1
|
Liu G, Zhu D, Feng K, Peng H, Yang S, Huang L, Li P. The neurological damage caused by enterovirus 71 infection is associated with hsa_circ_0069335/miR-29b/PMP22 pathway. J Virol 2025; 99:e0084424. [PMID: 39636111 PMCID: PMC11784151 DOI: 10.1128/jvi.00844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Enterovirus 71 (EV71) infection is usually accompanied by neurological damage, which is the leading cause of death in children with hand-foot-mouth disease. In this study, we demonstrated that EV71 infection can cause pathological damage in the nervous system, such as neuronal vacuolar degeneration, shrinkage of some neurons, edema of brain tissues in the hippocampus, and a decreased number of Nissl bodies in the infarction area. Also, EV71 infection caused apparent structural damage to Schwann cells, including a decreased number of cytoplasmic organelles and severe damage of rough endoplasmic reticulum and mitochondria. However, the pathological damage was alleviated with the decrease of EV71 viral load. The cell experiment in vitro showed that EV71 infection significantly reduced ATP levels and promoted Schwann cell apoptosis, thus inhibiting cell growth. The extended infection time and the decreased viral load resulted in the gradual improvement of cell growth status. Meanwhile, EV71 inhibited the expression of miR-29b and promoted the expression of PMP22 in a time-dependent manner at both mRNA and protein levels, with the most significant change at 36 h of infection. Subsequently, the expression of miR-29b and PMP22 was gradually restored with the reduction of EV71 viral load. In addition, EV71 regulated the expression of hsa_circ_0069335, which could bind and co-localize with miR-29b. Therefore, EV71 infection can cause significant damage to the nervous system and may be related to hsa_circ_0069335/miR-29b/PMP22 pathway. The present study provides a new therapeutic target for neurological damage induced by EV71 infection.IMPORTANCEEV71 can cause severe neurological damage and even death, but the mechanism remains unclear. In this study, we exhibited the pathological changes of nervous system in EV71 infection and revealed that the damage degree was consistent with the EV71 viral load. From the molecular perspective, EV71 infection up-regulated the PMP22 expression in Schwann cells, which is accompanied by apparent structural damage of Schwann cells and myelin sheaths. Furthermore, EV71 promoted the expression of PMP22 and inhibited the expression of miR-29b in a time-dependent manner, with the most significant change at 36 h of infection. Otherwise, the hsa_circ_0069335, which binds and co-localizes with miR-29b, was also regulated by EV71 infection. The hsa_circ_0069335/miR-29b/PMP22 axis may be a potential molecular mechanism involved in EV71 infection-induced fatal neuronal damage. Drug development targeting this pathway may bring clinical improvement of EV71-infected patients.
Collapse
Affiliation(s)
- Guangming Liu
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Danping Zhu
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kuan Feng
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongxia Peng
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiqing Li
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Liu FC, Chen BC, Huang YC, Huang SH, Chung RJ, Yu PC, Yu CP. Epidemiological Survey of Enterovirus Infections in Taiwan From 2011 to 2020: Retrospective Study. JMIR Public Health Surveill 2024; 10:e59449. [PMID: 39235279 PMCID: PMC11391656 DOI: 10.2196/59449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024] Open
Abstract
