1
|
Muguruma K, Takahashi T, Tagane Y, Nazere K, Hara N, Nakamori M, Yamazaki Y, Morino H, Maruyama H. Intracellular anionic substances cause tau liquid-liquid phase separation. Biochem Biophys Res Commun 2025; 757:151605. [PMID: 40107109 DOI: 10.1016/j.bbrc.2025.151605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Tau protein aggregation plays an important role in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease and Niemann-Pick disease type C. Liquid-liquid phase separation has emerged as a key mechanism in the early stages of protein aggregation for these disorders. Tau protein incubated with heparin undergoes liquid-liquid phase separation to form liquid droplets in vitro. However, whether tau liquid droplet formation occurs in vivo remains unresolved. To investigate cellular conditions that promote tau droplet formation, we treated tau-expressing human embryonic kidney 293T cells with reagents that introduced anionic substances or induced intracellular vesicle accumulation. Suppression of Niemann-Pick disease type C1 protein, a lysosomal membrane protein involved in mediating intracellular cholesterol trafficking, or the introduction of negatively charged dextran into cultured cells, increased the formation of tau-positive puncta with liquid droplet characteristics in a concentration-dependent manner. After prolonged observation, these puncta transitioned from a dynamic liquid state to a more solid-like gel phase, indicating progressive aggregation. Our findings suggest that intracellular enrichment of negatively charged substances or vesicles induces tau phase separation, potentially contributing to its pathological aggregation. These results provide insight into the molecular mechanisms underlying tauopathies and highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kazuki Muguruma
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, 555-36 Kurose Gakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan; Department of Neurology, MNES Inc., 1-2-27 Shinonomehonmachi, Minami-ku, Hiroshima-shi, Hiroshima, 734-0023, Japan.
| | - Yuichiro Tagane
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Keyoumu Nazere
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Naoyuki Hara
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, 1-2-1 Kameyamaminami, Asakita-ku, Hiroshima-shi, Hiroshima, 731-0293, Japan.
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| |
Collapse
|
2
|
Morita S, Iwatake M, Suga S, Takahashi K, Sato K, Miyagi-Shiohira C, Noguchi H, Baba Y, Yukawa H. Establishment of a stem cell administration imaging method in bleomycin-induced pulmonary fibrosis mouse models. Sci Rep 2024; 14:18905. [PMID: 39143270 PMCID: PMC11325036 DOI: 10.1038/s41598-024-67586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a progressive disease caused by interstitial inflammation. Treatments are extremely scarce; therapeutic drugs and transplantation therapies are not widely available due to cost and a lack of donors, respectively. Recently, there has been a high interest in regenerative medicine and exponential advancements in stem cell-based therapies have occurred. However, a sensitive imaging technique for investigating the in vivo dynamics of transplanted stem cells has not yet been established and the mechanisms of stem cell-based therapy remain largely unexplored. In this study, we administered mouse adipose tissue-derived mesenchymal stem cells (mASCs) labeled with quantum dots (QDs; 8.0 nM) to a mouse model of bleomycin-induced pulmonary fibrosis in an effort to clarify the relationship between in vivo dynamics and therapeutic efficacy. These QD-labeled mASCs were injected into the trachea of C57BL/6 mice seven days after bleomycin administration to induce fibrosis in the lungs. The therapeutic effects and efficacy were evaluated via in vivo/ex vivo imaging, CT imaging, and H&E staining of lung sections. The QD-labeled mASCs remained in the lungs longer and suppressed fibrosis. The 3D imaging results showed that the transplanted cells accumulated in the peripheral and fibrotic regions of the lungs. These results indicate that mASCs may prevent fibrosis. Thus, QD labeling could be a suitable and sensitive imaging technique for evaluating in vivo kinetics in correlation with the efficacy of cell therapy.
