1
|
Lopez JA, McKeithen-Mead S, Shi H, Nguyen TH, Huang KC, Good BH. Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome. Curr Biol 2025; 35:2282-2294.e11. [PMID: 40300605 DOI: 10.1016/j.cub.2025.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Collapse
Affiliation(s)
- Jamie Alcira Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Saria McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Li Y, Liu C, Wang Y, Li M, Zou S, Hu X, Chen Z, Li M, Ma C, Obi CJ, Zhou X, Zou Y, Tang M. Urban wild bee well-being revealed by gut metagenome data: A mason bee model. INSECT SCIENCE 2025. [PMID: 40287860 DOI: 10.1111/1744-7917.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/29/2025]
Abstract
Wild bees are ecologically vital but increasingly threatened by anthropogenic activities, leading to uncertain survival and health outcomes in urban environments. The gut microbiome contains features indicating host health and reflecting long-term evolutionary adaptation and acute reactions to real-time stressors. Moving beyond bacteria, we propose a comprehensive analysis integrating diet, bacteriome, virome, resistome, and their association to understand the survival status of urban lives better. We conducted a study on mason bees (Osmia excavata) across 10 urban agricultural sites in Suzhou, China, using shotgun gut metagenome sequencing for data derived from total gut DNA. Our findings revealed that most ingested pollen originated from Brassica crops and the unexpected garden tree Plantanus, indicating that floral resources at the 10 sites supported Osmia but with limited plant diversity. Varied city landscapes revealed site-specific flowers that all contributed to Osmia sustenance. The gut bacterial community, dominated by Gammaproteobacteria, showed remarkable structural stability across 8 sites but suggested perturbations at 2 sites. Antibiotic resistance gene profiles highly varied across 10 sites with prevalent unclassified drug classes, highlighting environmental threats to both bees and humans. The virome analysis identified honeybee pathogens, suggesting potential virus spillover. Many unknown bacteriophages were detected, some of which targeted the core gut bacteria, underscoring their role in maintaining gut homeostasis. These multifaceted metagenomic insights hold the potential to predict bee health and identify environmental threats, thereby guiding probiotic development and city management for effective bee conservation.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Chengweiran Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Yiran Wang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Muhan Li
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Shasha Zou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Xingyu Hu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Zhiwei Chen
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Mingrui Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Changsheng Ma
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chinonye Jennifer Obi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yi Zou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Min Tang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Tokodi N, Łobodzińska A, Klimczak B, Antosiak A, Młynarska S, Šulčius S, Avrani S, Yoshida T, Dziga D. Proliferative and viability effects of two cyanophages on freshwater bloom-forming species Microcystis aeruginosa and Raphidiopsis raciborskii vary between strains. Sci Rep 2025; 15:3152. [PMID: 39856188 PMCID: PMC11761051 DOI: 10.1038/s41598-025-87626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii. Our findings reveal that cross-infectivity can substantially reduce the proliferative success of the cyanophage under conditions of high-density of sub-optimal hosts which suggests phage dispersal limitation as a result of shared infections, in turn impairing their top-down control over the host community. Furthermore, we found that cyanophage addition triggers host strain-specific responses in photosynthetic performance, population size and toxin production, even among non-permissive hosts. These non-lytic effects suggest indirect impacts on co-existing cyanobacteria, increasing the overall complexity and variance in many ecologically relevant cyanobacterial traits. The high variability in responses observed with a limited subset of cyanophage-cyanobacteria combinations not only highlights the intricate role of viral infections in microbial ecosystems but also underscores the significant challenges in predicting the composition, toxicity, and dynamics of cyanobacterial blooms.
Collapse
Affiliation(s)
- Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Barbara Klimczak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Sara Młynarska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, Vilnius, 08412, Lithuania
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
4
|
Marongiu L, Brzozowska E, Brykała J, Burkard M, Schmidt H, Szermer-Olearnik B, Venturelli S. The non-nutritive sweetener rebaudioside a enhances phage infectivity. Sci Rep 2025; 15:1337. [PMID: 39779812 PMCID: PMC11711195 DOI: 10.1038/s41598-025-85186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Non-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein's enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Ewa Brzozowska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Jan Brykała
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Bożena Szermer-Olearnik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074, Tuebingen, Germany
| |
Collapse
|
5
|
Lopez JA, McKeithen-Mead S, Shi H, Nguyen TH, Huang KC, Good BH. Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.614587. [PMID: 39386523 PMCID: PMC11463441 DOI: 10.1101/2024.09.27.614587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (~1:100), but a much larger ratio of phage genomes to bacterial genomes (~4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage, phage-plasmids, etc.). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occurs at a low average rate (~0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone, while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
Collapse
Affiliation(s)
- Jamie A. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Saria McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taylor H. Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
7
|
Bastien GE, Cable RN, Batterbee C, Wing AJ, Zaman L, Duhaime MB. Virus-host interactions predictor (VHIP): Machine learning approach to resolve microbial virus-host interaction networks. PLoS Comput Biol 2024; 20:e1011649. [PMID: 39292721 PMCID: PMC11441702 DOI: 10.1371/journal.pcbi.1011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Viruses of microbes are ubiquitous biological entities that reprogram their hosts' metabolisms during infection in order to produce viral progeny, impacting the ecology and evolution of microbiomes with broad implications for human and environmental health. Advances in genome sequencing have led to the discovery of millions of novel viruses and an appreciation for the great diversity of viruses on Earth. Yet, with knowledge of only "who is there?" we fall short in our ability to infer the impacts of viruses on microbes at population, community, and ecosystem-scales. To do this, we need a more explicit understanding "who do they infect?" Here, we developed a novel machine learning model (ML), Virus-Host Interaction Predictor (VHIP), to predict virus-host interactions (infection/non-infection) from input virus and host genomes. This ML model was trained and tested on a high-value manually curated set of 8849 virus-host pairs and their corresponding sequence data. The resulting dataset, 'Virus Host Range network' (VHRnet), is core to VHIP functionality. Each data point that underlies the VHIP training and testing represents a lab-tested virus-host pair in VHRnet, from which meaningful signals of viral adaptation to host were computed from genomic sequences. VHIP departs from existing virus-host prediction models in its ability to predict multiple interactions rather than predicting a single most likely host or host clade. As a result, VHIP is able to infer the complexity of virus-host networks in natural systems. VHIP has an 87.8% accuracy rate at predicting interactions between virus-host pairs at the species level and can be applied to novel viral and host population genomes reconstructed from metagenomic datasets.
Collapse
Affiliation(s)
- G. Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel N. Cable
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cecelia Batterbee
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - A. J. Wing
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
8
|
Liu L, Zou X, Cheng Y, Li H, Zhang X, Yuan Q. Contrasting Dynamics of Intracellular and Extracellular Antibiotic Resistance Genes in Response to Nutrient Variations in Aquatic Environments. Antibiotics (Basel) 2024; 13:817. [PMID: 39334992 PMCID: PMC11428281 DOI: 10.3390/antibiotics13090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.
