1
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
2
|
Bryen SJ, Yuen M, Joshi H, Dawes R, Zhang K, Lu JK, Jones KJ, Liang C, Wong WK, Peduto AJ, Waddell LB, Evesson FJ, Cooper ST. Prevalence, parameters, and pathogenic mechanisms for splice-altering acceptor variants that disrupt the AG exclusion zone. HGG ADVANCES 2022; 3:100125. [PMID: 35847480 PMCID: PMC9284458 DOI: 10.1016/j.xhgg.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/19/2022] [Indexed: 10/26/2022] Open
Abstract
Predicting the pathogenicity of acceptor splice-site variants outside the essential AG is challenging, due to high sequence diversity of the extended splice-site region. Critical analysis of 24,445 intronic extended acceptor splice-site variants reported in ClinVar and the Leiden Open Variation Database (LOVD) demonstrates 41.9% of pathogenic variants create an AG dinucleotide between the predicted branchpoint and acceptor (AG-creating variants in the AG exclusion zone), 28.4% result in loss of a pyrimidine at the -3 position, and 15.1% result in loss of one or more pyrimidines in the polypyrimidine tract. Pathogenicity of AG-creating variants was highly influenced by their position. We define a high-risk zone for pathogenicity: > 6 nucleotides downstream of the predicted branchpoint and >5 nucleotides upstream from the acceptor, where 93.1% of pathogenic AG-creating variants arise and where naturally occurring AG dinucleotides are concordantly depleted (5.8% of natural AGs). SpliceAI effectively predicts pathogenicity of AG-creating variants, achieving 95% sensitivity and 69% specificity. We highlight clinical examples showing contrasting mechanisms for mis-splicing arising from AG variants: (1) cryptic acceptor created; (2) splicing silencer created: an introduced AG silences the acceptor, resulting in exon skipping, intron retention, and/or use of an alternative existing cryptic acceptor; and (3) splicing silencer disrupted: loss of a deep intronic AG activates inclusion of a pseudo-exon. In conclusion, we establish AG-creating variants as a common class of pathogenic extended acceptor variant and outline factors conferring critical risk for mis-splicing for AG-creating variants in the AG exclusion zone, between the branchpoint and acceptor.
Collapse
Affiliation(s)
- Samantha J. Bryen
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
- Functional Neuromics, Children’s Medical Research Institute, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Michaela Yuen
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Himanshu Joshi
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Functional Neuromics, Children’s Medical Research Institute, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Ruebena Dawes
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Katharine Zhang
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Functional Neuromics, Children’s Medical Research Institute, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Jessica K. Lu
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Kristi J. Jones
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
- Department of Clinical Genetics, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Department of Neurogenetics, Northern Clinical School, Kolling Institute, University of Sydney, NSW 2065, Australia
| | - Wui-Kwan Wong
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Anthony J. Peduto
- Department of Radiology, Westmead Hospital, Western Clinical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Leigh B. Waddell
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Frances J. Evesson
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Functional Neuromics, Children’s Medical Research Institute, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| | - Sandra T. Cooper
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
- Functional Neuromics, Children’s Medical Research Institute, The University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia
| |
Collapse
|
3
|
Empirical prediction of variant-activated cryptic splice donors using population-based RNA-Seq data. Nat Commun 2022; 13:1655. [PMID: 35351883 PMCID: PMC8964760 DOI: 10.1038/s41467-022-29271-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Predicting which cryptic-donors may be activated by a splicing variant in patient DNA is notoriously difficult. Through analysis of 5145 cryptic-donors (versus 86,963 decoy-donors not used; any GT or GC), we define an empirical method predicting cryptic-donor activation with 87% sensitivity and 95% specificity. Strength (according to four algorithms) and proximity to the annotated-donor appear important determinants of cryptic-donor activation. However, other factors such as splicing regulatory elements, which are difficult to identify, play an important role and are likely responsible for current prediction inaccuracies. We find that the most frequently recurring natural mis-splicing events at each exon-intron junction, summarised over 40,233 RNA-sequencing samples (40K-RNA), predict with accuracy which cryptic-donor will be activated in rare disease. 40K-RNA provides an accurate, evidence-based method to predict variant-activated cryptic-donors in genetic disorders, assisting pathology consideration of possible consequences of a variant for the encoded protein and RNA diagnostic testing strategies. Genetic variants affecting the consensus splicing motifs can alter binding of spliceosomal components and induce mis-splicing. Here, the authors develop a method, showing that ranking the most common recurring mis-splicing events in public RNA-Seq data can predict the activation of cryptic-donors.