Background Young children are susceptible to enterovirus (EV) infections, which cause significant morbidity in this age group. Objective This study investigated the characteristics of virus strains and the epidemiology of EVs circulating among young children in Taiwan from 2011 to 2020. Methods Children diagnosed with EV infections from 2011 to 2020 were identified from the routine national health insurance data monitoring disease system, real-time outbreak and disease surveillance system, national laboratory surveillance system, and Statistics of Communicable Diseases and Surveillance Report, a data set (secondary data) of the Taiwan Centers for Disease and Control. Four primary outcomes were identified: epidemic features, characteristics of sporadic and cluster cases of EV infections, and main cluster institutions. Results From 2011 to 2020, between 10 and 7600 person-times visited the hospitals for EV infections on an outpatient basis daily. Based on 2011 to 2020 emergency department EV infection surveillance data, the permillage of EV visits throughout the year ranged from 0.07‰ and 25.45‰. After typing by immunofluorescence assays, the dominant type was coxsackie A virus (CVA; 8844/12,829, 68.9%), with most constituting types CVA10 (n=2972), CVA2 (n=1404), CVA6 (n=1308), CVA4 (n=1243), CVA16 (n=875), and CVA5 (n=680); coxsackie B virus CVB (n=819); echovirus (n=508); EV-A71 (n=1694); and EV-D68 (n=10). There were statistically significant differences (P<.001) in case numbers of EV infections among EV strains from 2011 to 2020. Cases in 2012 had 15.088 times the odds of being EV-A71, cases in 2014 had 2.103 times the odds of being CVA, cases in 2015 had 1.569 times the odds of being echovirus, and cases in 2018 had 2.274 times the odds of being CVB as cases in other years. From 2011 to 2020, in an epidemic analysis of EV clusters, 57 EV clusters were reported. Clusters that tested positive included 53 (53/57, 93%) CVA cases (the major causes were CVA6, n=32, and CVA10, n=8). Populous institutions had the highest proportion (7 of 10) of EV clusters. Conclusions This study is the first report of sporadic and cluster cases of EV infections from surveillance data (Taiwan Centers for Disease and Control, 2011-2020). This information will be useful for policy makers and clinical experts to direct prevention and control activities to EV infections that cause the most severe illness and greatest burden to the Taiwanese.
Collapse
Affiliation(s)
- Fang-Chen Liu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Bao-Chung Chen
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yao-Ching Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Shi-Hao Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Pi-Ching Yu
- Graduate Institute of Medicine, National Defense Medical Center, Taipei, Taiwan
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Peng Yu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
5
|
Sittikul P, Batty EM, Yodsawat P, Nuanpirom J, Kosoltanapiwat N, Sangket U, Chatchen S, Day NPJ, Thaipadungpanit J. Diversity of Human Enterovirus Co-Circulations in Five Kindergartens in Bangkok between July 2019 and January 2020. Viruses 2023; 15:1397. [PMID: 37376696 DOI: 10.3390/v15061397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Human enterovirus causes various clinical manifestations in the form of rashes, febrile illness, flu-like illness, uveitis, hand-foot-mouth disease (HFMD), herpangina, meningitis, and encephalitis. Enterovirus A71 and coxsackievirus are significant causes of epidemic HFMD worldwide, especially in children aged from birth to five years old. The enterovirus genotype variants causing HFMD epidemics have been reported increasingly worldwide in the last decade. We aim to use simple and robust molecular tools to investigate human enteroviruses circulating among kindergarten students at genotype and subgenotype levels. With the partial 5'-UTR sequencing analysis as a low-resolution preliminary grouping tool, ten enterovirus A71 (EV-A71) and coxsackievirus clusters were identified among 18 symptomatic cases and 14 asymptomatic cases in five kindergartens in Bangkok, Thailand, between July 2019 and January 2020. Two occurrences of a single clone causing an infection cluster were identified (EV-A71 C1-like subgenotype and coxsackievirus A6). Random amplification-based sequencing using MinION (Oxford Nanopore Technology) helped identify viral transmission between two closely related clones. Diverse genotypes co-circulating among children in kindergartens are reservoirs for new genotype variants emerging, which might be more virulent or better at immune escape. Surveillance of highly contagious enterovirus in communities is essential for disease notifications and controls.