Collapse
Affiliation(s)
- Lele Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xinyi Zou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Huihui Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Liaghat A, Yang J, Whitaker R, Pascual M. Punctuated virus-driven succession generates dynamical alternations in CRISPR-mediated microbe-virus coevolution. J R Soc Interface 2024; 21:20240195. [PMID: 39165171 PMCID: PMC11336687 DOI: 10.1098/rsif.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
The coevolutionary dynamics of lytic viruses and microbes with CRISPR-Cas immunity exhibit alternations between sustained host control of viral proliferation and major viral epidemics in previous computational models. These alternating dynamics have yet to be observed in other host-pathogen systems. Here, we address the breakdown of control and transition to large outbreaks with a stochastic eco-evolutionary model. We establish the role of host density-dependent competition in punctuated virus-driven succession and associated diversity trends that concentrate escape pathways during control phases. Using infection and escape networks, we derive the viral emergence probability whose fluctuations of increasing size and frequency characterize the approach to large outbreaks. We explore alternation probabilities as a function of non-dimensional parameters related to the probability of viral escape and host competition. Our results demonstrate how emergent feedbacks between host competition and viral diversification render the host immune structure fragile, potentiating a dynamical transition to large epidemics.
Collapse
Affiliation(s)
- Armun Liaghat
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jiayue Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
10
|
Shkoporov AN, O'Regan O, Smith L, Khokhlova EV, Draper LA, Ross RP, Hill C. Dynamic nature of viral and bacterial communities in human faeces. iScience 2024; 27:108778. [PMID: 38292428 PMCID: PMC10825054 DOI: 10.1016/j.isci.2023.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriophages are a major component of the gut microbiome and are believed to play a role in establishment and stabilization of microbial communities by influencing taxonomic and functional diversity. We show that the activity of lytic and temperate phages can also significantly affect bacterial community structure in a model of extended colonic retention. Intact fresh human feces were incubated anaerobically at 37°C without homogenization and subjected to metagenomic sequencing. We observed subject-specific blooms and collapses of selected bacteriophage and bacterial populations within some individuals. Most notable were striking collapses of Prevotella populations accompanied by increases in specific bacteriophages. In a number of cases, we even observed a shift from one bacterial "enterotype" to another within 48 h. These results confirm that intact feces represents a highly dynamic ecological system and suggests that colonic retention time could have a profound effect on microbiome composition, including a significant impact by bacteriophages.
Collapse
Affiliation(s)
- Andrey N. Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Orla O'Regan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Martínez Martínez J, Talmy D, Kimbrel JA, Weber PK, Mayali X. Coastal bacteria and protists assimilate viral carbon and nitrogen. THE ISME JOURNAL 2024; 18:wrae231. [PMID: 39535963 PMCID: PMC11629701 DOI: 10.1093/ismejo/wrae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Free viruses are the most abundant type of biological particles in the biosphere, but the lack of quantitative knowledge about their consumption by heterotrophic protists and bacterial degradation has hindered the inclusion of virovory in biogeochemical models. Using isotope-labeled viruses added to three independent microcosm experiments with natural microbial communities followed by isotope measurements with single-cell resolution and flow cytometry, we quantified the flux of viral C and N into virovorous protists and bacteria and compared the loss of viruses due to abiotic vs biotic factors. We found that some protists can obtain most of their C and N requirements from viral particles and that viral C and N get incorporated into bacterial biomass. We found that bacteria and protists were responsible for increasing the daily removal rate of viruses by 33% to 85%, respectively, compared to abiotic processes alone. Our laboratory incubation experiments showed that abiotic processes removed roughly 50% of the viruses within a week, and adding biotic processes led to a removal of 83% to 91%. Our data provide direct evidence for the transfer of viral C and N back into the microbial loop through protist grazing and bacterial breakdown, representing a globally significant flux that needs to be investigated further to better understand and predictably model the C and N cycles of the hydrosphere.
Collapse
Affiliation(s)
- Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, United States
- University of Maryland Center for Environmental Sciences, Horn Point Laboratory, 2020 Horns Point Rd., Cambridge MD 21613, United States
| | - David Talmy
- Department of Microbiology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Ave, Knoxville, TN, 37996, United States
| | - Jeffrey A Kimbrel
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| | - Xavier Mayali
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, United States
| |
Collapse
|
12
|
Palomo A, Dechesne A, Smets BF, Zheng Y. Narrow host range phages infect essential bacteria for water purification reactions in groundwater-fed rapid sand filters. WATER RESEARCH 2023; 245:120655. [PMID: 37748347 DOI: 10.1016/j.watres.2023.120655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Biofiltration is used worldwide to provide safe potable water due to its low energy demand and excellent treatment performance. For instance, in Denmark, over 95% of drinking water is supplied through groundwater-fed rapid sand filters (RSF). Bacteriophages, viruses that infect bacteria, have been shown to shape the taxonomic and functional composition of microbial communities across a range of natural and engineering systems. However, phages in the biofiltration systems are rarely studied, despite the central role microbes play in water purification. To probe this, metagenomic data from surface water, groundwater and mixed source water biofiltration units (n = 26 from China, Europe and USA) for drinking water production were analysed to characterize prokaryotic viruses and to identify their potential microbial hosts. The source water type and geographical location are found to exert influence on the composition of the phageome in biofilters. Although the viral abundance (71,676 ± 17,841 RPKM) in biofilters is only 14.4% and 17.0% lower than those of the nutrient-rich wastewater treatment plants and fresh surface waters, the richness (1,441 ± 1,046) and diversity (Inverse Simpson: 91 ± 61) in biofiltration units are significantly less by a factor of 2-5 and 3-4, respectively. In depth analysis of data from 24 groundwater-fed RSFs in Denmark revealed a core phageome shared by most RSFs, which was consistently linked to dominant microbial hosts involved in key biological reactions for water purification. Finally, the high number of specific links detected between phages and bacterial species and the large proportion of lytic phages (77%) led to the conjecture that phages regulate bacterial populations through predation, preventing the proliferation of dominant species and contributing to the established functional redundancy among the dominant microbial groups. In conclusion, bacteriophages are likely to play a significant role in water treatment within biofilters, particularly through interactions with key bacterial species.
Collapse
Affiliation(s)
- Alejandro Palomo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yan Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Wang H, Yan B, Wu Y, Yin M, Wang M, Fu C. Microbial community diversity and potential functionality in response to dam construction along the Three Gorge Reservoir, China. Front Microbiol 2023; 14:1218806. [PMID: 37799598 PMCID: PMC10547884 DOI: 10.3389/fmicb.2023.1218806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
River and reservoir bacterial communities are the most basic part of river biomes and ecosystem structure, and play an important role in river biological processes. Yet, it remains unclear how highly regulated dam reservoirs affect both soil and sediment bacterial communities. A temporal distribution pattern of bacterial communities was investigated using Illumina MiSeq sequencing in a transition section of the Three Gorges Reservoir (TGR). In total, 106,682 features belong to the bacteria kingdom, encompassing 95 phyla, 228 classes, 514 orders, 871 families, 1959 genera, and 3,053 species. With water level regulation, Shannon diversity index, and observed species differed significantly, with no significant difference in Simpson evenness. Both in the high water level period (October) and the low water level period (June), Proteobacteria, Acidobacteri, and Chloroflexi were the most abundant phyla. Whereas, based on PCA plots and Circos plot, the microbial community structure has changed significantly. LEfSe method was used to identify the classified bacterial taxa with significant abundance differences between the low water level and high water level periods. KOs (KEGG Orthology) pathway enrichment analysis were conducted to investigate functional and related metabolic pathways in groups. To some extent, it can be inferred that water level regulation affects community growth by affecting the metabolism of the microbial community.
