1
|
Wang T, Liu J, Liu H, Lee SR, Gonzalez L, Gorecka J, Shu C, Dardik A. Activation of EphrinB2 Signaling Promotes Adaptive Venous Remodeling in Murine Arteriovenous Fistulae. J Surg Res 2021; 262:224-239. [PMID: 33039109 PMCID: PMC8024410 DOI: 10.1016/j.jss.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Arteriovenous fistulae (AVF) are the preferred mode of vascular access for hemodialysis. Before use, AVF remodel by thickening and dilating to achieve a functional conduit via an adaptive process characterized by expression of molecular markers characteristic of both venous and arterial identity. Although signaling via EphB4, a determinant of venous identity, mediates AVF maturation, the role of its counterpart EphrinB2, a determinant of arterial identity, remains unclear. We hypothesize that EphrinB2 signaling is active during AVF maturation and may be a mechanism of venous remodeling. METHODS Aortocaval fistulae were created or sham laparotomy was performed in C57Bl/6 mice, and specimens were examined on Days 7 or 21. EphrinB2 reverse signaling was activated with EphB4-Fc applied periadventitially in vivo and in endothelial cell culture medium in vitro. Downstream signaling was assessed using immunoblotting and immunofluorescence. RESULTS Venous remodeling during AVF maturation was characterized by increased expression of EphrinB2 as well as Akt1, extracellular signal-regulated kinases 1/2 (ERK1/2), and p38. Activation of EphrinB2 with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and was associated with increased diameter and wall thickness in the AVF. Both mouse and human endothelial cells treated with EphB4-Fc increased phosphorylation of EphrinB2, endothelial nitric oxide synthase, Akt1, ERK1/2, and p38 and increased endothelial cell tube formation and migration. CONCLUSIONS Activation of EphrinB2 signaling by EphB4-Fc was associated with adaptive venous remodeling in vivo while activating endothelial cell function in vitro. Regulation of EphrinB2 signaling may be a new strategy to improve AVF maturation and patency.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jia Liu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Haiyang Liu
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Shin-Rong Lee
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Luis Gonzalez
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jolanta Gorecka
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Surgery, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
2
|
From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies (Basel) 2020; 9:antib9030033. [PMID: 32708525 PMCID: PMC7551747 DOI: 10.3390/antib9030033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present in SARS-CoV-2 were mostly composed of peptide sequences present in human proteins that—when altered, mutated, deficient or, however, improperly functioning—may associate with a wide range of disorders, from respiratory distress to multiple organ failure. Conclusions: This study represents a starting point or hint for future scientific–clinical investigations and suggests a range of possible protein targets of autoimmunity in SARS-CoV-2 infection. From an experimental perspective, the results warrant the testing of patients’ sera for autoantibodies against these protein targets. Clinically, the results warrant a stringent surveillance on the future pathologic sequelae of the current SARS-CoV-2 pandemic.
Collapse
|
3
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 PMCID: PMC7261780 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Shi W, Wang Y, Peng J, Qi S, Vitale N, Kaneda N, Murata T, Luo H, Wu J. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells. J Biol Chem 2019; 294:6871-6887. [PMID: 30824540 PMCID: PMC6497964 DOI: 10.1074/jbc.ra118.005767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
EPHB6 is a member of the erythropoietin-producing hepatocellular kinase (EPH) family and a receptor tyrosine kinase with a dead kinase domain. It is involved in blood pressure regulation and adrenal gland catecholamine (CAT) secretion, but several facets of EPHB6-mediated CAT regulation are unclear. In this study, using biochemical, quantitative RT-PCR, immunoblotting, and gene microarray assays, we found that EPHB6 up-regulates CAT biosynthesis in adrenal gland chromaffin cells (AGCCs). We observed that epinephrine content is reduced in the AGCCs from male Ephb6-KO mice, caused by decreased expression of tyrosine hydroxylase, the rate-limiting enzyme in CAT biosynthesis. We demonstrate that the signaling pathway from EPHB6 to tyrosine hydroxylase expression in AGCCs involves Rac family small GTPase 1 (RAC1), MAP kinase kinase 7 (MKK7), c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, activator protein 1 (AP1), and early growth response 1 (EGR1). On the other hand, signaling via extracellular signal-regulated kinase (ERK1/2), p38 mitogen-activated protein kinase, and ELK1, ETS transcription factor (ELK1) was not affected by EPHB6 deletion. We further report that EPHB6's effect on AGCCs was via reverse signaling through ephrin B1 and that EPHB6 acted in concert with the nongenomic effect of testosterone to control CAT biosynthesis. Our findings elucidate the mechanisms by which EPHB6 modulates CAT biosynthesis and identify potential therapeutic targets for diseases, such as hypertension, caused by dysfunctional CAT biosynthesis.