Collapse
Affiliation(s)
- Saho Morita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mayumi Iwatake
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Sakura Suga
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kazuomi Takahashi
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Frontier, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhide Sato
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Frontier, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
- Nagoya University Graduate School of Medicine, 65 Tsuruma, Showa-ku, Nagoya, 466-8550, Japan
- FOREST-Souhatsu, JST, Tokyo, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Nagoya University Graduate School of Medicine, 65 Tsuruma, Showa-ku, Nagoya, 466-8550, Japan.
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan.
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, 265-8522, Japan.
| |
Collapse
|
3
|
Dewal RS, Yang FT, Baer LA, Vidal P, Hernandez-Saavedra D, Seculov NP, Ghosh A, Noé F, Togliatti O, Hughes L, DeBari MK, West MD, Soroko R, Sternberg H, Malik NN, Puchulu-Campanella E, Wang H, Yan P, Wolfrum C, Abbott RD, Stanford KI. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience 2024; 27:108927. [PMID: 38327776 PMCID: PMC10847743 DOI: 10.1016/j.isci.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Revati S. Dewal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Felix T. Yang
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Hernandez-Saavedra
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nickolai P. Seculov
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Adhideb Ghosh
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Olivia Togliatti
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lexis Hughes
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan K. DeBari
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael D. West
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Richard Soroko
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Estella Puchulu-Campanella
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huabao Wang
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Yukawa H, Sato K, Baba Y. Theranostics applications of quantum dots in regenerative medicine, cancer medicine, and infectious diseases. Adv Drug Deliv Rev 2023; 200:114863. [PMID: 37156265 DOI: 10.1016/j.addr.2023.114863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Quantum dots (QDs) have attracted attention for their application and commercialization in all industrial fields, including communications, displays, and solar cells, due to their excellent optical properties based on the quantum size effect. In recent years, the development of QDs that do not contain cadmium which is toxic to cells and living organisms, has progressed, and they have attracted considerable attention in the bio-imaging field for targeting molecules and cells. Furthermore, recently, the need for diagnostics and treatment at the single molecule and single cell level in the medical field has been increasing, and the application of QDs in the medical field is also accelerating. Therefore, this paper outlines the frontiers of diagnostic and therapeutic applications (theranostics) of QDs, especially in advanced medical fields such as regenerative medicine, oncology, and infectious diseases.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan; Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan.
| | - Kazuhide Sato
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan; Nagoya University Graduate School of Medicine, 65 Tsuruma, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan; Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
5
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
7
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kowalik P, Bujak P, Wróbel Z, Penkala M, Kotwica K, Maroń A, Pron A. From Red to Green Luminescence via Surface Functionalization. Effect of 2-(5-Mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4- c]pyrrole-4,6-dione Ligands on the Photoluminescence of Alloyed Ag-In-Zn-S Nanocrystals. Inorg Chem 2020; 59:14594-14604. [PMID: 32941018 PMCID: PMC7586334 DOI: 10.1021/acs.inorgchem.0c02468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A semiconducting molecule containing a thiol anchor group, namely 2-(5-mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4-c]pyrrole-4,6-dione (abbreviated as D-A-D-SH), was designed, synthesized, and used as a ligand in nonstoichiometric quaternary nanocrystals of composition Ag1.0In3.1Zn1.0S4.0(S6.1) to give an inorganic/organic hybrid. Detailed NMR studies indicate that D-A-D-SH ligands are present in two coordination spheres in the organic part of the hybrid: (i) inner in which the ligand molecules form direct bonds with the nanocrystal surface and (ii) outer in which the ligand molecules do not form direct bonds with the inorganic core. Exchange of the