Collapse
Affiliation(s)
- Huan Wang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
- Chongqing Landscape and Gardening Research Institute, Chongqing, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, China
| | - Bin Yan
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Yan Wu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Maoyun Yin
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Maoqing Wang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Chuan Fu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| |
Collapse
|
15
|
Burkart T, Willeke J, Frey E. Periodic temporal environmental variations induce coexistence in resource competition models. Phys Rev E 2023; 108:034404. [PMID: 37849086 DOI: 10.1103/physreve.108.034404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 10/19/2023]
Abstract
Natural ecosystems, in particular on the microbial scale, are inhabited by a large number of species. The population size of each species is affected by interactions of individuals with each other and by spatial and temporal changes in environmental conditions, such as resource abundance. Here, we use a generic population dynamics model to study how, and under what conditions, a periodic temporal environmental variation can alter an ecosystem's composition and biodiversity. We demonstrate that using timescale separation allows one to qualitatively predict the long-term population dynamics of interacting species in varying environments. We show that the notion of Tilman's R* rule, a well-known principle that applies for constant environments, can be extended to periodically varying environments if the timescale of environmental changes (e.g., seasonal variations) is much faster than the timescale of population growth (doubling time in bacteria). When these timescales are similar, our analysis shows that a varying environment deters the system from reaching a steady state, and stable coexistence between multiple species becomes possible. Our results posit that biodiversity can in part be attributed to natural environmental variations.
Collapse
Affiliation(s)
- Tom Burkart
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Jan Willeke
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 München, Germany
| |
Collapse
|
16
|
Zhai J, Wang Y, Tang B, Zheng S, He S, Zhao W, Chen H, Lin J, Li F, Bao Y, Lancuo Z, Sharshov K, Liu C, Wang W. Comparative analysis of gut DNA viromes in wild and captive Himalayan vultures. Front Microbiol 2023; 14:1120838. [PMID: 37601346 PMCID: PMC10433386 DOI: 10.3389/fmicb.2023.1120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Himalayan vultures (Gyps hinalayensis) are widely distributed on the Qinghai-Tibetan Plateau and play a crucial role in maintaining the ecological balance by feeding on decayed corpses of wild and domestic animals. Large-scale culture and metagenomics studies have broadened our understanding of viral diversity in animals' gastrointestinal tracts. However, despite the importance of gut viral communities in regulating bacterial diversity and performing symbiotic functions, no gut viral study has been conducted on Himalayan vultures. Furthermore, the impact of captivity on the gut virome of these vultures remains unknown. Methods In this study, metagenomic sequencing methods targeting DNA of virus-like particles enriched from feces were used to characterize the gut DNA viromes of wild and captive Himalayan vultures. Results In total, 22,938 unique viral operational taxonomic units (vOTUs) were identified and assigned to 140 viral genera in 41 viral families. These families included viruses associated with bacteria, animals, plants, insects, and archaea. Phage communities, including Siphoviridae, Microviridae, Myoviridae, Inoviridae, and Herelleviridae, dominated the gut virome of Himalayan vultures. Wild vultures exhibited higher viral richness and diversity compared with those in captivity. The functional capacity of the gut virome was characterized by identifying 93 KEGG pathways, which were significantly enriched in metabolism and genetic information processing. Abundant auxiliary metabolic genes, such as carbohydrate-active enzyme, and antibiotic resistance genes, were also found in the vultures' gut virome. Discussion Our findings reveal the complex and diverse viral community present in the gut virome of Himalayan vultures, which varies between wild, and captive states. The DNA virome dataset establishes a baseline for the vultures' gut virome and will serve as a reference for future virus isolation and cultivation. Understanding the impact of captivity on the gut virome contributes to our knowledge of vultures' response to captivity and aids in optimizing their rehabilitation and implementing protective measures.
Collapse
Affiliation(s)
- Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Sisi Zheng
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Hanxi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jun Lin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Feng Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yuzi Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, Qinghai, China
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Chuanfa Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
17
|
Jiang H, Li C, Huang X, Ahmed T, Ogunyemi SO, Yu S, Wang X, Ali HM, Khan F, Yan C, Chen J, Li B. Phage combination alleviates bacterial leaf blight of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1147351. [PMID: 37152174 PMCID: PMC10155274 DOI: 10.3389/fpls.2023.1147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Rice bacterial leaf blight (BLB) is the most destructive bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). Phages have been proposed as a green and efficient strategy to kill bacterial pathogens in crops, however, the mechanism of action of phages in the control of phyllosphere bacterial diseases remain unclear. Here, the glasshouse pot experiment results showed that phage combination could reduce the disease index by up to 64.3%. High-throughput sequencing technology was used to analyze the characteristics of phyllosphere microbiome changes and the results showed that phage combinations restored the impact of pathogen invasion on phyllosphere communities to a certain extent, and increased the diversity of bacterial communities. In addition, the phage combination reduced the relative abundance of epiphytic and endophytic Xoo by 58.9% and 33.9%, respectively. In particular, Sphingomonas and Stenotrophomonas were more abundant. According to structural equation modeling, phage combination directly and indirectly affected the disease index by affecting pathogen Xoo biomass and phage resistance. In summary, phage combination could better decrease the disease index. These findings provide new insights into phage biological control of phyllosphere bacterial diseases, theoretical data support, and new ideas for agricultural green prevention and control of phyllosphere diseases.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changxin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo, China
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
19
|
Stone BW, Blazewicz SJ, Koch BJ, Dijkstra P, Hayer M, Hofmockel KS, Liu XJA, Mau RL, Pett-Ridge J, Schwartz E, Hungate BA. Nutrients strengthen density dependence of per-capita growth and mortality rates in the soil bacterial community. Oecologia 2023; 201:771-782. [PMID: 36847885 DOI: 10.1007/s00442-023-05322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/15/2023] [Indexed: 03/01/2023]
Abstract
Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypothesized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was not associated with higher bacterial diversity.
Collapse
Affiliation(s)
- Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Xiao Jun Allen Liu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
20
|
Borin JM, Lee JJ, Gerbino KR, Meyer JR. Comparison of bacterial suppression by phage cocktails, dual-receptor generalists, and coevolutionarily trained phages. Evol Appl 2023; 16:152-162. [PMID: 36699129 PMCID: PMC9850009 DOI: 10.1111/eva.13518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The evolution and spread of antibiotic-resistant bacteria have renewed interest in phage therapy, the use of bacterial viruses (phages) to combat bacterial infections. The delivery of phages in cocktails where constituent phages target different modalities (e.g., receptors) may improve treatment outcomes by making it more difficult for bacteria to evolve resistance. However, the multipartite nature of cocktails may lead to unintended evolutionary and ecological outcomes. Here, we compare a 2-phage cocktail with a largely unconsidered group of phages: generalists that can infect through multiple, independent receptors. We find that λ phage generalists and cocktails that target the same receptors (LamB and OmpF) suppress Escherichia coli similarly for ~2 days. Yet, a "trained" generalist phage, which previously adapted to its host via 28 days of coevolution, demonstrated superior suppression. To understand why the trained generalist was more effective, we measured the resistance of bacteria against each of our phages. We find that, when bacteria were assailed by two phages in the cocktail, they evolved mutations in manXYZ, a host inner-membrane transporter that λ uses to move its DNA across the periplasmic space and into the cell for infection. This provided cross-resistance against the cocktail and untrained generalist. However, these mutations were ineffective at blocking the trained generalist because, through coevolutionary training, it evolved to bypass manXYZ resistance. The trained generalist's past experiences in training make it exceedingly difficult for bacteria to evolve resistance, further demonstrating the utility of coevolutionary phage training for improving the therapeutic properties of phages.
