1
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Charles-Achille S, Janot JM, Cayrol B, Balme S. Influence of Seed structure on Volume distribution of α-Synuclein Oligomer at Early Stages of Aggregation using nanopipette. Chembiochem 2024; 25:e202300748. [PMID: 38240074 DOI: 10.1002/cbic.202300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Understanding α-synuclein aggregation is crucial in the context of Parkinson's disease. The objective of this study was to investigate the influence of aggregation induced by preformed seeding on the volume of oligomers during the early stages, using a label-free, single-molecule characterization approach. By utilizing nanopipettes of varying sizes, the volume of the oligomers can be calculated from the amplitude of the current blockade and pipette geometry. Further investigation of the aggregates formed over time in the presence of added seeds revealed an acceleration in the formation of large aggregates and the existence of multiple distinct populations of oligomers. Additionally, we observed that spontaneously formed seeds inhibited the formation of smaller oligomers, in contrast to the effect of HNE seeds. These results suggest that the seeds play a crucial role in the formation of oligomers and their sizes during the early stages of aggregation, whereas the classical thioflavin T assay remains negative.
Collapse
Affiliation(s)
- Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| | - Sebastien Balme
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| |
Collapse
|
3
|
Meng F, Kim JY, Gopich IV, Chung HS. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-β 42 of extremely low population. PNAS NEXUS 2023; 2:pgad253. [PMID: 37564361 PMCID: PMC10411938 DOI: 10.1093/pnasnexus/pgad253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Soluble oligomers produced during protein aggregation have been thought to be toxic species causing various diseases. Characterization of these oligomers is difficult because oligomers are a heterogeneous mixture, which is not readily separable, and may appear transiently during aggregation. Single-molecule spectroscopy can provide valuable information by detecting individual oligomers, but there have been various problems in determining the size and concentration of oligomers. In this work, we develop and use a method that analyzes single-molecule fluorescence burst data of freely diffusing molecules in solution based on molecular diffusion theory and maximum likelihood method. We demonstrate that the photon count rate, diffusion time, population, and Förster resonance energy transfer (FRET) efficiency can be accurately determined from simulated data and the experimental data of a known oligomerization system, the tetramerization domain of p53. We used this method to characterize the oligomers of the 42-residue amyloid-β (Aβ42) peptide. Combining peptide incubation in a plate reader and single-molecule free-diffusion experiments allows for the detection of stable oligomers appearing at various stages of aggregation. We find that the average size of these oligomers is 70-mer and their overall population is very low, less than 1 nM, in the early and middle stages of aggregation of 1 µM Aβ42 peptide. Based on their average size and long diffusion time, we predict the oligomers have a highly elongated rod-like shape.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
4
|
Martelli F, Palmer JC. Signatures of sluggish dynamics and local structural ordering during ice nucleation. J Chem Phys 2022; 156:114502. [DOI: 10.1063/5.0083638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the microscopic pathway of spontaneous crystallization in the ST2 model of water under deeply supercooled conditions via unbiased classical molecular dynamics simulations. After quenching below the liquid–liquid critical point, the ST2 model spontaneously separates into low-density liquid (LDL) and high-density liquid phases, respectively. The LDL phase, which is characterized by lower molecular mobility and enhanced structural order, fosters the formation of a sub-critical ice nucleus that, after a stabilization time, develops into the critical nucleus and grows. Polymorphic selection coincides with the development of the sub-critical nucleus and favors the formation of cubic (Ic) over hexagonal (Ih) ice. We rationalize polymorphic selection in terms of geometric arguments based on differences in the symmetry of second neighbor shells of ice Ic and Ih, which are posited to favor formation of the former. The rapidly growing critical nucleus absorbs both Ic and Ih crystallites dispersed in the liquid phase, a crystal with stacking faults. Our results are consistent with, and expand upon, recent observations of non-classical nucleation pathways in several systems.