initial ligands (stearic acid and 1-aminooctadecane) for D-A-D-SH induces a distinct change of the photoluminescence. Efficient red luminescence of nanocrystals capped with initial ligands (λmax = 720 nm, quantum yield = 67%) is totally quenched and green luminescence characteristic of the ligand appears (λmax = 508 nm, quantum yield = 10%). This change of the photoluminescence mechanism can be clarified by a combination of electrochemical and spectroscopic investigations. It can be demonstrated by cyclic voltammetry that new states appear in the hybrid as a consequence of D-A-D-SH binding to the nanocrystals surface. These states are located below the nanocrystal LUMO and above its HOMO, respectively. They are concurrent to deeper donor and acceptor states governing the red luminescence. As a result, energy transfer from the nanocrystal HOMO and LUMO levels to the ligand states takes place, leading to effective quenching of the red luminescence and appearance of the green one.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
10
|
Pilch J, Matysiak-Brynda E, Kowalczyk A, Bujak P, Mazerska Z, Nowicka AM, Augustin E. New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17276-17289. [PMID: 32208730 DOI: 10.1021/acsami.0c02621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that a unique combination of nanocrystals core components (Ag-In-Zn-S) would eliminate the toxicity problem and increase their biomedical applications. The alloyed quaternary nanocrystals Ag-In-Zn-S (QDgreen, Ag1.0In1.2Zn5.6S9.4; QDred, Ag1.0In1.0Zn1.0S3.5) were used to transport new unsymmetrical bisacridine derivatives (UAs, C-2028 and C-2045) into lung H460 and colon HCT116 cancer cells for improving the cytotoxic and antitumor action of these compounds. UAs were coupled with QD through physical adsorption. The obtained results clearly indicate that the synthesized nanoconjugates exhibited higher cytotoxic activity than unbound compounds, especially toward lung H460 cancer cells. Importantly, unsymmetrical bisacridines noncovalently attached to QD strongly protect normal cells from the drug action. It is worth pointing out that QDgreen or QDred without UAs did not influence the growth of cancer and normal cells, which is consistent with in vivo results. In noncellular systems, at pH 5.5 and 4.0, which relates to the conditions of endosomes and lysosomes, the UAs were released from QD-UAs nanoconjugates. An increase of total lysosomes content was observed in H460 cells treated with QDs-UAs which can affect the release of the UAs from the conjugates. Moreover, confocal laser scanning microscopy analyses revealed that QD-UAs nanoconjugates enter H460 cells more efficiently than to HCT116 and normal cells, which may be the reason for their higher cytotoxicity against lung cancer. Summarizing, the noncovalent attachment of UAs to QDs increases the therapeutic efficiency of UAs by improving cytotoxicity toward lung H460 cancer cells and having protecting effects on normal cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Zofia Mazerska
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
11
|
Feng J, Yang X, Li R, Yang X, Feng G. The Composition-Dependent Photoluminescence Properties of Non-Stoichiometric Zn xAg yInS 1.5+x+0.5y Nanocrystals. MICROMACHINES 2019; 10:mi10070439. [PMID: 31266136 PMCID: PMC6680743 DOI: 10.3390/mi10070439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
A facile hot injection approach to synthesize high-quality non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals (NCs) in the size range of 2.8–3.1 nm was presented. The fluorescence spectra had single band gap features, and indicated the formation of alloy states rather than simple composite structures. The chemical compositions, photoluminescence (PL) emission wavelengths, and quantum yields of ZnxAgyInS1.5+x+0.5y nanocrystals were significantly influenced by the concentration of an organic capping agent. The appropriate proportion of 1-dodecanthiol in the precursor prevented the precipitation, increased the fluorescence quantum yield, and improved their optical properties. The proper ratio of capping agent allowed Zn, Ag, and In to form a better crystallinity and compositional homogeneity of ZnxAgyInS1.5+x+0.5y nanocrystals. The photoluminescence was tunable from blue to red in the range of 450–700 nm as the Ag content changed independently. The PL and absorption spectra of ZnxAgyInS1.5+x+0.5y nanocrystals showed a significant blue shift with the decrease of Ag content in the precursor. As there were no obvious differences on the average particle sizes of ZnxAgyInS1.5+x+0.5y samples, these results fully revealed the composition-dependent photoluminescence properties of ZnxAgyInS1.5+x+0.5y nanocrystals. The relative quantum yield reached 35%. The fluorescence lifetimes (τ1=115–148 ns and τ2=455–483 ns) were analogous to those of AgInS2 and (AgIn)xZn2(1−x)S2.