Collapse
Affiliation(s)
- Joshua M. Borin
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Justin J. Lee
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Krista R. Gerbino
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Justin R. Meyer
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
21
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Baaziz H, Baker ZR, Franklin HC, Hsu BB. Rehabilitation of a misbehaving microbiome: phages for the remodeling of bacterial composition and function. iScience 2022; 25:104146. [PMID: 35402871 PMCID: PMC8991392 DOI: 10.1016/j.isci.2022.104146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human gut microbiota is considered an adjunct metabolic organ owing to its health impact. Recent studies have shown correlations between gut phage composition and host health. Whereas phage therapy has popularized virulent phages as antimicrobials, both virulent and temperate phages have a natural ecological relationship with their cognate bacteria. Characterization of this evolutionary coadaptation has led to other emergent therapeutic phage applications that do not necessarily rely on bacterial eradication or target pathogens. Here, we present an overview of the tripartite relationship between phages, bacteria, and the mammalian host, and highlight applications of the wildtype and genetically engineered phage for gut microbiome remodeling. In light of new and varied strategies, we propose to categorize phage applications aiming to modulate bacterial composition or function as "phage rehabilitation." By delineating phage rehab from phage therapy, we believe it will enable greater nuance and understanding of these new phage-based technologies.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zachary Robert Baker
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hollyn Claire Franklin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bryan Boen Hsu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Zhang X, Wang S, Zhang Q, Zhang K, Liu W, Zhang R, Zhang Z. The Expansion of a Single Bacteriophage Leads to Bacterial Disturbance in Gut and Reduction of Larval Growth in Musca domestica. Front Immunol 2022; 13:885722. [PMID: 35464464 PMCID: PMC9019163 DOI: 10.3389/fimmu.2022.885722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The housefly larvae gut microbiota influences larval health and has become an important model to study the ecology and evolution of microbiota-host interactions. However, little is known about the phage community associated with the housefly larval gut, although bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact insect health remains unclear. We noticed that treating 1-day-old housefly larvae with ~107, ~109, and ~1011 phage particles per ml of bacteriophages led to changes in the growth and development of housefly larvae. Additionally, treating housefly larvae with bacteriophages led to bacterial composition changes in the gut. Changes in the compositions of these gut bacteria are mainly manifested in the increase in harmful bacteria, including Pseudomonas and Providencia and the decrease in beneficial bacteria, including Enterobacter and Klebsiella, after different growth and development periods. The alterations in gut microbiota further influenced the larval growth and development. Collectively, these results indicate that bacteriophages can perturb the intestinal microbiome and impact insect health.
Collapse
Affiliation(s)
- Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
24
|
Khan A, Rao TS, Joshi HM. Phage therapy in the Covid-19 era: Advantages over antibiotics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100115. [PMID: 35187507 PMCID: PMC8847111 DOI: 10.1016/j.crmicr.2022.100115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Today, the entire world is battling to contain the spread of COVID-19. Massive efforts are being made to find a therapeutic solution in the shortest possible time. However, the research community is becoming increasingly concerned about taking a shortsighted strategy without contemplating the long-term consequences. For example, It has been reported that only 8.4% of total COVID-19 patients develop a secondary bacterial infection. In comparison, 74.6% of them are administered with antibiotics as prophylactic treatment. We contend that overuse of broad-spectrum antibiotics increases the likelihood of AMR development and negatively affects the patient's recovery due to the prevalence of the "gut-lung axis.". Consequently, the use of antibiotics to treat COVID-19 patients must be rationalized, or an alternative treatment must be sought that does not risk contributing to AMR development and positively impacts the treatment outcomes. Phage therapy, a century-old concept, is one of the most promising approaches that can be adapted to serve this purpose. This review emphasizes the negative impact of excessive antibiotic use in COVID-19 treatment and provides an overview of how phage therapy can be used as an alternative treatment option. We have argued that targeted killing (narrow spectrum) and anti-inflammatory (which can target the primary cause of mortality in COVID-19) properties of phages can be an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - T. Subba Rao
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M. Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
25
|
Nepal R, Houtak G, Wormald PJ, Psaltis AJ, Vreugde S. Prophage: a crucial catalyst in infectious disease modulation. THE LANCET MICROBE 2022; 3:e162-e163. [DOI: 10.1016/s2666-5247(21)00354-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
|
26
|
Zhang C, Jiao S, Shu D, Wei G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. STRESS BIOLOGY 2021; 1:15. [PMID: 37676329 PMCID: PMC10441860 DOI: 10.1007/s44154-021-00015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 09/08/2023]
Abstract
Understanding interspecies interactions is essential to predict the response of microbial communities to exogenous perturbation. Herein, rhizospheric and bulk soils were collected from five developmental stages of soybean, which grew in soils receiving 16-year nitrogen inputs. Bacterial communities and functional profiles were examined using high-throughput sequencing and quantitative PCR, respectively. The objective of this study was to identify the key bacterial interactions that influenced community dynamics and functions. We found that the stages of soybean development outcompeted nitrogen fertilization management in shaping bacterial community structure, while fertilization treatments significantly shaped the abundance distribution of nitrogen functional genes. Temporal variations in bacterial abundances increased in bulk soils, especially at the stage of soybean branching, which helps to infer underlying negative interspecies interactions. Members of Cyanobacteria and Actinobacteria actively engaged in inter-phylum negative interactions in bulk soils and soybean rhizosphere, respectively. Furthermore, the negative interactions between nitrogen-fixing functional groups and the reduction of nifH gene abundance were coupled during soybean development, which may help to explain the linkages between population dynamics and functions. Overall, these findings highlight the importance of inter-phylum negative interactions in shaping the correlation patterns of bacterial communities and in determining soil functional potential.
Collapse
Affiliation(s)
- Chunfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Runa V, Wenk J, Bengtsson S, Jones BV, Lanham AB. Bacteriophages in Biological Wastewater Treatment Systems: Occurrence, Characterization, and Function. Front Microbiol 2021; 12:730071. [PMID: 34803947 PMCID: PMC8600467 DOI: 10.3389/fmicb.2021.730071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes. A deeper understanding of the phage ecology in BWT can lead the improvement of process monitoring and control, promote higher influent quality, and potentiate the use of phages as biocontrol agents. In this review, we highlight suitable methods for studying phages in wastewater adapted from other research fields, provide a critical overview on the current state of knowledge on the effect of phages on structure and function of BWT bacterial communities, and highlight gaps, opportunities, and priority questions to be addressed in future research.
