1
|
Sonia N, Saikia S, Limaye AM. Estrogenic control of matrix metalloproteinases: a perspective on breast tumor invasion and metastasis. Mol Biol Rep 2025; 52:453. [PMID: 40358843 DOI: 10.1007/s11033-025-10555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Metastasis is the major cause of mortality in breast cancer patients, and presents an invincible therapeutic challenge. It is a complex process of dissemination of tumor epithelial cells, which is associated with disruption of tissue homeostasis, and alterations in the tumor microenvironment through extracellular matrix (ECM) remodeling, stromal alteration, and epithelial-mesenchymal transition. Matrix metalloproteinases (MMPs) constitute a group of more than 25 zinc-dependent endopeptidases. By virtue of their ability to degrade a wide variety of ECM-associated proteins, they enable ECM remodelling during development, and disease. A large body of clinical data, and experimental evidences implicate MMPs in the invasion and metastasis of breast tumors. While MMPs are aberrantly expressed in breast tumors, few appear to have a dual role in disease progression; either promoting or inhibiting metastasis. Given the role of estrogen in breast cancer development, it is natural to ask whether this steroid hormone has any role in breast cancer metastasis. This review is a round-up of the prominent literature that presents estrogenic control of MMPs, which in turn implies its influence on the tumor microenvironment and metastasis.
Collapse
Affiliation(s)
- Ningthoujam Sonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Mangani S, Piperigkou Z, Koletsis NE, Ioannou P, Karamanos NK. Estrogen receptors and extracellular matrix: the critical interplay in cancer development and progression. FEBS J 2025; 292:1558-1572. [PMID: 39285617 PMCID: PMC11970714 DOI: 10.1111/febs.17270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 04/05/2025]
Abstract
Cancer remains a significant global health concern. Breast cancer is a multifaceted and prevalent disease influenced by several factors, among which estrogen receptors (ERs) and the extracellular matrix (ECM) play pivotal roles. ERs, encompassing ERα and ERβ, exert significant diversity on tumor behavior, cell signaling, invasion, and metastatic potential, thus guiding breast cancer prognosis. Understanding the multifunctional connections between ERs and ECM that mediate the dynamics of tumor microenvironment is vital for unraveling the complexity of breast cancer pathobiology and identifying novel therapeutic targets. This critical review delves into the intricate nature of ERs, emphasizing their structural isoforms and the consequential impact on breast cancer outcomes. A detailed examination of ER-mediated cell signaling pathways reveals how differential expression of ERα and ERβ isoforms influence breast cancer cell behavior. The functional ERs-matrix interactions emerge as a pivotal factor in modulating epigenetic mechanisms of breast cancer cells, orchestrating changes in cellular phenotype and expression patterns of matrix modulators. Specifically, ERα isoforms are shown to regulate ECM signaling cascades, while the effects of ECM components on ERα activity highlight a bidirectional regulatory axis. The diversity of ERβ isoforms is also highlighted, illustrating their distinct contribution to ECM-mediated cellular responses. This review underscores the complex interplay between ERα/β isoforms and the ECM, shedding light onto the potential therapeutic strategies targeting these interactions to improve breast cancer management.