Collapse
|
4
|
Kukhtar D, Rubio-Peña K, Serrat X, Cerón J. Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Hum Mol Genet 2021; 29:756-765. [PMID: 31919495 DOI: 10.1093/hmg/ddz315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas and the high conservation of the spliceosome components facilitate the mimicking of human pathological mutations in splicing factors of model organisms. The degenerative retinal disease retinitis pigmentosa (RP) is caused by mutations in distinct types of genes, including missense mutations in splicing factors that provoke RP in an autosomal dominant form (s-adRP). Using CRISPR in Caenorhabditis elegans, we generated mutant strains to mimic s-adRP mutations reported in PRPF8 and SNRNP200. Whereas these inherited mutations are present in heterozygosis in patients, C. elegans allows the maintenance of these mutations as homozygotes, which is advantageous for genetic and drug screens. We found that snrp-200(cer23[V676L]) and prp-8(cer14[H2302del]) display pleiotropic phenotypes, including reduced fertility. However, snrp-200(cer24[S1080L]) and prp-8(cer22[R2303G]) are weak alleles suitable for RNAi screens for identifying genetic interactions, which could uncover potential disease modifiers. We screened a collection of RNAi clones for splicing-related genes and identified three splicing factors: isy-1/ISY1, cyn-15/PPWD1 and mog-2/SNRPA1, whose partial inactivation may modify the course of the disease. Interestingly, these three genes act as modifiers of prp-8(cer22) but not of snrp-200(cer24). Finally, a screen of the strong allele prp-8(cer14) with FDA-approved drugs did not identify molecules capable of alleviating the temperature-sensitive sterility. Instead, we detected drugs, such as dequalinium chloride, which exacerbated the phenotype, and therefore, are potentially harmful to s-adRP patients since they may accelerate the progression of the disease.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Karinna Rubio-Peña
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Xènia Serrat
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| |
Collapse
|
5
|
Maxwell DW, O'Keefe RT, Roy S, Hentges KE. The role of splicing factors in retinitis pigmentosa: links to cilia. Biochem Soc Trans 2021; 49:1221-1231. [PMID: 34060618 DOI: 10.1042/bst20200798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.
Collapse
Affiliation(s)
- Dale W Maxwell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Raymond T O'Keefe
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kathryn E Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| |
Collapse
|
6
|
Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, Besirli CG, Birch DG, Branham KE, Cideciyan AV, Daiger SP, Dalkara D, Duncan JL, Fahim AT, Flannery JG, Gattegna R, Heckenlively JR, Heon E, Jayasundera KT, Khan NW, Klassen H, Leroy BP, Molday RS, Musch DC, Pennesi ME, Petersen-Jones SM, Pierce EA, Rao RC, Reh TA, Sahel JA, Sharon D, Sieving PA, Strettoi E, Yang P, Zacks DN. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Transl Vis Sci Technol 2020; 9:2. [PMID: 32832209 PMCID: PMC7414644 DOI: 10.1167/tvst.9.7.2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alessandro Iannaccone
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Institute of Ophthalmology, University College London, London, UK
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Isabelle Audo
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Deniz Dalkara
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
| | - Jacque L Duncan
- Department of Ophthalmology, University of California-San Francisco, San Francisco, CA, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | | | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center Medical Genetics, Ghent University Hospital and University, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert S Molday
- Department of Biochemistry/Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jose A Sahel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul A Sieving
- Department of Ophthalmology and Center for Ocular Regenerative Therapy, University of California-Davis School of Medicine, Sacramento, CA, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
7
|
Gerth-Kahlert C, Koller S, Hanson JVM, Baehr L, Tiwari A, Kivrak-Pfiffner F, Bahr A, Berger W. Genotype-Phenotype Analysis of a Novel Recessive and a Recurrent Dominant SNRNP200 Variant Causing Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:2822-2835. [PMID: 31260034 DOI: 10.1167/iovs.18-25643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare phenotype variability in retinitis pigmentosa patients with recessive and dominant mutations in the SNRNP200 gene. Methods In a retrospective study, patients of two unrelated families were identified: family A, five patients aged 36 to 77 years; family B, one patient aged 9 years and his asymptomatic parents and sister. All patients received a comprehensive eye examination with a detailed retinal functional and morphologic assessment. Genetic testing was performed by whole exome sequencing (WES) in the index patient from each family. Genes described to be involved in eye diseases (n > 450) were screened for rare variants and segregation analysis was performed. Results A known heterozygous missense variant (c.3260C>T, p.(Ser1087Leu)) in the SNRNP200 gene was identified in the index patient of family A while a novel homozygous missense mutation (c.1634G>A, p.(Arg545His)) was found in the index patient of family B. Nyctalopia and photophobia were reported by 6/6 and 2/6 patients, respectively. The phenotype associated with the dominant mutation was characterized by variable disease onset (early childhood to the sixth decade of life), disease severity (visual acuity of 20/20-20/200 in the seventh to eighth decade), and advanced rod-cone dysfunction. Characteristics of recessive disease included distinct fundus changes of dot-like hypopigmentation together with retinal atrophy and severe rod-cone dysfunction. Conclusions The phenotype characteristics in autosomal dominant and recessive SNRNP200 mutations show distinct features, with earlier severe disease in the recessive case and a variable disease expression in the dominant inheritance pattern.