Collapse
Affiliation(s)
- Viviane Runa
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | | | - Brian V Jones
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ana B Lanham
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
28
|
Nwokolo NL, Enebe MC. Shotgun metagenomics evaluation of soil fertilization effect on the rhizosphere viral community of maize plants. Antonie van Leeuwenhoek 2021; 115:69-78. [PMID: 34762236 DOI: 10.1007/s10482-021-01679-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
The need for sustainability in food supply has led to progressive increase in soil nutrient enrichment. Fertilizer application effects both biological and abiotic processes in the soil, of which the bacterial community that support viral multiplication are equally influenced. Nevertheless, little is known on the effect of soil fertilization on the Soil viral community composition and dynamics. In this study, we evaluated the influence of soil fertilization on the maize rhizosphere viral community growing in Luvisolic soil. The highest abundance of bacteriophages were detected in soil treated with 8 tons/ha compost manure (Cp8), 60 kg/ha inorganic fertilizer (N1), 4 tons/ha compost manure (Cp4) and the unfertilized control (Cn0). Our result showed higher relative abundance of Myoviridae, Podoviridae and Siphoviridae in 8 tons/ha organic manure (Cp8) fertilized compared to others. While Inoviridae and Microviridae were the most relative abundant phage families in 4 tons/ha organic manure (Cp4) fertilized soil. This demonstrate that soil fertilization with organic manure increases the abundance and diversity of viruses in the soil due to its soil conditioning effects.
Collapse
Affiliation(s)
| | - Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
29
|
Higgins KV, Woodie LN, Hallowell H, Greene MW, Schwartz EH. Integrative Longitudinal Analysis of Metabolic Phenotype and Microbiota Changes During the Development of Obesity. Front Cell Infect Microbiol 2021; 11:671926. [PMID: 34414128 PMCID: PMC8370388 DOI: 10.3389/fcimb.2021.671926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Obesity has increased at an alarming rate over the past two decades in the United States. In addition to increased body mass, obesity is often accompanied by comorbidities such as Type II Diabetes Mellitus and metabolic dysfunction-associated fatty liver disease, with serious impacts on public health. Our understanding of the role the intestinal microbiota in obesity has rapidly advanced in recent years, especially with respect to the bacterial constituents. However, we know little of when changes in these microbial populations occur as obesity develops. Further, we know little about how other domains of the microbiota, namely bacteriophage populations, are affected during the progression of obesity. Our goal in this study was to monitor changes in the intestinal microbiome and metabolic phenotype following western diet feeding. We accomplished this by collecting metabolic data and fecal samples for shotgun metagenomic sequencing in a mouse model of diet-induced obesity. We found that after two weeks of consuming a western diet (WD), the animals weighed significantly more and were less metabolically stable than their chow fed counterparts. The western diet induced rapid changes in the intestinal microbiome with the most pronounced dissimilarity at 12 weeks. Our study highlights the dynamic nature of microbiota composition following WD feeding and puts these events in the context of the metabolic status of the mammalian host.
Collapse
Affiliation(s)
- Keah V Higgins
- Department of Biological Sciences Auburn University, Auburn, AL, United States
| | - Lauren N Woodie
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Haley Hallowell
- Department of Biological Sciences Auburn University, Auburn, AL, United States
| | - Michael W Greene
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
30
|
Collins S, Schaum CE. Growth strategies of a model picoplankter depend on social milieu and pCO 2. Proc Biol Sci 2021; 288:20211154. [PMID: 34315257 PMCID: PMC8316809 DOI: 10.1098/rspb.2021.1154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton exist in genetically diverse populations, but are often studied as single lineages (single strains), so that interpreting single-lineage studies relies critically on understanding how microbial growth differs with social milieu, defined as the presence or absence of conspecifics. The properties of lineages grown alone often fail to predict the growth of these same lineages in the presence of conspecifics, and this discrepancy points towards an opportunity to improve our understanding of the factors that affect lineage growth rates. We demonstrate that different lineages of a marine picoplankter modulate their maximum lineage growth rate in response to the presence of non-self conspecifics, even when resource competition is effectively absent. This explains why growth rates of lineages in isolation do not reliably predict their growth rates in mixed culture, or the lineage composition of assemblages under conditions of rapid growth. The diversity of growth strategies observed here are consistent with lineage-specific energy allocation that depends on social milieu. Since lineage growth is only one of many traits determining fitness in natural assemblages, we hypothesize that intraspecific variation in growth strategies should be common, with more strategies possible in ameliorated environments that support higher maximum growth rates, such as high CO2 for many marine picoplankton.
Collapse
Affiliation(s)
- Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, IEB, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - C. Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Kirsch JM, Brzozowski RS, Faith D, Round JL, Secor PR, Duerkop BA. Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annu Rev Virol 2021; 8:95-113. [PMID: 34255542 DOI: 10.1146/annurev-virology-091919-101238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Robert S Brzozowski
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Dominick Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84113, USA;
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
32
|
Dery KJ, Górski A, Międzybrodzki R, Farmer DG, Kupiec-Weglinski JW. Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation 2021; 105:1449-1458. [PMID: 33273319 DOI: 10.1097/tp.0000000000003565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterio(phages) are bacteria-infecting viruses that employ host translation machinery to replicate, and upon cell lysis, release new particles into the environment. As a result, phages are prey-specific, thus making targeted phage therapy (PT) possible. Indeed, pre- and posttransplant bacterial infections pose a substantial risk to allograft recipients in their clinical course. Moreover, with the increasing threat of antibiotic resistance, the interest in PT as a potential solution to the crisis of multidrug-resistant bacterial pathogens has rapidly grown. Although little is known about the specific characteristics of the phage-directed immune responses, recent studies indicate phages exert anti-inflammatory and immunomodulatory functions, which could be beneficial in allotransplantation (allo-Tx). PT targeting multidrug-resistant Klebsiella pneumoniae, Mycobacterium abscessus, and Pseudomonas aeruginosa have been successfully applied in renal, lung, and liver allo-Tx patients. In parallel, the gastrointestinal microbiota appears to influence allo-Tx immunity by modulating the endoplasmic reticulum stress and autophagy signaling pathways through hepatic EP4/CHOP/LC3B platforms. This review highlights the current relevant immunobiology, clinical developments, and management of PT, and lays the foundation for future potential standard care use of PT in allo-Tx to mitigate early allograft dysfunction and improve outcomes. In conclusion, with novel immunobiology and metabolomics insights, harnessing the potential of PT to modulate microbiota composition/diversity may offer safe and effective refined therapeutic means to reduce risks of infections and immunosuppression in allo-Tx recipients.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Infant Jesus Teaching Hospital, Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Douglas G Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
33
|
Hawkes CV, Kjøller R, Raaijmakers JM, Riber L, Christensen S, Rasmussen S, Christensen JH, Dahl AB, Westergaard JC, Nielsen M, Brown-Guedira G, Hestbjerg Hansen L. Extension of Plant Phenotypes by the Foliar Microbiome. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:823-846. [PMID: 34143648 DOI: 10.1146/annurev-arplant-080620-114342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Svend Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Gina Brown-Guedira
- Plant Science Research Unit, USDA Agricultural Research Service and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| |
Collapse
|
34
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
35
|
Kessell AK, McCullough HC, Auchtung JM, Bernstein HC, Song HS. Predictive interactome modeling for precision microbiome engineering. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
36
|
Jiang L, Lang S, Duan Y, Zhang X, Gao B, Chopyk J, Schwanemann LK, Ventura-Cots M, Bataller R, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Ho SB, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Kisseleva T, Brenner DA, Tu XM, Stärkel P, Pride D, Fouts DE, Schnabl B. Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology 2020; 72:2182-2196. [PMID: 32654263 PMCID: PMC8159727 DOI: 10.1002/hep.31459] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Alcoholic hepatitis (AH) is a severe manifestation of alcohol-associated liver disease (ALD) with high mortality. Although gut bacteria and fungi modulate disease severity, little is known about the effects of the viral microbiome (virome) in patients with ALD. APPROACH AND RESULTS We extracted virus-like particles from 89 patients with AH who were enrolled in a multicenter observational study, 36 with alcohol use disorder (AUD), and 17 persons without AUD (controls). Virus-like particles from fecal samples were fractionated using differential filtration techniques, and metagenomic sequencing was performed to characterize intestinal viromes. We observed an increased viral diversity in fecal samples from patients with ALD, with the most significant changes in samples from patients with AH. Escherichia-, Enterobacteria-, and Enterococcus phages were over-represented in fecal samples from patients with AH, along with significant increases in mammalian viruses such as Parvoviridae and Herpesviridae. Antibiotic treatment was associated with higher viral diversity. Specific viral taxa, such as Staphylococcus phages and Herpesviridae, were associated with increased disease severity, indicated by a higher median Model for End-Stage Liver Disease score, and associated with increased 90-day mortality. CONCLUSIONS In conclusion, intestinal viral taxa are altered in fecal samples from patients with AH and associated with disease severity and mortality. Our study describes an intestinal virome signature associated with AH.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Elizabeth C. Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Juan G. Abraldes