Collapse
Affiliation(s)
- Sylvia Mangani
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Nikolaos E. Koletsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Paraskevi Ioannou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| |
Collapse
|
3
|
Zhu Y, Zhu J, Wang X, Wang P, Liu R. Molecular roles in membrane receptor signaling pathways and cascade reactions in chondrocytes: a review. J Mol Histol 2025; 56:94. [PMID: 39988650 DOI: 10.1007/s10735-025-10368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Articular cartilage (AC) is a specialized connective tissue with unique biological and mechanical properties, which depends on the biological effects of each resident chondrocyte and its surrounding extracellular matrix (ECM) to form a unit that operates in a constant and balanced feedback loop. The surface membrane receptors of chondrocytes play a crucial role in the feedback balance of this biological unit. Various biological signals outside chondrocytes, such as water-soluble chemical signal molecules and mechanical signals, are unable to directly enter the cell and must first bind to the plasma membrane receptors to induce changes in the level and activity of intracellular signal transduction molecules. These changes then transmit through signaling cascade pathways into the nucleus, changing the cell phenotype, and producing physiological or pathological changes. Specific chemical and mechanical signals break the feedback balance of cartilage tissue units through membrane receptors. In the ECM environment, the molecular actions of chondrocyte membrane receptors in response to these specific signals, along with associated ion channel receptors, collectively regulate the biological effects of chondrocytes. This leads to decreased chondrocyte survival and an imbalance in ECM regulation, ultimately disrupting the tissue's molecular framework and physiological feedback mechanisms, and resulting in pathological changes in cartilage tissue. To provide insights into addressing the complexities associated with cartilage tissue injury and repair engineering, this review provides a comprehensive overview of the molecular mechanisms and biological implications of chondrocyte membrane receptor-mediated signal transduction, including G protein-coupled receptors (GPCRs), enzyme-linked receptors (tyrosine kinase receptors (TKRs)), and integrin receptors.
Collapse
Affiliation(s)
- Yingkang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pengbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ruiyu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
4
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
5
|
Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis. Biomolecules 2022; 12:1674. [PMID: 36421687 PMCID: PMC9687868 DOI: 10.3390/biom12111674] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The extracellular matrix (ECM) is made up of noncellular components that have special properties for influencing cell behavior and tissue structure. Small leucine-rich proteoglycans (SLRPs) are nonfibrillar ECM components that serve as structural scaffolds and signaling molecules. osteoglycin (OGN), a class III SLRP, is a ubiquitous ECM component that not only helps to organize the extracellular matrix but also regulates a number of important biological processes. As a glycosylated protein in the ECM, OGN was originally considered to be involved in fiber assembly and was reported to have a connection with fibrosis. In addition to these functions, OGN is found in a variety of cancer tissues and is implicated in cellular processes linked to tumorigenesis, including cell proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). In this review, we summarize the structure and functions of OGN as well as its biological and clinical importance in the context of fibrotic illness and tumorigenesis. This review aims to improve our understanding of OGN and provide some new strategies for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Jiayida Nulali
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaiwen Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pinghui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200070, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
6
|
Støle TP, Lunde M, Shen X, Martinsen M, Lunde PK, Li J, Lockwood F, Sjaastad I, Louch WE, Aronsen JM, Christensen G, Carlson CR. The female syndecan-4−/− heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels. Front Cell Dev Biol 2022; 10:908126. [PMID: 36092718 PMCID: PMC9452846 DOI: 10.3389/fcell.2022.908126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In cardiac muscle, the ubiquitously expressed proteoglycan syndecan-4 is involved in the hypertrophic response to pressure overload. Protein kinase Akt signaling, which is known to regulate hypertrophy, has been found to be reduced in the cardiac muscle of exercised male syndecan-4−/− mice. In contrast, we have recently found that pSer473-Akt signaling is elevated in the skeletal muscle (tibialis anterior, TA) of female syndecan-4−/− mice. To determine if the differences