Collapse
Affiliation(s)
- Pichamon Sittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Prasert Yodsawat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jiratchaya Nuanpirom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Unitsa Sangket
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science Prince of Songkla University, Songkhla 90110, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Li P, Huang Y, Zhu D, Yang S, Hu D. Risk Factors for Severe Hand-Foot-Mouth Disease in China: A Systematic Review and Meta-Analysis. Front Pediatr 2021; 9:716039. [PMID: 34858899 PMCID: PMC8631475 DOI: 10.3389/fped.2021.716039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background: This study aimed to identify potential risk factors for severe hand-foot-mouth disease (HFMD). Methods: The PubMed, Embase, the Cochrane Library, Sinomed, WanFang, CNKI, and VIP databases were searched (up to August 2021). Results: Twenty-nine studies (9,241 and 927,355 patients with severe HFMD and controls, respectively; all from China) were included. EV71 was associated with higher odds of severe HFMD compared with other agents (OR = 4.44, 95%CI: 3.12-6.33, p < 0.001). Being home-raised (OR = 1.99, 95%CI: 1.59-2.50, p < 0.001), higher number of children in the family (OR = 2.09, 95%CI: 1.93-2.27, p < 0.001), poor hand hygiene (OR = 2.74, 95%CI: 1.78-4.23, p < 0.001), and no breastfeeding (OR = 2.01, 95%CI: 1.45-2.79, p < 0.001) were risk factors for severe HFMD. First consulting to a district-level or above hospital (OR = 0.34, 95%CI: 0.25-0.45, p < 0.001) and diagnosis of HFMD at baseline (OR = 0.17, 95%CI: 0.13-0.24, p < 0.001) were protective factors against severe HFMD. Fever, long fever duration, vomiting, lethargy, leukocytosis, tic, and convulsions were each associated with severe HFMD (all p < 0.05), while rash was not. Conclusions: EV71, lifestyle habits, frequent hospital visits, and symptoms are risk factors for severe HFMD in children in China, while early diagnosis and admission to higher-level hospitals are protective factors.
Collapse
Affiliation(s)
- Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuge Huang
- Pediatric Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Danping Zhu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dandan Hu
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
8
|
Yang F, Ma Y, Liu F, Zhao X, Fan C, Hu Y, Hu K, Chang Z, Xiao X. Short-term effects of rainfall on childhood hand, foot and mouth disease and related spatial heterogeneity: evidence from 143 cities in mainland China. BMC Public Health 2020; 20:1528. [PMID: 33036602 PMCID: PMC7545871 DOI: 10.1186/s12889-020-09633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the potential association between rainfall and hand, foot and mouth disease (HFMD), but the results are inconsistent. This study aimed to quantify the relationship between rainfall and HFMD based on a multicity study and explore the potential sources of spatial heterogeneity. METHODS We retrieved the daily counts of childhood HFMD and the meteorological variables of the 143 cities in mainland China between 2009 and 2014. A common time series regression model was applied to quantify the association between rainfall and HFMD for each of the 143 cities. Then, we adopted the meta-regression model to pool the city-specific estimates and explore the sources of heterogeneity by incorporating city-specific characteristics. RESULTS The overall pooled estimation suggested a nonlinear exposure-response relationship between rainfall and HFMD. Once rainfall exceeded 15 mm, the HFMD risk stopped increasing linearly and began to plateau with the excessive risk ratio (ERR) peaking at 21 mm of rainfall (ERR = 3.46, 95% CI: 2.05, 4.88). We also found significant heterogeneity in the rainfall-HFMD relationships (I2 = 52.75%, P < 0.001). By incorporating the city-specific characteristics into the meta-regression model, temperature and student density can explain a substantial proportion of spatial heterogeneity with I2 statistics that decreased by 5.29 and 6.80% at most, respectively. CONCLUSIONS Our findings verified the nonlinear association between rainfall and HFMD. The rainfall-HFMD relationship also varies depending on locations. Therefore, the estimation of the rain-HFMD relationship of one location should not be generalized to another location.