- Division of Gastroenterology (Liver Unit). Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert S. Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain,Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Debbie L. Shawcross
- Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, King’s College Hospital, London, UK
| | - Samuel B. Ho
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Alexandre Louvet
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Michael R. Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Philippe Mathurin
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Tatiana Kisseleva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - David Pride
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Pathology, University of California San Diego, La Jolla, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Bedford L, Parker SE, Davis E, Salzman E, Hillier SL, Foxman B, Harlow BL. Characteristics of the vaginal microbiome in women with and without clinically confirmed vulvodynia. Am J Obstet Gynecol 2020; 223:406.e1-406.e16. [PMID: 32135142 PMCID: PMC10027365 DOI: 10.1016/j.ajog.2020.02.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Vulvodynia (idiopathic vulvar pain) affects up to 8% of women by age 40 years, has a poorly understood etiology, and has variable treatment efficacy. Several risk factors are associated with vulvodynia from a history of yeast infections to depression and allergies. Recent work suggests an altered immune inflammatory mechanism plays a role in vulvodynia pathophysiology. Because the vaginal microbiome plays an important role in local immune-inflammatory responses, we evaluated the vaginal microbiome among women with vulvodynia compared with controls as 1 component of the immune system. OBJECTIVE The objective of the study was to characterize the vaginal microbiome in women with clinically confirmed vulvodynia and age-matched controls and assess its overall association with vulvodynia and how it may serve to modify other factors that are associated with vulvodynia as well. STUDY DESIGN We conducted a case-control study of 234 Minneapolis/Saint Paul-area women with clinically confirmed vulvodynia and 234 age-matched controls clinically confirmed with no history of vulvar pain. All participants provided vulvovaginal swab samples for culture-based and non-culture (sequencing)-based microbiological assessments, background and medical history questionnaires on demographic characteristics, sexual and reproductive history, and history of psychosocial factors. Vaginal microbiome diversity was assessed using the Shannon alpha diversity Index. Data were analyzed using logistic regression. RESULTS Culture and molecular-based analyses of the vaginal microbiome showed few differences between cases and controls. However, among women with alpha diversity below the median (low), there was a strong association between increasing numbers of yeast infections and vulvodynia onset, relative to comparable time periods among controls (age-adjusted odds ratio, 8.1, 95% confidence interval, 2.9-22.7 in those with 5 or more yeast infections). Also among women with low-diversity microbiomes, we observed a strong association between moderate to severe childhood abuse, antecedent anxiety, depression, and high levels of rumination and vulvodynia with odds ratios from 1.83 to 2.81. These associations were not observed in women with high-diversity microbiomes. CONCLUSION Although there were no overall differences in microbiome profiles between cases and controls, vaginal microbiome diversity influenced associations between environmental and psychosocial risk factors and vulvodynia. However, it is unclear whether vaginal diversity modifies the association between the risk factors and vulvodynia or is altered as a consequence of the associations.
Collapse
Affiliation(s)
- Lisa Bedford
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Samantha E Parker
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Elyse Davis
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Elizabeth Salzman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, and the Magee-Women's Research Institute, Pittsburgh, PA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Bernard L Harlow
- Department of Epidemiology, Boston University School of Public Health, Boston, MA.
| |
Collapse
|
39
|
Colombet J, Fuster M, Billard H, Sime-Ngando T. Femtoplankton: What's New? Viruses 2020; 12:E881. [PMID: 32806713 PMCID: PMC7472349 DOI: 10.3390/v12080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010-2020) of high abundances of biomimetic mineral-organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.F.); (H.B.); (T.S.-N.)
| | | | | | | |
Collapse
|
40
|
De Vrieze J, De Mulder T, Matassa S, Zhou J, Angenent LT, Boon N, Verstraete W. Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microb Biotechnol 2020; 13:829-843. [PMID: 32311222 PMCID: PMC7264747 DOI: 10.1111/1751-7915.13575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pure (single) cultures of microorganisms and mixed microbial communities (microbiomes) have been important for centuries in providing renewable energy, clean water and food products to human society and will continue to play a crucial role to pursue the Sustainable Development Goals. To use microorganisms effectively, microbial engineered processes require adequate control. Microbial communities are shaped by manageable deterministic processes, but also by stochastic processes, which can promote unforeseeable variations and adaptations. Here, we highlight the impact of stochasticity in single culture and microbiome engineering. First, we discuss the concepts and mechanisms of stochasticity in relation to microbial ecology of single cultures and microbiomes. Second, we discuss the consequences of stochasticity in relation to process performance and human health, which are reflected in key disadvantages and important opportunities. Third, we propose a suitable decision tool to deal with stochasticity in which monitoring of stochasticity and setting the boundaries of stochasticity by regulators are central aspects. Stochasticity may give rise to some risks, such as the presence of pathogens in microbiomes. We argue here that by taking the necessary precautions and through clever monitoring and interpretation, these risks can be mitigated.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | | | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Largus T Angenent
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
- Avecom NV, Industrieweg 122P, Wondelgem, 9032, Belgium
| |
Collapse
|
41
|
Liang X, Wagner RE, Li B, Zhang N, Radosevich M. Quorum Sensing Signals Alter in vitro Soil Virus Abundance and Bacterial Community Composition. Front Microbiol 2020; 11:1287. [PMID: 32587586 PMCID: PMC7298970 DOI: 10.3389/fmicb.2020.01287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-density dependent quorum sensing (QS) is fundamental for many coordinated behaviors among bacteria. Most recently several studies have revealed a role for bacterial QS communication in bacteriophage (phage) reproductive decisions. However, QS based phage-host interactions remain largely unknown, with the mechanistic details revealed for only a few phage-host pairs and a dearth of information available at the microbial community level. Here we report on the specific action of eight different individual QS signals (acyl-homoserine lactones; AHLs varying in acyl-chain length from four to 14 carbon atoms) on prophage induction in soil microbial communities. We show QS autoinducers, triggered prophage induction in soil bacteria and the response was significant enough to alter bacterial community composition in vitro. AHL treatment significantly decreased the bacterial diversity (Shannon Index) but did not significantly impact species richness. Exposure to short chain-length AHLs resulted in a decrease in the abundance of different taxa than exposure to higher molecular weight AHLs. Each AHL targeted a different subset of bacterial taxa. Our observations indicate that individual AHLs may trigger prophage induction in different bacterial taxa leading to changes in microbial community structure. The findings also have implications for the role of phage-host interactions in ecologically significant processes such as biogeochemical cycles, and phage mediated transfer of host genes, e.g., photosynthesis and heavy metal/antibiotic resistance.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Regan E. Wagner
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Ning Zhang
- College of Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
42
|
Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos. Proc Natl Acad Sci U S A 2020; 117:14572-14583. [PMID: 32518107 DOI: 10.1073/pnas.1915313117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It has recently become apparent that the diversity of microbial life extends far below the species level to the finest scales of genetic differences. Remarkably, extensive fine-scale diversity can coexist spatially. How is this diversity stable on long timescales, despite selective or ecological differences and other evolutionary processes? Most work has focused on stable coexistence or assumed ecological neutrality. We present an alternative: extensive diversity maintained by ecologically driven spatiotemporal chaos, with no assumptions about niches or other specialist differences between strains. We study generalized Lotka-Volterra models with antisymmetric correlations in the interactions inspired by multiple pathogen strains infecting multiple host strains. Generally, these exhibit chaos with increasingly wild population fluctuations driving extinctions. But the simplest spatial structure, many identical islands with migration between them, stabilizes a diverse chaotic state. Some strains (subspecies) go globally extinct, but many persist for times exponentially long in the number of islands. All persistent strains have episodic local blooms to high abundance, crucial for their persistence as, for many, their average population growth rate is negative. Snapshots of the abundance distribution show a power law at intermediate abundances that is essentially indistinguishable from the neutral theory of ecology. But the dynamics of the large populations are much faster than birth-death fluctuations. We argue that this spatiotemporally chaotic "phase" should exist in a wide range of models, and that even in rapidly mixed systems, longer-lived spores could similarly stabilize a diverse chaotic phase.