Collapse
Affiliation(s)
- Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
5
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
6
|
Fatafta H, Khaled M, Owen MC, Sayyed-Ahmad A, Strodel B. Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane. Proc Natl Acad Sci U S A 2021; 118:e2106210118. [PMID: 34544868 PMCID: PMC8488611 DOI: 10.1073/pnas.2106210118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity of amyloid-β peptides in Alzheimer's disease. To gain a detailed understanding of the mutual interference of amyloid-β oligomers and the neuronal membrane, we carried out microseconds of all-atom molecular dynamics (MD) simulations on the dimerization of amyloid-β (Aβ)42 in the aqueous phase and in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The dimerization in solution is characterized by a random coil to β-sheet transition that seems on pathway to amyloid aggregation, while the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. As the neurotoxic activity of amyloid oligomers increases with oligomer order, these results suggest that GM1 is neuroprotective against Aβ-mediated toxicity.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael C Owen
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | | | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Cueto-Díaz EJ, Ebiloma GU, Alfayez IA, Ungogo MA, Lemgruber L, González-García MC, Giron MD, Salto R, Fueyo-González FJ, Shiba T, González-Vera JA, Ruedas Rama MJ, Orte A, de Koning HP, Dardonville C. Synthesis, biological, and photophysical studies of molecular rotor-based fluorescent inhibitors of the trypanosome alternative oxidase. Eur J Med Chem 2021; 220:113470. [PMID: 33940464 DOI: 10.1016/j.ejmech.2021.113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
We have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e. the mitochondrion, but to date this localization has not been formally established. We therefore synthesized a series of fluorescent analogues to visualize accumulation and distribution within the cell. The fluorophore chosen, julolidine, has the remarkable extra feature of being able to function as a viscosity sensor and might thus additionally act as a probe of the cellular glycerol that is expected to be produced when TAO is inhibited. Two series of fluorescent inhibitor conjugates incorporating a cationic julolidine-based viscosity sensor were synthesized and their photophysical and biological properties were studied. These probes display a red emission, with a high signal-to-noise ratio (SNR), using both single- and two-photon excitation. Upon incubation with T. brucei and mammalian cells, the fluorescent inhibitors 1a and 2a were taken up selectively in the mitochondria as shown by live-cell imaging. Efficient partition of 1a in functional isolated (rat liver) mitochondria was estimated to 66 ± 20% of the total. The compounds inhibited recombinant TAO enzyme in the submicromolar (1a, 2c, 2d) to low nanomolar range (2a) and were effective against WT and multidrug-resistant trypanosome strains (B48, AQP1-3 KO) in the submicromolar range. Good selectivity (SI > 29) over mammalian HEK cells was observed. However, no viscosity-related shift could be detected, presumably because the glycerol was produced cytosolically, and released through aquaglyceroporins, whereas the probe was located, virtually exclusively, in the trypanosome's mitochondrion.
Collapse
Affiliation(s)
- Eduardo J Cueto-Díaz
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Godwin U Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Ibrahim A Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - M Carmen González-García
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria D Giron
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Rafael Salto
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | | | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Juan A González-Vera
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria José Ruedas Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
10
|
Lira-Navarrete E, Pallarés MC, Castello F, Ruedas-Rama MJ, Orte A, Lostao A, Hurtado-Guerrero R. Protein O-Fucosyltransferase 1 Undergoes Interdomain Flexibility in Solution. Molecules 2021; 26:2105. [PMID: 33916911 PMCID: PMC8067585 DOI: 10.3390/molecules26082105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Protein O-fucosyltransferase 1 (PoFUT1) is a GT-B fold enzyme that fucosylates proteins containing EGF-like repeats. GT-B glycosyltransferases have shown a remarkable grade of plasticity adopting closed and open conformations as a way of tuning their catalytic cycle, a feature that has not been observed for PoFUT1. Here, we analyzed Caenorhabditis elegans PoFUT1 (CePoFUT1) conformational behavior in solution by atomic force microscopy (AFM) and single-molecule fluorescence resonance energy transfer (SMF-FRET). Our results show that this enzyme is very flexible and adopts mainly compact conformations and to a lesser extend a highly dynamic population that oscillates between compact and highly extended conformations. Overall, our experiments illustrate the inherent complexity of CePoFUT1 dynamics, which might play a role during its catalytic cycle.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Fabio Castello