Collapse
Affiliation(s)
- Jian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou, China
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou, China
| | - Rong Li
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Xianjiong Yang
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China
| | - Guangwei Feng
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, China.
| |
Collapse
|
12
|
Chetty SS, Praneetha S, Govarthanan K, Verma RS, Vadivel Murugan A. Noninvasive Tracking and Regenerative Capabilities of Transplanted Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with I-III-IV Semiconducting Nanocrystals in Liver-Injured Living Mice. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8763-8778. [PMID: 30741534 DOI: 10.1021/acsami.8b19953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acute liver injury is a critical syndrome ascribed to prevalent death of hepatocytes and imperatively requires liver transplantation. Such a methodology is certainly hampered due to the deficit of healthy donors. In this regard, stem cell-based regenerative therapies are attractive in repairing injured tissues and organs for medical applications. However, it is crucial to understand the migration, engraftment, and regeneration capabilities of transplanted stem cells in the living animal models. For the first time, we demonstrate rapid labeling of umbilical cord-derived mesenchymal stem cells (MSCs) with near-infrared (NIR)-fluorescent CuInS2-ZnS nanocrystals (CIZS-NCs) to develop innovative nanobioconjugates (MSCs-CIZS-NBCs) that exhibit 98% labeling efficiency. Before nanobioconjugate synthesis, the pristine CIZS-NCs were prepared via a two-step, hot-injection, rapid and low-cost domestic-microwave-refluxing (MW-R) method within 6 min. The as-synthesized CIZS-NCs display high photoluminescence quantum yield (∼88%) and long-lived lifetime (23.4 μs). In contrast to unlabeled MSCs, the MSCs-CIZS nanobioconjugates show excellent biocompatibility without affecting the stemness, as confirmed by cell viability, immunophenotyping (CD44+, CD105+, CD90+), multi-lineage-specific gene expressions, and differentiation into adipocytes, osteocytes, and chondrocytes. The in vivo fluorescence tracking analyses revealed that the MSCs-CIZS-NBCs after tail-vein injection were initially trapped in the lungs and gradually engrafted in the injured liver within 2 h. The regeneration potential of MSCs-CIZS-NBCs was confirmed via renewal of the portal tract composed of portal veins, bile ducts, and hepatic arteries around the hepatocytes. Consequently, no apparent inflammations, necrosis, or apoptosis was observed in the acetaminophen (APAP)-induced liver-injured BALB/c mice model over 3 days after transplantation, as corroborated using laser-scanning confocal microscopy and histopathological and hematological analyses. Hence, our innovative NIR-fluorescent MSCs-CIZS-NBCs offer an off-the-self technology for noninvasive tracking of transplanted MSCs in an acute-liver-injured animal model for future image-guided cell-therapies.
Collapse
Affiliation(s)
- Shashank Shankar Chetty
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| | - Selvarasu Praneetha
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| | - Kavitha Govarthanan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600 036 , India
| | - Rama Shanker Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600 036 , India
| | - Arumugam Vadivel Murugan
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| |
Collapse
|
13
|
Bujak P, Wróbel Z, Penkala M, Kotwica K, Kmita A, Gajewska M, Ostrowski A, Kowalik P, Pron A. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorg Chem 2019; 58:1358-1370. [DOI: 10.1021/acs.inorgchem.8b02916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Wróbel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Kamil Kotwica
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
15
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Minoshima W, Ito R, Takiyama T, Kameyama T, Torimoto T, Tawa K. Photoluminescence characterization of ZnS-AgInS2 (ZAIS) nanoparticles adsorbed on plasmonic chip studied with fluorescence microscopy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Yukawa H, Baba Y. In Vivo Imaging Technology of Transplanted Stem Cells Using Quantum Dots for Regenerative Medicine. ANAL SCI 2018; 34:525-532. [PMID: 29743422 DOI: 10.2116/analsci.17r005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quantum dots (QDs) have excellent fluorescence properties in comparison to traditional fluorescence probes. Thus, the optical application of QDs is rapidly expanding to each field of analytical chemistry. In this review paper, we reviewed the application of QDs to regenerative medicine, especially stem cell transplantation therapy. The labeling of stem cells using QDs composed of semiconductor materials in combination with a chemical substance, poly-cationic liposome and cell penetrating peptide is reported. In addition, the influence of QD labeling on the pluripotency of stem cells is also reported. Finally, the in vivo imaging of transplanted stem cells in mice by QDs emitting fluorescence in the near-infrared region, which can be detected by in vivo fluorescence imaging systems such as IVIS and SAI-1000, is described. The future prospects for stem cell imaging technology by QDs are also discussed.