Collapse
|
43
|
Wojewodzic MW. Bacteriophages Could Be a Potential Game Changer in the Trajectory of Coronavirus Disease (COVID-19). ACTA ACUST UNITED AC 2020; 1:60-65. [PMID: 36147892 PMCID: PMC9041474 DOI: 10.1089/phage.2020.0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pandemic of the coronavirus disease (Covid-19) has caused the death of at least 270,000 people as of the 8th of May 2020. This work stresses the potential role of bacteriophages to decrease the mortality rate of patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The indirect cause of mortality in Covid-19 is miscommunication between the innate and adaptive immune systems, resulting in a failure to produce effective antibodies against the virus on time. Although further research is urgently needed, secondary bacterial infections in the respiratory system could potentially contribute to the high mortality rate observed among the elderly due to Covid-19. If bacterial growth, together with delayed production of antibodies, is a significant contributing factor to Covid-19's mortality rate, then the additional time needed for the human body's adaptive immune system to produce specific antibodies could be gained by reducing the bacterial growth rate in the respiratory system of a patient. Independently of that, the administration of synthetic antibodies against SARS-CoV-2 viruses could potentially decrease the viral load. The decrease of bacterial growth and the covalent binding of synthetic antibodies to viruses should further diminish the production of inflammatory fluids in the lungs of patients (the indirect cause of death). Although the first goal could potentially be achieved by antibiotics, I argue that other methods may be more effective or could be used together with antibiotics to decrease the growth rate of bacteria, and that respective clinical trials should be launched. Both goals can be achieved by bacteriophages. The bacterial growth rate could potentially be reduced by the aerosol application of natural bacteriophages that prey on the main species of bacteria known to cause respiratory failure and should be harmless to a patient. Independently of that, synthetically changed bacteriophages could be used to quickly manufacture specific antibodies against SARS-CoV-2. This can be done via a Nobel Prize awarded technique called “phage display.” If it works, the patient is given extra time to produce their own specific antibodies against the SARS-CoV-2 virus and stop the damage caused by an excessive immunological reaction.
Collapse
Affiliation(s)
- Marcin W. Wojewodzic
- Cancer Registry of Norway (Kreftregisteret), Institute of Population-Based Cancer Research, Etiology Group, NO-0304, Oslo, Norway
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
44
|
Petrovic Fabijan A, Khalid A, Maddocks S, Ho J, Gilbey T, Sandaradura I, Lin RCY, Ben Zakour N, Venturini C, Bowring B, Iredell JR. Phage therapy for severe bacterial infections: a narrative review. Med J Aust 2020; 212:279-285. [PMID: 31587298 PMCID: PMC9545287 DOI: 10.5694/mja2.50355] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteriophage (phage) therapy is re-emerging a century after it began. Activity against antibiotic-resistant pathogens and a lack of serious side effects make phage therapy an attractive treatment option in refractory bacterial infections. Phages are highly specific for their bacterial targets, but the relationship between in vitro activity and in vivo efficacy remains to be rigorously evaluated. Pharmacokinetic and pharmacodynamic principles of phage therapy are generally based on the classic predator-prey relationship, but numerous other factors contribute to phage clearance and optimal dosing strategies remain unclear. Combinations of fully characterised, exclusively lytic phages prepared under good manufacturing practice are limited in their availability. Safety has been demonstrated but randomised controlled trials are needed to evaluate efficacy.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
| | - Ali Khalid
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Susan Maddocks
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- University of SydneySydneyNSW
- Westmead HospitalSydneyNSW
| | - Josephine Ho
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- Westmead HospitalSydneyNSW
| | | | - Indy Sandaradura
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- University of SydneySydneyNSW
| | - Ruby CY Lin
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Nouri Ben Zakour
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Bethany Bowring
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
| | - Jonathan R Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
| |
Collapse
|
45
|
Bonilla-Rosso G, Steiner T, Wichmann F, Bexkens E, Engel P. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. Proc Natl Acad Sci U S A 2020; 117:7355-7362. [PMID: 32179689 PMCID: PMC7132132 DOI: 10.1073/pnas.2000228117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.
Collapse
Affiliation(s)
- Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Théodora Steiner
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Fabienne Wichmann
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Sabino J, Hirten RP, Colombel JF. Review article: bacteriophages in gastroenterology-from biology to clinical applications. Aliment Pharmacol Ther 2020; 51:53-63. [PMID: 31696976 DOI: 10.1111/apt.15557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gut microbiota plays an important role in the pathogenesis of several gastrointestinal diseases. Its composition and function are shaped by host-microbiota and intra-microbiota interactions. Bacteriophages (phages) are viruses that target bacteria and have the potential to modulate bacterial communities. AIMS To summarise phage biology and the clinical applications of phages in gastroenterology METHODS: PubMed was searched to identify relevant studies. RESULTS Phages induce bacterial cell lysis, integration of viral DNA into the bacteria and/or coexistence in a stable equilibrium. Bacteria and phages have co-evolved and their dynamic interactions are yet to be fully understood. The increasing need to modulate microbial communities (e.g., gut microbiota, multidrug-resistant bacteria) has been a strong stimulus for research in phages as an antibacterial therapy. In gastroenterology, phage therapy has been mainly studied in infectious diseases such as cholera. However, it is currently being explored in several other circumstances such as treating Clostridioides difficile colitis, targeting adherent-invasive Escherichia coli in Crohn's disease or eradicating Fusobacterium nucleatum in colorectal cancer. Overall, phage therapy has a favourable and acceptable safety profile. Presently, trials with phage therapy are ongoing in Crohn's disease. CONCLUSIONS Phage therapy is a promising therapeutic tool against pathogenic bacteria in the fields of infectious diseases and gastroenterology. Randomised, placebo-controlled trials with phage therapy for gastroenterological diseases are ongoing.