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
12
|
Ziaunys M, Sakalauskas A, Mikalauskaite K, Smirnovas V. Exploring the occurrence of thioflavin-T-positive insulin amyloid aggregation intermediates. PeerJ 2021; 9:e10918. [PMID: 33614299 PMCID: PMC7881721 DOI: 10.7717/peerj.10918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The aggregation of proteins is considered to be the main cause of several neurodegenerative diseases. Despite much progress in amyloid research, the process of fibrillization is still not fully understood, which is one of the main reasons why there are still very few effective treatments available. When the aggregation of insulin, a model amyloidogenic protein, is tracked using thioflavin-T (ThT), an amyloid specific dye, there is an anomalous occurrence of double-sigmoidal aggregation kinetics. Such an event is likely related to the formation of ThT-positive intermediates, which may affect the outcome of both aggregation kinetic data, as well as final fibril structure. In this work we explore insulin fibrillization under conditions, where both normal and double-sigmoidal kinetics are observed and show that, despite their dye-binding properties and random occurrence, the ThT-positive intermediates do not significantly alter the overall aggregation process.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
14
|
Fueyo-González F, González-Vera JA, Alkorta I, Infantes L, Jimeno ML, Aranda P, Acuña-Castroviejo D, Ruiz-Arias A, Orte A, Herranz R. Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sens 2020; 5:2792-2799. [PMID: 32551591 DOI: 10.1021/acssensors.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates. Among the different probes prepared, the 9-azetidinyl-quinolimide derivative showed striking performance in the following β-amyloid peptide (Aβ) aggregation in solution in real time and identifying the formation of different types of early oligomers of Aβ, the most important species linked to cytotoxicity, using novel, multidimensional fluorescence microscopy, with one- or two-photon excitation. Interestingly, the new dye allowed the visualization of proteinaceous inclusion bodies in a zebrafish model with neuronal damage induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Our results support the potential of the novel fluorophores as powerful tools to follow amyloid aggregation using fluorescence microscopy in vivo, revealing heterogeneous populations of different types of aggregates and, more broadly, to study protein interactions.
Collapse
Affiliation(s)
| | - Juan A. González-Vera
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
| | - Maria Luisa Jimeno
- Centro de Química Orgánica Lora Tamayo (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Aranda
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Dario Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Alvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Rosario Herranz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
15
|
Ruiz-Arias Á, Paredes JM, Di Biase C, Cuerva JM, Giron MD, Salto R, González-Vera JA, Orte A. Seeding and Growth of β-Amyloid Aggregates upon Interaction with Neuronal Cell Membranes. Int J Mol Sci 2020; 21:ijms21145035. [PMID: 32708806 PMCID: PMC7404110 DOI: 10.3390/ijms21145035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, the prevalence of amyloid neurodegenerative diseases such as Alzheimer's disease (AD) has significantly increased in developed countries due to increased life expectancy. This amyloid disease is characterized by the presence of accumulations and deposits of β-amyloid peptide (Aβ) in neuronal tissue, leading to the formation of oligomers, fibers, and plaques. First, oligomeric intermediates that arise during the aggregation process are currently thought to be primarily responsible for cytotoxicity in cells. This work aims to provide further insights into the mechanisms of cytotoxicity by studying the interaction of Aβ aggregates with Neuro-2a (N2a) neuronal cells and the effects caused by this interaction. For this purpose, we have exploited the advantages of advanced, multidimensional fluorescence microscopy techniques to determine whether different types of Aβ are involved in higher rates of cellular toxicity, and we measured the cellular stress caused by such aggregates by using a fluorogenic intracellular biothiol sensor. Stress provoked by the peptide is evident by N2a cells generating high levels of biothiols as a defense mechanism. In our study, we demonstrate that Aβ aggregates act as seeds for aggregate growth upon interacting with the cellular membrane, which results in cell permeability and damage and induces lysis. In parallel, these damaged cells undergo a significant increase in intracellular biothiol levels.