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University.,Institute of Innovation for Future Society, Nagoya University.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
18
|
Ma C, Guo Y, Wen H, Zheng Y, Tan L, Li X, Wang C, Guan W, Liu C. Identification and Multilineage Potential Research of a Novel Type of Adipose-Derived Mesenchymal Stem Cells from Goose Inguinal Groove. DNA Cell Biol 2018; 37:731-741. [PMID: 30102556 DOI: 10.1089/dna.2017.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) play a crucial role in the field of regenerative medicine and tissue repair for its own unique features. However, up to date, the isolation and characterizations of multidifferentiation potentials of goose ADSCs are still uncertain. In this study, we successfully isolated ADSCs from goose inguinal groove in vitro for the first time and also attempted to unravel its fundamental differentiation potentials and genetic characteristics. The results showed that isolated ADSCs exhibited a typical fibroblast-like morphology and high proliferative potential, could be passaged for at least 40 passages and maintained high hereditary stability with more than 92.2% of cells were diploid (2n = 78) by G-banding analysis. Moreover, the ADSCs could express pluripotent marker gene (OCT4) and mesenchymal stem cells-related surface antigens, which are similar to previously reported human ADSCs. Additionally, the goose ADSCs could be induced to transdifferentiate into cells of three layers in vitro, such as osteoblasts, chondrocytes, and adipocytes derived from mesoderm, neurocytes from ectoderm, and hepatocytes of the endoderm. Most of all, we confirmed that the induced β-like cells and hepatocytes had metabolic functions similar to normal cells in vivo. Taken together, these results demonstrated the multidifferentiation potentials of ADSCs in vitro, which conferred an appealing candidate for cell regenerative therapy.
Collapse
Affiliation(s)
- Caiyun Ma
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Guo
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Hebao Wen
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Zheng
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiqi Tan
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Xiangchen Li
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjing Wang
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Weijun Guan
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Liu
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,4 Department of Neuroscience, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
19
|
Matysiak-Brynda E, Bujak P, Augustin E, Kowalczyk A, Mazerska Z, Pron A, Nowicka AM. Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag-In-Zn-S as a biological entity for tumor recognition. NANOSCALE 2018; 10:1286-1296. [PMID: 29293251 DOI: 10.1039/c7nr07819f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin by fluorescence studies and cytotoxic measurements showed that the biological activity of both the transferrin and doxorubicin was fully retained in the nanoconjugate. In particular, the intercalation capabilities of free doxorubicin versus ctDNA remained essentially intact upon its binding to the nanoconjugate. In order to evaluate these capabilities, we studied the binding constant of doxorubicin attached to Tf-QDs with ctDNA as well as the binding site size on the ctDNA molecule. The binding constant slightly decreased compared to that of free doxorubicin while the binding site size, describing the number of consecutive DNA lattice residues involved in the binding, increased. It was also demonstrated that the QDs alone and in the form of a nanoconjugate with Tf were not cytotoxic towards human non-small cell lung carcinoma (H460 cell line) and the tumor cell sensitivity of the DOX-Tf-QD nanoconjugate was comparable to that of doxorubicin alone.
Collapse
Affiliation(s)
- Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
20
|
TORIMOTO T. Nanostructure Engineering of Size-Quantized Semiconductor Particles for Photoelectrochemical Applications. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|