observe memory deficits, anxiety-related behavior, or motor impairment measured at 2 weeks in animals treated with CSF from affected patients or rabbit IgG. Furthermore, there was no evidence of hippocampal cell loss or astrocyte proliferation in the same mice. SIGNIFICANCE Our findings indicate that autoantibodies can induce seizures in anti-NMDAR encephalitis and offer a model for testing novel therapies for refractory autoimmune seizures.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Sean J. Pittock
- Departments of Neurology, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Anastasia Zekeridou
- Departments of Neurology, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Maftuna Gafurova
- University of Nebraska Omaha, College of Arts and Sciences, Omaha, NE
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE
| | | | - Raymond Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
43
|
Glutamate delta-1 receptor regulates cocaine-induced plasticity in the nucleus accumbens. Transl Psychiatry 2018; 8:219. [PMID: 30315226 PMCID: PMC6185950 DOI: 10.1038/s41398-018-0273-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Cocaine exposure induces plasticity of glutamatergic synapses of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), which has been proposed to contribute to its addictive behavior. The mechanisms underlying cocaine-induced plasticity are not fully understood. The orphan glutamate delta-1 (GluD1) receptor is a member of the ionotropic glutamate receptor family but does not function as a typical ligand-gated ion channel. Instead it serves a synaptogenic function by interacting with presynaptic Neurexin protein. Recent neuroanatomical studies have demonstrated enriched expression of GluD1 in the NAc but its role in reward behavior, MSN function, and drug-induced plasticity remains unknown. Using a combination of constitutive and conditional GluD1 KO models, we evaluated the effect of GluD1 ablation on cocaine-conditioned place preference (CPP) and cocaine-induced structural and functional plasticity. GluD1 KO mice showed higher cocaine CPP. Selective ablation of GluD1 from striatal neurons but not cortico-limbic excitatory neurons reproduced higher CPP. Higher cocaine preference in GluD1 KO correlated with an increase in spine density, greater maturation of dendritic spines, and basally upregulated spine-regulating active cofilin. GluD1 loss did not affect basal excitatory neurotransmission or plasticity but masked the generation of cocaine-induced silent synapses. Finally, loss of GluD1 increased the GluN2B subunit contribution to NMDA receptor currents in MSNs and a partial agonist of GluN2B-containing NMDA receptors normalized the higher active cofilin and cocaine preference in GluD1 KO mice. Together, these findings demonstrate a critical role of GluD1 in controlling susceptibility to cocaine preference and cocaine-induced plasticity by modulating NMDA receptor subunit contribution.
Collapse
|
44
|
Newman EL, Terunuma M, Wang TL, Hewage N, Bicakci MB, Moss SJ, DeBold JF, Miczek KA. A Role for Prefrontal Cortical NMDA Receptors in Murine Alcohol-Heightened Aggression. Neuropsychopharmacology 2018; 43:1224-1234. [PMID: 29052618 PMCID: PMC5916347 DOI: 10.1038/npp.2017.253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 11/09/2022]
Abstract
Alcohol is associated with nearly half of all violent crimes committed in the United States; yet, a potential neural basis for this type of pathological aggression remains elusive. Alcohol may act on N-methyl-d-aspartate receptors (NMDARs) within cortical circuits to impede processing and to promote aggression. Here, male mice were characterized as alcohol-heightened (AHAs) or alcohol non-heightened aggressors (ANAs) during resident-intruder confrontations after self-administering 1.0 g/kg alcohol (6% w/v) or water. Alcohol produced a pathological-like pattern of aggression in AHAs; these mice shifted their bites to more vulnerable locations on the body of a submissive animal, including the anterior back and ventrum after consuming alcohol. In addition, through immunoblotting, we found that AHAs overexpressed the NMDAR GluN2D subunit in the prefrontal cortex (PFC) as compared to ANAs while the two phenotypes expressed similar levels of GluN1, GluN2A and GluN2B. After identifying several behavioral and molecular characteristics that distinguish AHAs from ANAs, we tested additional mice for their aggression following preferential antagonism of GluN2D-containing NMDARs. In these experiments, groups of AHAs and ANAs self-administered 1.0 g/kg alcohol (6% w/v) or water before receiving intraperitoneal (i.p.) doses of ketamine or memantine, or infusions of memantine directly into the prelimbic (PLmPFC) or infralimbic medial PFC (ILmPFC). Moderate doses of IP ketamine, IP memantine, or intra-PLmPFC memantine increased aggression in AHAs, but only in the absence of alcohol. Prior alcohol intake blocked the pro-aggressive effects of ketamine or memantine. In contrast, only memantine, administered systemically or intra-PLmPFC, interacted with prior alcohol intake to escalate aggression in ANAs. Intra-ILmPFC memantine had no effect on aggression in either AHAs or ANAs. In sum, this work illustrates a potential role of GluN2D-containing NMDARs in the PLmPFC in alcohol-heightened aggression. GluN2D-containing NMDARs are highly expressed on cortical parvalbumin-containing interneurons, suggesting that, in a subset of individuals, alcohol may functionally alter signal integration within cortical microcircuits to dysregulate threat reactivity and promote aggression. This work suggests that targeting GluN2D-NMDARs may be of use in reducing the impact of alcohol-related violence in the human population.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Medford, MA, USA
| | - Miho Terunuma
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tiffany L Wang
- Psychology Department, Tufts University, Medford, MA, USA
| | - Nishani Hewage