Collapse
Affiliation(s)
- Fan Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yue Ma
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Fengfeng Liu
- Division of Infectious Disease & Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, PR China
| | - Xing Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Chaonan Fan
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yifan Hu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Kuiru Hu
- Institute of Basic Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaorui Chang
- Division of Infectious Disease & Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
9
|
Wang M, Chen L, Jin W, Wang S. Genetic and evolutionary analysis of enterovirus 71 base dinucleotide. Virusdisease 2020; 31:61-65. [DOI: 10.1007/s13337-019-00564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022] Open
|
10
|
Wang C, Chen Y, Xu T, Tian X, Zheng J, Liu W, Xia Y, Li Y, Zhu B, Zhou R. A novel method to diagnose the infection of enterovirus A71 in children by detecting IgA from saliva. J Med Virol 2020; 92:1059-1064. [PMID: 31944333 DOI: 10.1002/jmv.25672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main pathogens causing hand, foot, and mouth disease, and often causes diseases of the central nervous system. Early diagnosis is important to prevent EV-A71 outbreaks. The detection of serum immunoglobulin M (IgM) is widely used for the early diagnosis of EV-A71 in clinics, especially in rural areas. However, this technique requires the extraction of blood from children who have thin blood vessels and who might fear the use of needles. Therefore, difficulties in the detection process are often encountered. This study developed a noninvasive method to detect EV-A71-specific immunoglobulin A (IgA) in saliva for the diagnosis of EV-A71 infection. The sensitivity and specificity of IgA detection did not differ significantly compared with IgM detection. IgA antibodies were present in saliva for a relatively shorter period than IgM antibodies were present in serum. The sensitivity of IgA detection was higher than that of IgM detection for secondary EV-A71 infections. These results suggest that the detection of EV-A71-specific IgA in the saliva allows the effective early diagnosis of EV-A71 and may be suitable for detecting EV-A71 infections in children.
Collapse
Affiliation(s)
- Changbing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China.,Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianbin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Stelzer-Braid S, Wynn M, Chatoor R, Scotch M, Ramachandran V, Teoh HL, Farrar MA, Sampaio H, Andrews PI, Craig ME, MacIntyre CR, Varadhan H, Kesson A, Britton PN, Newcombe J, Rawlinson WD. Next generation sequencing of human enterovirus strains from an outbreak of enterovirus A71 shows applicability to outbreak investigations. J Clin Virol 2019; 122:104216. [PMID: 31790967 DOI: 10.1016/j.jcv.2019.104216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/08/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most recent documented Australian outbreak of enterovirus A71 (EV-A71) occurred in Sydney from 2012 to 2013. Over a four-month period more than 100 children presented to four paediatric hospitals with encephalitic presentations including fever and myoclonic jerks. The heterogeneous presentations included typical encephalomyelitis, and cardiopulmonary complications. OBJECTIVES To characterise the genomes of enterovirus strains circulating during the 2013 Sydney EV-A71 outbreak and determine their phylogeny, phylogeography and association between genome and clinical phenotype. STUDY DESIGN We performed an analysis of enterovirus (EV) positive specimens from children presenting to hospitals in the greater Sydney region of Australia during the 2013 outbreak. We amplified near full-length genomes of EV, and used next generation sequencing technology to sequence the virus. We used phylogenetic/phylogeographic analysis to characterize the outbreak viruses. RESULTS We amplified and sequenced 23/63 (37 %) genomes, and identified the majority (61 %) as EV-A71. The EV-A71 sequences showed high level sequence homology to C4a genogroups of EV-A71 circulating in China and Vietnam during 2012-13. Phylogenetic analysis showed EV-A71 strains associated with more severe symptoms, including encephalitis or cardiopulmonary failure, grouped together more closely than those from patients with hand, foot and mouth disease. Amongst the non-EV-A71 sequences were five other EV subtypes (representing enterovirus subtypes A and B), reflecting the diversity of EV co-circulation within the community. CONCLUSIONS This is the first Australian study investigating the near full-length genome of EV strains identified during a known outbreak of EV-A71. EV-A71 sequences were very similar to strains circulating in Asia during the same time period. Whole genome sequencing offers additional information over routine diagnostic testing such as characterisation of emerging recombinant strains and inform vaccine design.