Collapse
Affiliation(s)
- Álvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Jose M. Paredes
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Chiara Di Biase
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Juan M. Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - María D. Giron
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Rafael Salto
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Juan A. González-Vera
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Correspondence: ; Tel.: +34-958243825
| |
Collapse
|
16
|
Ripoll C, Roldan M, Contreras-Montoya R, Diaz-Mochon JJ, Martin M, Ruedas-Rama MJ, Orte A. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:E3731. [PMID: 32466332 PMCID: PMC7279253 DOI: 10.3390/ijms21103731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The main role of mitochondria, as pivotal organelles for cellular metabolism, is the production of energy (ATP) through an oxidative phosphorylation system. During this process, the electron transport chain creates a proton gradient that drives the synthesis of ATP. One of the main features of tumoral cells is their altered metabolism, providing alternative routes to enhance proliferation and survival. Hence, it is of utmost importance to understand the relationship between mitochondrial pH, tumoral metabolism, and cancer. In this manuscript, we develop a highly specific nanosensor to accurately measure the intramitochondrial pH using fluorescence lifetime imaging microscopy (FLIM). Importantly, we have applied this nanosensor to establish differences that may be hallmarks of different metabolic pathways in breast cancer cell models, leading to the characterization of different metabophenotypes.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Mar Roldan
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
| | - Rafael Contreras-Montoya
- Departamento de Quimica Organica, Facultad de Ciencias, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Quimica Farmaceutica y Organica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Martin
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Bioquimica y Biologia Celular I, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| |
Collapse
|
17
|
Maity S, Lyubchenko YL. AFM Probing of Amyloid-Beta 42 Dimers and Trimers. Front Mol Biosci 2020; 7:69. [PMID: 32391380 PMCID: PMC7193107 DOI: 10.3389/fmolb.2020.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Elucidating the molecular mechanisms in the development of such a devastating neurodegenerative disorder as Alzheimer's disease (AD) is currently one of the major challenges of molecular medicine. Evidence strongly suggests that the development of AD is due to the accumulation of amyloid β (Aβ) oligomers; therefore, understanding the molecular mechanisms defining the conversion of physiologically important monomers of Aβ proteins into neurotoxic oligomeric species is the key for the development of treatments and preventions of AD. However, these oligomers are unstable and unavailable for structural, physical, and chemical studies. We have recently developed a novel flexible nano array (FNA)-oligomer scaffold approach in which monomers tethered inside a flexible template can assemble spontaneously into oligomers with sizes defined by the number of tethered monomers. The FNA approach was tested on short decamer Aβ(14-23) peptides which were assembled into dimers and trimers. In this paper, we have extended our FNA technique for assembling full-length Aβ42 dimers. The FNA scaffold enabling the self-assembly of Aβ42 dimers from tethered monomeric species has been designed and the assembly of the dimers has been validated by AFM force spectroscopy experiments. Two major parameters of the force spectroscopy probing, the rupture forces and the rupture profiles, were obtained to prove the assembly of Aβ42 dimers. In addition, the FNA-Aβ42 dimers were used to probe Aβ42 trimers in the force spectroscopy experiments with the use of AFM tips functionalized with FNA-Aβ42 dimers and the surface with immobilized Aβ42 monomers. We found that the binding force for the Aβ42 trimer is higher than the dimer (75 ± 7 pN vs. 60 ± 3 pN) and the rupture pattern corresponds to a cooperative dissociation of the trimer. The rupture profiles for the dissociation of the Aβ42 dimers and trimers are proposed. Prospects for further extension of the FNA-based approach for probing of higher order oligomers of Aβ42 proteins are discussed.