Collapse
Affiliation(s)
- Wei Shi
- From the Research Centre and
| | - Yujia Wang
- From the Research Centre and
- the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | | | | | - Nicolas Vitale
- the Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, 67000 Strasbourg, France, and
| | - Norio Kaneda
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | - Tomiyasu Murata
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | | | - Jiangping Wu
- From the Research Centre and
- Nephrology Department, Centre Hospitalier de l'Université de Montréal Montreal, Quebec, H2X 0A9, Canada
| |
Collapse
|
5
|
Adhikari S, Mandal P. Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. Life Sci 2019; 228:47-52. [PMID: 31028805 DOI: 10.1016/j.lfs.2019.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
AIMS Aplastic anaemia is a rare disorder characterized by peripheral pancytopenia and hypocellular bone marrow. Recent advancement of miRNA technologies, new promising therapy using small molecule inhibitors was suggested as efficient treatment option. Therefore, the study was undertaken to identify the significantly altered miRNA (miR-1202-upregulation) among aplastic anaemia patients compared to healthy controls by global miRNA expression profiling of bone marrow. MATERIALS AND METHODS miRNA and gene expression profiles for all the categories of aplastic anaemia patients and healthy controls were generated using Affymetrix probes. KEY FINDINGS The study was based on freely available miRNA and host gene expression in NCBI GEO dataset. Microarray based gene expression profiling (GSE3807) revealed that RAPGEF5 and MANEA genes were significantly downregulated among aplastic anaemia patients compared to healthy controls and the expression of these genes were again upregulated after application of therapy among those patients compared to pre-therapy condition. RAPGEF5 was involved in Rap1 and Ras signaling pathways those were significantly enriched among aplastic anaemia patients and could be relevant for that phenotype. Microarray based miRNA expression profiling (GSE82095) also identified that miR-1202 was significantly upregulated among aplastic anaemia patients compared to controls and can potentially target RAPGEF5 and MANEA genes based on target prediction of miRNAs. SIGNIFICANCE Thus synthetic miRNA inhibitors of miR-1202 can be used as a possible therapeutic agent to target miR-1202 and this inhibition can lead to its corresponding target gene upregulation for reversal of disease phenotype.
Collapse
Affiliation(s)
- Sarmistha Adhikari
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Paramita Mandal
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India.
| |
Collapse
|
6
|
Zhang Z, Tremblay J, Raelson J, Sofer T, Du L, Fang Q, Argos M, Marois-Blanchet FC, Wang Y, Yan L, Chalmers J, Woodward M, Harrap S, Hamet P, Luo H, Wu J. EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens 2019; 37:775-789. [PMID: 30817459 DOI: 10.1097/hjh.0000000000001948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We investigated the association of genetic variants of EPHA4, a receptor tyrosine kinase, with hypertension, and its role in vascular smooth muscle cell (VSMC) contractility. METHODS Data from two human genetic studies, ADVANCE and HCHS/SOL, were analyzed for association of EPHA4 single nucleotide variants (SNVs) with hypertension risks. The effect of EPHA4 signalling on mouse VSMC contractility was assessed. RESULTS We identified a SNV (rs75843691 hg19 chr2:g.222395371 C>G), located in the third intron of EPHA4 gene, being significantly associated with hypertension in human female patients (P value = 8.3 × 10, below the Bonferroni-corrected critical P value) but not male patients with type 2 diabetes from the ADVANCE clinical trial. We found that EPHA4 was expressed in VSMCs and its stimulation by anti-EPHA4 antibody led to reduced VSMC contractility. Estrogen enhanced the contractility-lowering effect of EPHA4 stimulation. Conversely, siRNA knockdown of Epha4 expression in VSMCs resulted in increased contractility of VSMCs from female mice but not from male mice. CONCLUSION EPHA4 appears to be a sex-specific hypertension risk gene in type 2 diabetic patients. Forward EPHA4 signalling reduces VSMC contractility, and estrogen is a modifier of this effect. The effect of EPHA4 on VSMCs contractility explains the association of EPHA4 gene with hypertension risks in female patients.