Collapse
Affiliation(s)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - James V M Hanson
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Luzy Baehr
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Amit Tiwari
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Fatma Kivrak-Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Angela Bahr
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
9
|
Birtel J, Gliem M, Oishi A, Müller PL, Herrmann P, Holz FG, Mangold E, Knapp M, Bolz HJ, Charbel Issa P. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin Exp Ophthalmol 2019; 47:779-786. [PMID: 30977268 DOI: 10.1111/ceo.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Uncommon characteristics in genetically unsolved retinitis pigmentosa (RP) patients may indicate an incorrect clinical diagnosis or as yet unknown genetic causes resulting in specific retinal phenotypes. The diagnostic yield of targeted next-generation sequencing may be increased by a reasonable preselection of RP-patients. BACKGROUND To systematically evaluate and compare features of genetically solved and unsolved RP-patients. DESIGN Retrospective, observational study. PARTICIPANTS One-hundred and twelve consecutive RP-patients who underwent extensive molecular genetic analysis. METHODS Characterization of patients based on multimodal imaging and medical history. MAIN OUTCOME MEASURES Differences between genetically solved and unsolved RP-patients. RESULTS Compared to genetically solved patients (n = 77), genetically unsolved patients (n = 35) more frequently had an age of disease-onset above 30 years (60% vs 8%; P < 0.0001), showed atypical fundus features (49% vs 8%; P < 0. 0001) and indicators for phenocopies (eg, autoimmune diseases) (17% vs 0%; P < 0. 001). Evidence for a particular inheritance pattern was less common (20% vs 49%; P < 0. 01). The diagnostic yield was 84% (71/85) in patients with first symptoms below 30 years-of-age, compared to 69% (77/112) in the overall cohort. The other selection criteria alone or in combination resulted in limited further increase of the diagnostic yield (up to 89%) while excluding considerably more patients (up to 56%) from genetic testing. CONCLUSIONS AND RELEVANCE The medical history and retinal phenotype differ between genetically solved and a subgroup of unsolved RP-patients, which may reflect undetected genotypes or retinal conditions mimicking RP. Patient stratification may inform on the individual likelihood of identifying disease-causing mutations and may impact patient counselling.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akio Oishi
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Abnormal intrinsic brain activity in individuals with peripheral vision loss because of retinitis pigmentosa using amplitude of low-frequency fluctuations. Neuroreport 2019; 29:1323-1332. [PMID: 30113921 DOI: 10.1097/wnr.0000000000001116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study aimed to determine alterations in intrinsic brain activity in retinitis pigmentosa (RP) individuals using the amplitude of low-frequency fluctuation (ALFF)/fractional amplitude of low-frequency fluctuation (fALFF) method. Sixteen RP individuals (10 men and six women) and 14 healthy controls (HCs) (six men and eight women) closely matched in age, sex, and education were enrolled in the study. The ALFF/fALFF method was applied to compare different intrinsic brain activities between the RP group and the HC group. The relationship between the mean ALFF/fALFF signal values of different brain regions and the visual measurements in RP group was analyzed by Pearson correlation. Compared with HCs, RP individuals had significantly lower ALFF values in the bilateral lingual gyrus (LIGG)/cerebellum posterior lobe [Brodmann area (BA) 17,18], but lower fALFF values in the bilateral LIGG/cerebellum anterior lobe (BA 17,18). Meanwhile, RP individuals had significantly higher ALFF in the bilateral precuneus cortex/middle cingulate cortex (BA 7,31), as well as higher fALFF values in the left superior/middle frontal gyrus (BA 9,10) and bilateral supplementary motor area (BA 6,8) (voxel-level P<0.01, cluster-level P<0.05). Moreover, the fALFF values of the bilateral LIGG/cerebellum anterior lobe showed positive relationships with the best-corrected visual acuity (BCVA)-oculus dexter (r=0.574, P=0.020) and BCVA-oculus sinister (r=0.570, P=0.021) in RP individuals; our results provide evidence that RP individuals may have impaired intrinsic brain activity in the primary visual area and the visuomotor coordination area that correlates with BCVA. Moreover, our findings indicate that reorganization of the dorsal visual stream and the parietoprefrontal pathway occurs in RP individuals.