Collapse
Affiliation(s)
- Sacha Stelzer-Braid
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matthew Wynn
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Richard Chatoor
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Matthew Scotch
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2033, Australia
| | - Vidiya Ramachandran
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Hooi-Ling Teoh
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Peter Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - Maria E Craig
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| | - C Raina MacIntyre
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; Watts College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | | | - Alison Kesson
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; Marie Bashir Institute, University of Sydney, Australia
| | - James Newcombe
- Pathology North, Royal North Shore Hospital, St Leonards, Sydney, Australia
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Sydney, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales Medicine, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Aw‐Yong KL, NikNadia NMN, Tan CW, Sam I, Chan YF. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev Med Virol 2019; 29:e2073. [DOI: 10.1002/rmv.2073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kam Leng Aw‐Yong
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nik Mohd Nasir NikNadia
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - I‐Ching Sam
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
13
|
Li P, Yang S, Hu D, Wei D, Lu J, Zheng H, Nie S, Liu G, Yang H. Enterovirus 71 VP1 promotes mouse Schwann cell autophagy via ER stress‑mediated PMP22 upregulation. Int J Mol Med 2019; 44:759-767. [PMID: 31173167 DOI: 10.3892/ijmm.2019.4218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/28/2019] [Indexed: 12/09/2022] Open
Abstract
Enterovirus 71 (EV71) accounts for the majority of hand, foot and mouth disease‑related deaths due to fatal neurological complications. EV71 structural viral protein 1 (VP1) promotes viral replication by inducing autophagy in neuron cells, but the effect of VP1 on myelin cells is unclear. The present study aimed to investigate the role and mechanism of VP1 in autophagy of mouse Schwann cells. An EV71 VP1‑expressing vector (pEGFP‑C3‑VP1) was generated and transfected into mouse Schwann cells. Transmission electron microscopy and western blot analysis for microtubule‑associated protein 1 light chain 3 α (LC3) II (an autophagy marker) were used to assess autophagy. Reverse transcription‑quantitative PCR and immunofluorescence were performed to determine the expression of peripheral myelin protein 22 (PMP22). Small interfering RNA against PMP22 was used to investigate the role of PMP22 in mouse Schwann cell autophagy. Salubrinal [a selective endoplasmic reticulum (ER) stress inhibitor] was used to determine whether PMP22 expression was affected by ER stress. The present results indicated that VP1 promoted mouse Schwann cell autophagy. Overexpression of VP1 upregulated PMP22. PMP22 deficiency downregulated LC3II and thus inhibited autophagy. Furthermore, PMP22 expression was significantly suppressed by salubrinal. In conclusion, VP1 promoted mouse Schwann cell autophagy through upregulation of ER stress‑mediated PMP22 expression. Therefore, the VP1/ER stress/PMP22 autophagy axis may be a potential therapeutic target for EV71 infection‑induced fatal neuronal damage.
Collapse
Affiliation(s)
- Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dandan Hu
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dan Wei
- Paediatric Intensive Care Unit, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Huanying Zheng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Shushan Nie
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Guangming Liu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Haomei Yang
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
14
|
Wells AI, Coyne CB. Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses 2019; 11:E460. [PMID: 31117206 PMCID: PMC6563291 DOI: 10.3390/v11050460] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses are a major source of human disease, particularly in neonates and young children where infections can range from acute, self-limited febrile illness to meningitis, endocarditis, hepatitis, and acute flaccid myelitis. The enterovirus genus includes poliovirus, coxsackieviruses, echoviruses, enterovirus 71, and enterovirus D68. Enteroviruses primarily infect by the fecal-oral route and target the gastrointestinal epithelium early during their life cycles. In addition, spread via the respiratory tract is possible and some enteroviruses such as enterovirus D68 are preferentially spread via this route. Once internalized, enteroviruses are detected by intracellular proteins that recognize common viral features and trigger antiviral innate immune signaling. However, co-evolution of enteroviruses with humans has allowed them to develop strategies to evade detection or disrupt signaling. In this review, we will discuss how enteroviruses infect the gastrointestinal tract, the mechanisms by which cells detect enterovirus infections, and the strategies enteroviruses use to escape this detection.