Collapse
Affiliation(s)
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
18
|
Dutta MS, Basu S. Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils - a comparative study using MD simulations of 17-42 residues. J Biomol Struct Dyn 2020; 39:431-456. [PMID: 31900057 DOI: 10.1080/07391102.2019.1711192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular plaques, the hallmark of Alzheimer's disease brains, consist of insoluble amyloid fibrils that result from the aggregation of amyloid beta peptides. None of the few therapeutic options currently adopted, address the cause of the disease. Instead, they reduce symptom of the disease. Inhibition of aggregation or destabilization of aggregates therefore, emerges as a preferable therapeutic approach. Designing inhibitors or destabilizers demands comprehensive knowledge of the residues of amyloid beta responsible for the phenomenal structural stability of the aggregate. For the purpose, we have compared the effect on structural destabilization of 13 in silico mutations (single and double) with the wild type counterpart of beta-strand-turn-beta-strand motif of the amyloid beta protofibrils by molecular dynamics simulation. Besides the already known salt bridge interaction between K28 and D23, our analyses expose more significant role of K28 as the only positive charge present in the vicinity. Amongst the two consecutive aromatic residues, F19 is involved in stacking interaction; although effect of F20 mutation is more pronounced. Face to face arrangement of A21 and V36 acts as a pillar maintaining the necessary optimum distance between consecutive chains to promote stabilizing interactions. In addition to providing stability to the first beta-strand, large sized negatively charged E22 facilitates salt bridge formation by ensuring fixed relative position of D23 and in turn K28. Likewise, the hydrophobic residues I32 and L34 pack the protofibril core, once again fostering salt bridge interaction. Prospectively, these findings may be compiled for efficient identification or design of scaffolds accountable for protofibril destabilization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
19
|
Caballero AB, Iranzo O, Hautier A, Sabaté R, Gamez P. Peptidic Scaffolds To Reduce the Interaction of Cu(II) Ions with β-Amyloid Protein. Inorg Chem 2019; 59:837-846. [DOI: 10.1021/acs.inorgchem.9b03099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ana B. Caballero
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Olga Iranzo
- , CNRS, Centrale Marseille, Aix Marseille Université, iSm2, Marseille, France
| | - Alexandre Hautier
- , CNRS, Centrale Marseille, Aix Marseille Université, iSm2, Marseille, France
| | - Raimon Sabaté
- Departament de Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
More SS, Beach JM, McClelland C, Mokhtarzadeh A, Vince R. In Vivo Assessment of Retinal Biomarkers by Hyperspectral Imaging: Early Detection of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4492-4501. [PMID: 31603648 DOI: 10.1021/acschemneuro.9b00331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A noninvasive and cost-effective means to detect preclinical Alzheimer's disease (AD) and monitor disease progression would be invaluable. The retina is a developmental extension of the brain and has been viewed as a window to evaluate AD-related pathology. Cross-sectional studies have shown structural changes in the retina of AD patients that include thinning of the retinal nerve-fiber layer and changes in retinal vasculature. However, such changes do not manifest in early stages of the disease nor are they specific biomarkers for AD. Described herein is the utilization of our retinal hyperspectral imaging (rHSI) technique as a biomarker for identification of AD-related early pathological changes in the retina. Specifically, this account concerns the translation of our rHSI technique from animal models to human AD subjects. The underlying principle is Rayleigh light scattering, which is expected from low-order Aβ aggregates present in early pathology. Recruitment was restricted to AD subjects (N = 19) and age-matched controls, with no family history of AD (N = 16). To limit the influence of skin pigmentation, subjects were restricted to those with skin pigmentation values of 2-3 on the Fitzpatrick scale. The largest spectral deviation from control subjects, rHSI signature, was obtained at the MCI stage with MMSE scores ⩾22, suggesting higher sensitivity of this technique in early disease stages. The rHSI signature observed is unaffected by eye pathologies such as glaucoma and cataract. Age of the subjects minimally influenced the spectral signatures. The rHSI technique shows promise for detection of preclinical AD; it is conducted in a truly noninvasive manner, without application of an exogenous label, and is thus potentially suitable for population screening.
Collapse
|
21
|
Aliyan A, Cook NP, Martí AA. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 2019; 119:11819-11856. [DOI: 10.1021/acs.chemrev.9b00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran 1991633361
- Khatam University, Tehran, Iran 1991633356
| | - Nathan P. Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | | |
Collapse
|
22
|
Nam G, Lim MH. Intertwined Pathologies of Amyloid-β and Metal Ions in Alzheimer’s Disease: Metal–Amyloid-β. CHEM LETT 2019. [DOI: 10.1246/cl.190281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Geewoo Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
23
|
Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity. Sci Rep 2019; 9:2530. [PMID: 30792475 PMCID: PMC6384915 DOI: 10.1038/s41598-018-38401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence (‘NFGAILSS’) derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN’s special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18–26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.