Collapse
|
11
|
Li Y, Furhang R, Ray A, Duncan T, Soucy J, Mahdi R, Chaitankar V, Gieser L, Poliakov E, Qian H, Liu P, Dong L, Rogozin IB, Redmond TM. Aberrant RNA splicing is the major pathogenic effect in a knock-in mouse model of the dominantly inherited c.1430A>G human RPE65 mutation. Hum Mutat 2019; 40:426-443. [PMID: 30628748 DOI: 10.1002/humu.23706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/03/2023]
Abstract
Human RPE65 mutations cause a spectrum of retinal dystrophies that result in blindness. While RPE65 mutations have been almost invariably recessively inherited, a c.1430A>G (p.(D477G)) mutation has been reported to cause autosomal dominant retinitis pigmentosa (adRP). To study the pathogenesis of this human mutation, we have replicated the mutation in a knock-in (KI) mouse model using CRISPR/Cas9-mediated genome editing. Significantly, in contrast to human patients, heterozygous KI mice do not exhibit any phenotypes in visual function tests. When raised in regular vivarium conditions, homozygous KI mice display relatively undisturbed visual functions with minimal retinal structural changes. However, KI/KI mouse retinae are more sensitive to light exposure and exhibit signs of degenerative features when subjected to light stress. We find that instead of merely producing a missense mutant protein, the A>G nucleotide substitution greatly affects appropriate splicing of Rpe65 mRNA by generating an ectopic splice site in comparable context to the canonical one, thereby disrupting RPE65 protein expression. Similar splicing defects were also confirmed for the human RPE65 c.1430G mutant in an in vitro Exontrap assay. Our data demonstrate that a splicing defect is associated with c.1430G pathogenesis, and therefore provide insights in the therapeutic strategy for human patients.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rachel Furhang
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Amanda Ray
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Todd Duncan
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Joseph Soucy
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rashid Mahdi
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
12
|
Montes M, Sanford BL, Comiskey DF, Chandler DS. RNA Splicing and Disease: Animal Models to Therapies. Trends Genet 2019; 35:68-87. [PMID: 30466729 PMCID: PMC6339821 DOI: 10.1016/j.tig.2018.10.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing of pre-mRNA increases genetic diversity, and recent studies estimate that most human multiexon genes are alternatively spliced. If this process is not highly regulated and accurate, it leads to mis-splicing events, which may result in proteins with altered function. A growing body of work has implicated mis-splicing events in a range of diseases, including cancer, neurodegenerative diseases, and muscular dystrophies. Understanding the mechanisms that cause aberrant splicing events and how this leads to disease is vital for designing effective therapeutic strategies. In this review, we focus on advances in therapies targeting splicing, and highlight the animal models developed to recapitulate disease phenotypes as a model for testing these therapies.
Collapse
Affiliation(s)
- Matías Montes
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brianne L Sanford
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel F Comiskey
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
13
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
14
|
A new approach based on targeted pooled DNA sequencing identifies novel mutations in patients with Inherited Retinal Dystrophies. Sci Rep 2018; 8:15457. [PMID: 30337596 PMCID: PMC6194132 DOI: 10.1038/s41598-018-33810-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
Inherited retinal diseases (IRD) are a heterogeneous group of diseases that mainly affect the retina; more than 250 genes have been linked to the disease and more than 20 different clinical phenotypes have been described. This heterogeneity both at the clinical and genetic levels complicates the identification of causative mutations. Therefore, a detailed genetic characterization is important for genetic counselling and decisions regarding treatment. In this study, we developed a method consisting on pooled targeted next generation sequencing (NGS) that we applied to 316 eye disease related genes, followed by High Resolution Melting and copy number variation analysis. DNA from 115 unrelated test samples was pooled and samples with known mutations were used as positive controls to assess the sensitivity of our approach. Causal mutations for IRDs were found in 36 patients achieving a detection rate of 31.3%. Overall, 49 likely causative mutations were identified in characterized patients, 14 of which were first described in this study (28.6%). Our study shows that this new approach is a cost-effective tool for detection of causative mutations in patients with inherited retinopathies.