- Psychology Department, Tufts University, Medford, MA, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | | | - Klaus A Miczek
- Psychology Department, Tufts University, Medford, MA, USA
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
45
|
Alsaad HA, DeKorver NW, Mao Z, Dravid SM, Arikkath J, Monaghan DT. In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons. Neurochem Res 2018; 44:61-77. [PMID: 29651654 DOI: 10.1007/s11064-018-2526-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the brain with high concentrations in the telencephalon where they modulate synaptic plasticity, working memory, and other functions. While the actions of the predominate GluN2 NMDAR subunits, GluN2A and GluN2B are relatively well understood, the function of GluN2C and GluN2D subunits in the telencephalon is largely unknown. To better understand the possible role of GluN2C subunits, we used fluorescence in situ hybridization (FISH) together with multiple cell markers to define the distribution and type of cells expressing GluN2C mRNA. Using a GluN2C-KO mouse as a negative control, GluN2C mRNA expression was only found in non-neuronal cells (NeuN-negative cells) in the hippocampus, striatum, amygdala, and cerebral cortex. For these regions, a significant fraction of GFAP-positive cells also expressed GluN2C mRNA. Overall, for the telencephalon, the globus pallidus and olfactory bulb were the only regions where GluN2C was expressed in neurons. In contrast to GluN2C, GluN2D subunit mRNA colocalized with neuronal and not astrocyte markers or GluN2C mRNA in the telencephalon (except for the globus pallidus). GluN2C mRNA did, however, colocalize with GluN2D in the thalamus where neuronal GluN2C expression is found. These findings strongly suggest that GluN2C has a very distinct function in the telencephalon compared to its role in other brain regions and compared to other GluN2-containing NMDARs. NMDARs containing GluN2C may have a specific role in regulating L-glutamate or D-serine release from astrocytes in response to L-glutamate spillover from synaptic activity.
Collapse
Affiliation(s)
- Hassan A Alsaad
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Nicholas W DeKorver
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Zhihao Mao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | | | - Jyothi Arikkath
- Department of Developmental Neuroscience, Monroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
46
|
Ravikrishnan A, Gandhi PJ, Shelkar GP, Liu J, Pavuluri R, Dravid SM. Region-specific Expression of NMDA Receptor GluN2C Subunit in Parvalbumin-Positive Neurons and Astrocytes: Analysis of GluN2C Expression using a Novel Reporter Model. Neuroscience 2018; 380:49-62. [PMID: 29559384 DOI: 10.1016/j.neuroscience.2018.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022]
Abstract
Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. We describe the expression of the GluN2C subunit using a novel EGFP reporter model. We observed EGFP(GluN2C) localization in PV-positive neurons in the nucleus reticularis of the thalamus, globus pallidus externa and interna, ventral pallidum and substantia nigra. In contrast, EGFP(GluN2C)-expressing cells did not co-localize with PV-positive neurons in the cortex, striatum, hippocampus or amygdala. Instead, EGFP(GluN2C) expression in these regions co-localized with an astrocytic marker. We confirmed functional expression of GluN2C-containing receptors in the PV-neurons in substantia nigra and cortical astrocytes using electrophysiology. GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.
Collapse
Affiliation(s)
| | - Pauravi J Gandhi
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | | | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
47
|
Holmes A, Zhou N, Donahue DL, Balsara R, Castellino FJ. A deficiency of the GluN2C subunit of the N-methyl-D-aspartate receptor is neuroprotective in a mouse model of ischemic stroke. Biochem Biophys Res Commun 2018; 495:136-144. [DOI: 10.1016/j.bbrc.2017.10.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
|
48
|
Lang E, Mallien AS, Vasilescu AN, Hefter D, Luoni A, Riva MA, Borgwardt S, Sprengel R, Lang UE, Gass P, Inta D. Molecular and cellular dissection of NMDA receptor subtypes as antidepressant targets. Neurosci Biobehav Rev 2017; 84:352-358. [PMID: 28843752 DOI: 10.1016/j.neubiorev.2017.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
A growing body of evidence supports the idea that drugs targeting the glutamate system may represent a valuable therapeutic alternative in major depressive disorders (MDD). The rapid and prolonged mood elevating effect of the NMDA receptor (NMDAR) antagonist ketamine has been studied intensely. However, its clinical use is hampered by deleterious side-effects, such as psychosis. Therefore, a better understanding of the mechanisms of the psychotropic effects after NMDAR blockade is necessary to develop glutamatergic antidepressants with improved therapeutic profile. Here we review recent experimental data that addressed molecular/cellular determinants of the antidepressant effect mediated by inactivating NMDAR subtypes. We refer to results obtained both in pharmacological and genetic animal models, ranging from global to conditional NMDAR manipulation. Our main focus is on the contribution of different NMDAR subtypes to the psychoactive effects induced by NMDAR ablation/blockade. We review data analyzing the effect of NMDAR subtype deletions limited to specific neuronal populations/brain areas in the regulation of mood. Altogether, these studies suggest effective and putative specific NMDAR drug targets for MDD treatment.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dimitri Hefter
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Rolf Sprengel
- Max-Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, Germany
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry (UPK), University of Basel, Switzerland.
| |
Collapse
|
49
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|