Collapse
|
24
|
Analysis of the interaction of para-sulfonatocalix[8]arene with free amino acids and a six residue segment of β-amyloid peptide as a potential treatment for Alzheimer’s disease. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-018-00879-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Computational and modeling approaches to understand the impact of the Fabry's disease causing mutation (D92Y) on the interaction with pharmacological chaperone 1-deoxygalactonojirimycin (DGJ). MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:341-407. [DOI: 10.1016/bs.apcsb.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jurado R, Adamcik J, López-Haro M, González-Vera JA, Ruiz-Arias Á, Sánchez-Ferrer A, Cuesta R, Domínguez-Vera JM, Calvino JJ, Orte A, Mezzenga R, Gálvez N. Apoferritin Protein Amyloid Fibrils with Tunable Chirality and Polymorphism. J Am Chem Soc 2018; 141:1606-1613. [DOI: 10.1021/jacs.8b11418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rocío Jurado
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Miguel López-Haro
- Department of Material Science and Metallurgy Engineering and Inorganic Chemistry, University of Cádiz, 11510, Cádiz, Spain
| | - Juan A. González-Vera
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Álvaro Ruiz-Arias
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | | | - Rafael Cuesta
- Department of Organic and Inorganic Chemistry, EPS Linares, University of Jaén, 23700 Linares, Spain
| | | | - José J. Calvino
- Department of Material Science and Metallurgy Engineering and Inorganic Chemistry, University of Cádiz, 11510, Cádiz, Spain
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Natividad Gálvez
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Maury CPJ. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell Mol Life Sci 2018; 75:1499-1507. [PMID: 29550973 PMCID: PMC5897472 DOI: 10.1007/s00018-018-2797-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 01/29/2023]
Abstract
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
Collapse
|
28
|
Finkelstein AV, Dovidchenko NV, Galzitskaya OV. What is Responsible for Atypical Dependence of the Rate of Amyloid Formation on Protein Concentration: Fibril-Catalyzed Initiation of New Fibrils or Competition with Oligomers? J Phys Chem Lett 2018; 9:1002-1006. [PMID: 29412673 DOI: 10.1021/acs.jpclett.7b03442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An abnormal dependence of the rate of amyloid formation on protein concentration has been recently observed by Meisl et al. for Aβ40 peptides associated with Alzheimer's disease. To explain this effect, Meisl et al. proposed a novel mechanism of fibril growth: the fibril-catalyzed initiation of fibril formation. In this paper we offer an alternative explanation of the observed anomalous kinetics: formation of metastable oligomers competing with fibril formation by decreasing the concentration of the fibril-forming free monomers. Here we show that the oligomer sizes resulting from the anomalous dependence of the fibril growth rate on protein concentration are close to the sizes of oligomers observed by electron microscopy.
Collapse
Affiliation(s)
- Alexei V Finkelstein
- Laboratory of Protein Physics and ‡Bioinformatics Group, Institute of Protein Research, Russian Academy of Sciences , Pushchino, 142290, Moscow Region, Russian Federation
| | - Nikita V Dovidchenko
- Laboratory of Protein Physics and ‡Bioinformatics Group, Institute of Protein Research, Russian Academy of Sciences , Pushchino, 142290, Moscow Region, Russian Federation
| | - Oxana V Galzitskaya
- Laboratory of Protein Physics and ‡Bioinformatics Group, Institute of Protein Research, Russian Academy of Sciences , Pushchino, 142290, Moscow Region, Russian Federation
| |
Collapse
|
29
|
Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 2017; 37:BSR20170031. [PMID: 28694303 PMCID: PMC5520217 DOI: 10.1042/bsr20170031] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K.
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| |
Collapse
|