Collapse
Affiliation(s)
- Zeqin Zhang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Johanne Tremblay
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Tamar Sofer
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lizhong Du
- The Children's Hospital, Zhejiang University School of Medicine
| | - Qiang Fang
- The Intensive Care Unit, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Yu Wang
- The Children's Hospital, Zhejiang University School of Medicine
| | - Lingling Yan
- The Children's Hospital, Zhejiang University School of Medicine
| | - John Chalmers
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Mark Woodward
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Stephen Harrap
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
7
|
Wu T, Zhang BQ, Raelson J, Yao YM, Wu HD, Xu ZX, Marois-Blanchet FC, Tahir MR, Wang Y, Bradley WE, Luo H, Wu J, Sheng JZ, Hu SJ. Analysis of the association of EPHB6, EFNB1 and EFNB3 variants with hypertension risks in males with hypogonadism. Sci Rep 2018; 8:14497. [PMID: 30262919 PMCID: PMC6160468 DOI: 10.1038/s41598-018-32836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Several members of the EPH kinase family and their ligands are involved in blood pressure regulation, and such regulation is often sex- or sex hormone-dependent, based on animal and human genetic studies. EPHB6 gene knockout (KO) in mice leads to hypertension in castrated males but not in un-manipulated KO males or females. To assess whether this finding in mice is relevant to human hypertension, we conducted a human genetic study for the association of EPHB6 and its two ligands, EFNB1 and EFNB3, with hypertension in hypogonadic patients. Seven hundred and fifty hypertensive and 750 normotensive Han Chinese patients, all of whom were hypogonadic, were genotyped for single nucleotide polymorphisms (SNPs) within the regions of the genes, plus an additional 50 kb 5′ of the genes for EPHB6, EFNB1 and EFNB3. An imputed insertion/deletion polymorphism, rs35530071, was found to be associated with hypertension at p-values below the Bonferroni-corrected significance level of 0.0024. This marker is located 5′ upstream of the EFNB3 gene start site. Previous animal studies showed that while male EFNB3 gene knockout mice were normotensive, castration of these mice resulted in hypertension, corroborating the results of the human genetic study. Considering the significant associations of EFNB3 SNPs with hypertension in hypogonadic males and supporting evidence from castrated EFNB3 KO mice, we conclude that loss-of-function variants of molecules in the EPHB6 signaling pathway in the presence of testosterone are protective against hypertension in humans.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bi-Qi Zhang
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Yu-Mei Yao
- Department of Cardiology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Huan-Dong Wu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zao-Xian Xu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | | | - Muhammad Ramzan Tahir
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada.,Children's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - W Edward Bradley
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada. .,Nephrology Service, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, H2X 0A9, Canada.
| | - Jian-Zhong Sheng
- Department of Pathology and Physiopathology, College of Medicine, Zhejiang University, Hangzhou, 310005, China.
| | - Shen-Jiang Hu
- Institute of Cardiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
9
|
Wang Y, Shi W, Blanchette A, Peng J, Qi S, Luo H, Ledoux J, Wu J. EPHB6 and testosterone in concert regulate epinephrine release by adrenal gland chromaffin cells. Sci Rep 2018; 8:842. [PMID: 29339804 PMCID: PMC5770418 DOI: 10.1038/s41598-018-19215-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptor (EPH) B6 (EPHB6) is a member of the receptor tyrosine kinase family. We previously demonstrated that EPHB6 knockout reduces catecholamine secretion in male but not female mice, and castration reverses this phenotype. We showed here that male EPHB6 knockout adrenal gland chromaffin cells presented reduced acetylcholine-triggered Ca2+ influx. Such reduction depended on the non-genomic effect of testosterone. Increased large conductance calcium-activated potassium channel current densities were recorded in adrenal gland chromaffin cells from male EPHB6 knockout mice but not from castrated knockout or female knockout mice. Blocking of the large conductance calcium-activated potassium channel in adrenal gland chromaffin cells from male knockout mice corrected their reduced Ca2+ influx. We conclude that the absence of EPHB6 and the presence of testosterone would lead to augmented large conductance calcium-activated potassium channel currents, which limit voltage-gated calcium channel opening in adrenal gland chromaffin cells. Consequently, acetylcholine-triggered Ca2+ influx is reduced, leading to lower catecholamine release in adrenal gland chromaffin cells from male knockout mice. This explains the reduced resting-state blood catecholamine levels, and hence the blood pressure, in male but not female EPHB6 knock mice. These findings have certain clinical implications.
Collapse
Affiliation(s)
- Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
| | - Jonathan Ledoux
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada.
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, H2X 0A9, Canada.