Collapse
Affiliation(s)
- Alexandra I Wells
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
- Richard K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
15
|
Wei Q, Wu J, Zhang Y, Cheng Q, Bai L, Duan J, Gao J, Xu Z, Yi W, Pan R, Su H. Short-term exposure to sulfur dioxide and the risk of childhood hand, foot, and mouth disease during different seasons in Hefei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:116-121. [PMID: 30577010 DOI: 10.1016/j.scitotenv.2018.11.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Sulfur dioxide (SO2) is an important component of air pollution, adversely impacting human health worldwide. This study aimed to examine the association between short-term exposure to SO2 and childhood hand, foot, and mouth disease (HFMD) in Hefei, China. METHODS A Poisson generalized additive model (GAM) combining the time-series regression analyses was used to fit the SO2-HFMD association. The effect of SO2 was estimated using the single-day lag models (lag0, lag1, lag2) and the moving average lag models (lag01, lag02) We also conducted stratified analyses by season, ages (0-4 years old, 5-14 years old), gender (male, female), childcare patterns (scattered children, kindergarten children) and residence areas (urban, rural). Two-pollutant models were adopted to test the robustness of the results. RESULTS There was a statistically significant association between SO2 and the risk of childhood HFMD. For total cases, the relative risk (RR) at lag0 was 1.038 (95% confidence interval (CI): 1.018-1.057) in whole-period and 1.088 (95% CI: 1.059-1.118) in cold season. During cold season, we observed significant associations between SO2 and HFMD among all subgroups except for children aged 5-14 years old and the adverse effects occurred on lag0, lag1, lag01, lag02. However, in hot season, SO2 were significant only for females (lag01 with RR = 1.054; 95%CI = 1.007-1.101) and scattered children (lag01 with RR = 1.054; 95%CI = 1.007-1.101). In general, females and scattered children appeared to be more vulnerable to SO2. CONCLUSIONS This study suggests a significant association between SO2 and HFMD. especially during cold season. Compared with males and kindergarten children, females and scattered children are at higher risk of developing HFMD.
Collapse
Affiliation(s)
- Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Jinju Wu
- Hefei Centre for Disease Control and Prevention, Hefei, Anhui 230032, China
| | - Yanwu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Qiang Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Lijun Bai
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui 230032, China.
| |
Collapse
|
16
|
Sun Y, Miao Z, Yan J, Gong L, Chen Y, Chen Y, Mao H, Zhang Y. Sero-molecular epidemiology of enterovirus-associated encephalitis in Zhejiang Province, China, from 2014 to 2017. Int J Infect Dis 2018; 79:58-64. [PMID: 30423458 DOI: 10.1016/j.ijid.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Recently, both sporadic and outbreak aseptic meningitis caused by enteroviruses have been reported in Zhejiang Province based on a surveillance system. METHODS This study analysed the epidemiologic features, phylogenetic characteristics and prevalence of enterovirus neutralizing antibodies (nAbs) from 2014 to 2017 in Zhejiang Province. RESULTS A total of 584 samples were collected. Males accounted for 66.07% while females accounted for 33.93%. The median age was 6 years (range: 1-15 years). Cases peaked in May and August (81.17%) and 162 cases (28.93%) occurred in June. We detected 15 serotypes, some of which (E6, E9, E18 and E30) were the dominant serotypes prevalent in different years and geographical regions. Phylogenetic results revealed that all of the isolates from this study belonged to the human enterovirus B family. A total of 329 subjects sampled from a healthy population were tested for nAbs against B5, E6 and E30 in Rui'an county in 2015. The seropositive rate of E30 in each age group was significantly higher than that of the other serotypes. CONCLUSION Enterovirus-associated encephalitis pathogens circulating in Zhejiang caused sporadic aseptic meningitis in children. The level of nAbs against human enterovirus reflects the history of previous infections in different age groups. Therefore, additional surveillance sites and more precise seroprevalence studies based on these populations are required to gain better insight into the epidemiology of enterovirus-associated encephalitis in Zhejiang Province.