Collapse
|
15
|
Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, Farkas M, Hilgen G, White K, Pan KT, Treumann A, Hallam D, Bialas K, Chung G, Mellough C, Ding Y, Krasnogor N, Przyborski S, Zwolinski S, Al-Aama J, Alharthi S, Xu Y, Wheway G, Szymanska K, McKibbin M, Inglehearn CF, Elliott DJ, Lindsay S, Ali RR, Steel DH, Armstrong L, Sernagor E, Urlaub H, Pierce E, Lührmann R, Grellscheid SN, Johnson CA, Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 2018; 9:4234. [PMID: 30315276 PMCID: PMC6185938 DOI: 10.1038/s41467-018-06448-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Basudha Basu
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - David Dolan
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Alastair Droop
- MRC Medical Bioinformatics Centre, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Revital Bronstein
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Michael Farkas
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203-1121, USA
| | - Gerrit Hilgen
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kathryn White
- Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuan-Ting Pan
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Achim Treumann
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna Bialas
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Git Chung
- Newcastle University Protein and Proteome Analysis (NUPPA), Devonshire Building, Devonshire Terrace, Newcastle upon Tyne, NE1 7RU, UK
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Stefan Przyborski
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Simon Zwolinski
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Katarzyna Szymanska
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - David H Steel
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Evelyne Sernagor
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Eric Pierce
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Sushma-Nagaraja Grellscheid
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Thormohlensgt 55, Bergen, N-5008, Norway.
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
16
|
González-Del Pozo M, Martín-Sánchez M, Bravo-Gil N, Méndez-Vidal C, Chimenea Á, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. Searching the second hit in patients with inherited retinal dystrophies and monoallelic variants in ABCA4, USH2A and CEP290 by whole-gene targeted sequencing. Sci Rep 2018; 8:13312. [PMID: 30190494 PMCID: PMC6127285 DOI: 10.1038/s41598-018-31511-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Inherited Retinal Dystrophies are clinically and genetically heterogeneous disorders affecting the photoreceptors. Although NGS has shown to be helpful for the molecular diagnosis of these conditions, some cases remain unsolved. Among these, several individuals harboured monoallelic variants in a recessive gene, suggesting that a comprehensive screening could improve the overall diagnosis. In order to assess the contribution of non-coding variations in a cohort of 29 patients, 25 of them with monoallelic mutations, we performed targeted NGS. The design comprised the entire genomic sequence of three genes (USH2A, ABCA4 and CEP290), the coding exons of 76 genes and two disease-associated intronic regions in OFD1 and PRPF31. As a result, likely causative mutations (8 novel) were identified in 17 probands (diagnostic rate: 58.62%), including two copy-number variations in USH2A (one deletion of exons 22-55 and one duplication of exons 46-47). Possibly damaging deep-intronic mutations were identified in one family, and another with a monoallelic variant harboured causal mutations in a different locus. In conclusion, due to the high prevalence of carriers of IRD mutations and the results obtained here, sequencing entire genes do not seem to be the approach of choice for detecting the second hit in IRD patients with monoallelic variants.
Collapse
Affiliation(s)
- María González-Del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Ángel Chimenea
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Enrique Rodríguez-de la Rúa
- Department of Ophthalmology, University Hospital Virgen Macarena, Seville, Spain
- Retics Patologia Ocular. OFTARED. Instituto de Salud Carlos III, Madrid, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain.
| |
Collapse
|
17
|
Escher P, Passarin O, Munier FL, Tran VH, Vaclavik V. Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions. Ophthalmic Genet 2017; 39:80-86. [DOI: 10.1080/13816810.2017.1393825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pascal Escher
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olga Passarin
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francis L. Munier
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Viet H. Tran
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Veronika Vaclavik
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Hôpital Cantonal, Fribourg, Switzerland
| |
Collapse
|