- Nephrology Department, CHUM, Montreal, Quebec, H2L 4M1, Canada.
| |
Collapse
|
10
|
Kim M, Yoo HJ, Kim M, Kim J, Baek SH, Song M, Lee JH. EPHA6 rs4857055 C > T polymorphism associates with hypertension through triglyceride and LDL particle size in the Korean population. Lipids Health Dis 2017; 16:230. [PMID: 29208002 PMCID: PMC5718072 DOI: 10.1186/s12944-017-0620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Erythropoietin-producing human hepatocellular (Eph) receptors might contribute to the development of atherosclerosis. A genome-wide association study indicated that the Eph receptor A6 gene (EPHA6) associated with at least 1 blood pressure (BP) phenotype. The objective of the present study was to determine whether EPHA6 is a novel candidate gene for hypertension in a Korean population. METHODS A total 2146 study participants with normotension and hypertension were included. Genotype data were obtained using a Korean Chip. To assess the association between single-nucleotide polymorphisms (SNPs) and BP, we performed a linear regression analysis, which showed that rs4850755 in the EPHA6 gene was the SNP most highly associated with both systolic and diastolic BP. RESULTS The presence of the TT genotype of the EPHA6 rs4857055 C > T SNP was associated with a higher risk of hypertension after adjusting for age, sex, body mass index (BMI), smoking, and drinking [odds ratio 1.533, P = 0.001]. In the control group, significant associations were observed between systolic BP and the rs4857055 polymorphism and between diastolic BP and the rs4857055 polymorphism. In the hypertension group, a significant association was observed between systolic BP and the rs4857055 polymorphism. In the hypertension group, subjects with the TT genotype showed significantly higher systolic BP than CC subjects. Additionally, in the hypertension group, TT carriers showed a higher tendency of serum triglyceride (P = 0.069) and significantly higher apolipoprotein B (P = 0.015) and smaller low-density lipoprotein (LDL) particle size (P < 0.001) than either TC or CC subjects. CONCLUSIONS These results could suggest that the EPHA6 rs4857055 C > T SNP is a novel candidate gene for hypertension in the Korean population. Additionally, the TT genotype could be associated with hypertriglyceridemia and small LDL particle size in hypertension.
Collapse
Affiliation(s)
- Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Jiyoo Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Seung Han Baek
- Institute of Convergence Technology, Yonsei University, Seoul, 03722, Korea
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, 03722, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea. .,Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea. .,National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
11
|
Protack CD, Foster TR, Hashimoto T, Yamamoto K, Lee MY, Kraehling JR, Bai H, Hu H, Isaji T, Santana JM, Wang M, Sessa WC, Dardik A. Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Sci Rep 2017; 7:15386. [PMID: 29133876 PMCID: PMC5684317 DOI: 10.1038/s41598-017-13071-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/13/2017] [Indexed: 12/29/2022] Open
Abstract
Low rates of arteriovenous fistula (AVF) maturation prevent optimal fistula use for hemodialysis; however, the mechanism of venous remodeling in the fistula environment is not well understood. We hypothesized that the embryonic venous determinant Eph-B4 mediates AVF maturation. In human AVF and a mouse aortocaval fistula model, Eph-B4 protein expression increased in the fistula vein; expression of the arterial determinant Ephrin-B2 also increased. Stimulation of Eph-B-mediated signaling with Ephrin-B2/Fc showed improved fistula patency with less wall thickness. Mutagenesis studies showed that tyrosine-774 is critical for Eph-B4 signaling and administration of inactive Eph-B4-Y774F increased fistula wall thickness. Akt1 expression also increased in AVF; Akt1 knockout mice showed reduced fistula diameter and wall thickness. In Akt1 knockout mice, stimulation of Eph-B signaling with Ephrin-B2/Fc showed no effect on remodeling. These results show that AVF maturation is associated with acquisition of dual arteriovenous identity; increased Eph-B activity improves AVF patency. Inhibition of Akt1 function abolishes Eph-B-mediated venous remodeling suggesting that Eph-B4 regulates AVF venous adaptation through an Akt1-mediated mechanism.
Collapse
Affiliation(s)
- Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Trenton R Foster
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Takuya Hashimoto
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Kota Yamamoto
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Monica Y Lee
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Jan R Kraehling
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Jeans M Santana
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Mo Wang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA. .,Department of Surgery, Yale School of Medicine, New Haven, CT, USA. .,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
12
|
Tremblay J, Wang Y, Raelson J, Marois-Blanchet FC, Wu Z, Luo H, Bradley E, Chalmers J, Woodward M, Harrap S, Hamet P, Wu J. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene. Sci Rep 2017; 7:44114. [PMID: 28272517 PMCID: PMC5341021 DOI: 10.1038/srep44114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/03/2017] [Indexed: 01/11/2023] Open
Abstract
EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3′ untranslated region or within the adjacent region just 3′ of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.
Collapse
Affiliation(s)
- Johanne Tremblay
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Yujia Wang
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Raelson
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | | | - Zenghui Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Edward Bradley
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - John Chalmers
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia
| | - Mark Woodward
- The George Institute for Global Health, University of Sydney Sydney, New South Wales, 2006, Australia.,The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Stephen Harrap
- Department of Epidemiology, Johns Hopkins University, Baltimore MD, USA.,Department of Physiology, University of Melbourne, Victoria 3010, Australia
| | - Pavel Hamet
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|