Collapse
Affiliation(s)
- Yi Sun
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - ZiPing Miao
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - JuYing Yan
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China.
| | - LiMing Gong
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Yin Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - YiJuan Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - HaiYan Mao
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - YanJun Zhang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Wang Y, Qin Y, Wang T, Chen Y, Lang X, Zheng J, Gao S, Chen S, Zhong X, Mu Y, Wu X, Zhang F, Zhao W, Zhong Z. Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response. Sci Rep 2018; 8:2887. [PMID: 29440739 PMCID: PMC5811489 DOI: 10.1038/s41598-018-20958-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Enterovirus 71 (EV71) is the primary causative pathogen of hand, foot, and mouth disease (HFMD), affecting children with severe neurological complications. Pyroptosis is a programmed cell death characterized by cell lysis and inflammatory response. Although proinflammatory response has been implicated to play important roles in EV71-caused diseases, the involvement of pyroptosis in the pathogenesis of EV71 is poorly defined. We show that EV71 infection induced caspase-1 activation. Responding to the activation of caspase-1, the expression and secretion of both IL-1β and IL-18 were increased in EV71-infected cells. The treatment of caspase-1 inhibitor markedly improved the systemic response of the EV71-infected mice. Importantly, caspase-1 inhibitor suppressed EV71 replication in mouse brains. Similarly, pyroptosis was activated by the infection of coxsackievirus B3 (CVB3), an important member of the Enterovirus genus. Caspase-1 activation and the increased expression of IL-18 and NLRP3 were demonstrated in HeLa cells infected with CVB3. Caspase-1 inhibitor also alleviated the overall conditions of virus-infected mice with markedly decreased replication of CVB3 and reduced expression of caspase-1. These results indicate that pyroptosis is involved in the pathogenesis of both EV71 and CVB3 infections, and the treatment of caspase-1 inhibitor is beneficial to the host response during enterovirus infection.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiujuan Lang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Jia Zheng
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Sijia Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yusong Mu
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaoyu Wu
- Department of Cardiology, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Fengming Zhang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
18
|
Effective in vivo therapeutic IgG antibody against VP3 of enterovirus 71 with receptor-competing activity. Sci Rep 2017; 7:46402. [PMID: 28422137 PMCID: PMC5395816 DOI: 10.1038/srep46402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
Passive immunization is an effective option for treatment against hand, foot and mouth disease caused by EV71, especially with cross-neutralizing IgG monoclonal antibodies. In this study, an EV71-specific IgG2a antibody designated 5H7 was identified and characterized. 5H7 efficiently neutralizes the major EV71 genogroups (A, B4, C2, C4). The conformational epitope of 5H7 was mapped to the highly conserved amino acid position 74 on VP3 capsid protein using escape mutants. Neutralization with 5H7 is mediated by the inhibition of viral attachment, as revealed by virus-binding and post-attachment assays. In a competitive pull-down assay with SCARB2, 5H7 blocks the receptor-binding site on EV71 for virus neutralization. Passive immunization of chimeric 5H7 protected 100% of two-week-old AG129 mice from lethal challenge with an EV71 B4 strain for both prophylactic and therapeutic treatments. In contrast, 10D3, a previously reported neutralizing antibody that takes effect after virus attachment, could only confer prophylactic protection. These results indicate that efficient interruption of viral attachment is critical for effective therapeutic activity with 5H7. This report documents a novel universal neutralizing IgG antibody for EV71 therapeutics and reveals the underlying mechanism.
Collapse
|