Collapse
Affiliation(s)
- João Sabino
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Robert P Hirten
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Fazzino L, Anisman J, Chacón JM, Heineman RH, Harcombe WR. Lytic bacteriophage have diverse indirect effects in a synthetic cross-feeding community. THE ISME JOURNAL 2020; 14:123-134. [PMID: 31578469 PMCID: PMC6908662 DOI: 10.1038/s41396-019-0511-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
Bacteriophage shape the composition and function of microbial communities. Yet it remains difficult to predict the effect of phage on microbial interactions. Specifically, little is known about how phage influence mutualisms in networks of cross-feeding bacteria. We mathematically modeled the impacts of phage in a synthetic microbial community in which Escherichia coli and Salmonella enterica exchange essential metabolites. In this model, independent phage attack of either species was sufficient to temporarily inhibit both members of the mutualism; however, the evolution of phage resistance facilitated yields similar to those observed in the absence of phage. In laboratory experiments, attack of S. enterica with P22vir phage followed these modeling expectations of delayed community growth with little change in the final yield of bacteria. In contrast, when E. coli was attacked with T7 phage, S. enterica, the nonhost species, reached higher yields compared with no-phage controls. T7 infection increased nonhost yield by releasing consumable cell debris, and by driving evolution of partially resistant E. coli that secreted more carbon. Our results demonstrate that phage can have extensive indirect effects in microbial communities, that the nature of these indirect effects depends on metabolic and evolutionary mechanisms, and that knowing the degree of evolved resistance leads to qualitatively different predictions of bacterial community dynamics in response to phage attack.
Collapse
Affiliation(s)
- Lisa Fazzino
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy Anisman
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
- College of Continuing and Professional Studies, University of Minnesota, Minneapolis, MN, USA
| | - Jeremy M Chacón
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
- Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | | | - William R Harcombe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
- Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
48
|
Abstract
Colorectal cancer (CRC) is a common cancer globally. It is a complex disease influenced by genetic and environmental factors. Early studies on familial cases have identified major genes involved in CRC, such as proto-oncogenes KRAS, PIK3CA and BRAF, and tumour-suppressor genes APC and TP53. These genes have provided valuable insight into the molecular pathogenesis of CRC, and some have made ways to clinical utility to help diagnose cancer syndromes, prognosticate oncological outcomes and predict treatment responses. While these genetic factors are important, recent studies have suggested contribution of microorganisms to colorectal carcinogenesis. Observational studies, animal experiments and translational works have identified several microorganisms as potential carcinogenic bacteria, such as Fusobacterium nucleatum and Peptostreptococcus anaerobius. With the advent of sequencing technology and bioinformatics, more genomic and metagenomic factors are being uncovered as important players in CRC carcinogenesis. This article aims to review recent genomic and metagenomic discoveries relating to CRC.
Collapse
Affiliation(s)
- Charmaine Ng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haojun Li
- Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Niu A, Song LY, Xiong YH, Lu CJ, Junaid M, Pei DS. Impact of water quality on the microbial diversity in the surface water along the Three Gorge Reservoir (TGR), China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:412-418. [PMID: 31220781 DOI: 10.1016/j.ecoenv.2019.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
The Three Gorges Reservoir (TGR), one of the world's largest reservoirs, has crucial roles in flood control, power generation, and navigation. The TGR is contaminated because of the human activities, and how the contaminated water influences the distribution of the microbial community have not been well studied. In this study, we collected 41 freshwater samples from 13 main dwelling districts along the TGR to investigate the water quality, the distribution of the microbial community, and how water quality affects the microbial community structure. The sampling sites cover the whole TGR along the stream, with 670 km distance. Our results show that both water quality and the compositions of bacterial community vary along the TGR. The distribution of bacterial community is closely related to the local water quality. There is the highest concentration of chemical oxygen demand (COD), the highest relative abundance of Firmicutes, and the highest relative abundance of Bacillus in the upstream, compared to the middle and down streams. Redundancy analysis (RDA) showed that PO43- and COD were the main environmental factors influencing on the structure of bacterial community. The relative abundance of nitrification and denitrification functional genes also altered along the streams. These findings provide the basic data for water quality, the distribution of bacterial community, the link of environmental factors, and the bacterial community structure along the TGR, which guides the local environmental protection agency to launch protection strategy for maintaining the ecosystem health of the TGR.
Collapse
Affiliation(s)
- Aping Niu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Hui Xiong
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Jiao Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Junaid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Papadopoulou A, Dalsgaard I, Wiklund T. Inhibition Activity of Compounds and Bacteriophages against Flavobacterium psychrophilum Biofilms In Vitro. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:225-238. [PMID: 31216387 DOI: 10.1002/aah.10069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Flavobacterium psychrophilum produces biofilms under laboratory conditions, and it has been inconclusively suggested that F. psychrophilum biofilms can be a potential reservoir for transmission of the pathogen to a fish population under fish farming conditions. Therefore, there is a need for anti-biofilm compounds. The main aim of this study was to determine the anti-biofilm properties of certain compounds and bacteriophages on F. psychrophilum biofilms under static conditions using a standard 96-well microtiter plate biofilm assay in vitro. Eight compounds (A-type proanthocyanidins, D-leucine, EDTA, emodin, fucoidan, L-alliin, parthenolide, and 2-aminoimidazole) at three sub-minimum inhibitory concentrations (sub-MICs), four bacteriophages (Fpv-3, Fpv-9, Fpv-10, and Fpv-21), and a phage combination (Fpv-9 + Fpv-10) were tested for inhibition of biofilm formation and reduction of the biomass of mature biofilms formed by two smooth isolates (P7-9/10 and P1-10B/10) and two rough isolates (P7-9/2R/10 and P1-10B/2R/10) of F. psychrophilum. The crystal violet staining method was used to stain the biofilms. Most of the compounds at sub-MICs inhibited the biofilm formation of mainly smooth isolates, attaining up to 80% inhibition. Additionally, the same reduction trend was also observed for 2-aminoimidazole, emodin, parthenolide, and D-leucine on the biomass of mature biofilms in a concentration-dependent manner. The anti-biofilm properties of the compounds are believed to lie in their ability to disturb the cellular interactions during biofilm formation and probably to cause cell dispersal in already formed biofilms. Lytic bacteriophages efficiently inhibited biofilm formation of F. psychrophilum, while they partially reduced the biomass of mature biofilms. However, the phage combination (Fpv-9 + Fpv-10) showed a successful reduction in the biomass of F. psychrophilum mature biofilms. We conclude that inhibiting compounds together with bacteriophages may supplement the use of disinfectants against bacterial biofilms (e.g., F. psychrophilum biofilms), leading to a reduced occurrence of bacterial coldwater disease outbreaks at fish farms.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| |
Collapse
|