seen in Akt signaling are sex specific, we have presently investigated Akt signaling in the cardiac muscle of sedentary and exercised female syndecan-4−/− mice. To get deeper insight into the female syndecan-4−/− heart, alterations in cardiomyocyte size, a wide variety of different extracellular matrix components, well-known syndecan-4 binding partners and associated signaling pathways have also been investigated.Methods: Left ventricles (LVs) from sedentary and exercise trained female syndecan-4−/− and WT mice were analyzed by immunoblotting and real-time PCR. Cardiomyocyte size and phosphorylated Ser473-Akt were analyzed in isolated adult cardiomyocytes from female syndecan-4−/− and WT mice by confocal imaging. LV and skeletal muscle (TA) from sedentary male syndecan-4−/− and WT mice were immunoblotted with Akt antibodies for comparison. Glucose levels were measured by a glucometer, and fasting blood serum insulin and C-peptide levels were measured by ELISA.Results: Compared to female WT hearts, sedentary female syndecan-4−/− LV cardiomyocytes were smaller and hearts had higher levels of pSer473-Akt and its downstream target pSer9-GSK-3β. The pSer473-Akt inhibitory phosphatase PHLPP1/SCOP was lowered, which may be in response to the elevated serum insulin levels found in the female syndecan-4−/− mice. We also observed lowered levels of pThr308-Akt/Akt and GLUT4 in the female syndecan-4−/− heart and an increased LRP6 level after exercise. Otherwise, few alterations were found. The pThr308-Akt and pSer473-Akt levels were unaltered in the cardiac and skeletal muscles of sedentary male syndecan-4−/− mice.Conclusion: Our data indicate smaller cardiomyocytes, an elevated insulin/pSer473-Akt/pSer9-GSK-3β signaling pathway, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels in the female syndecan-4−/− heart. In contrast, cardiomyocyte size, and Akt signaling were unaltered in both cardiac and skeletal muscles from male syndecan-4−/− mice, suggesting important sex differences.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- *Correspondence: Thea Parsberg Støle,
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Francesca Lockwood
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Castroflorio E, Pérez Berná AJ, López-Márquez A, Badosa C, Loza-Alvarez P, Roldán M, Jiménez-Mallebrera C. The Capillary Morphogenesis Gene 2 Triggers the Intracellular Hallmarks of Collagen VI-Related Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23147651. [PMID: 35886995 PMCID: PMC9322809 DOI: 10.3390/ijms23147651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen VI-related disorders (COL6-RD) represent a severe form of congenital disease for which there is no treatment. Dominant-negative pathogenic variants in the genes encoding α chains of collagen VI are the main cause of COL6-RD. Here we report that patient-derived fibroblasts carrying a common single nucleotide variant mutation are unable to build the extracellular collagen VI network. This correlates with the intracellular accumulation of endosomes and lysosomes triggered by the increased phosphorylation of the collagen VI receptor CMG2. Notably, using a CRISPR-Cas9 gene-editing tool to silence the dominant-negative mutation in patients’ cells, we rescued the normal extracellular collagen VI network, CMG2 phosphorylation levels, and the accumulation of endosomes and lysosomes. Our findings reveal an unanticipated role of CMG2 in regulating endosomal and lysosomal homeostasis and suggest that mutated collagen VI dysregulates the intracellular environment in fibroblasts in collagen VI-related muscular dystrophy.
Collapse
Affiliation(s)
- Enrico Castroflorio
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
- Correspondence: (E.C.); (C.J.-M.)
| | | | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | - Pablo Loza-Alvarez
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
| | - Mónica Roldán
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Unitat de Microscòpia Confocal i Imatge Cellular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
- Department of Genetics, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.C.); (C.J.-M.)
| |
Collapse
|
8
|
Piperigkou Z, Koutsandreas A, Franchi M, Zolota V, Kletsas D, Passi A, Karamanos NK. ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo. Front Oncol 2022; 12:917633. [PMID: 35719919 PMCID: PMC9203970 DOI: 10.3389/fonc.2022.917633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Estrogen receptors (ERs) have pivotal roles in the development and progression of triple-negative breast cancer (TNBC). Interactions among cancer cells and tumor microenvironment are orchestrated by the extracellular matrix that is rapidly emerging as prominent contributor of fundamental processes of breast cancer progression. Early studies have correlated ERβ expression in tumor sites with a more aggressive clinical outcome, however ERβ exact role in the progression of TNBC remains to be elucidated. Herein, we introduce the functional role of ERβ suppression following isolation of monoclonal cell populations of MDA-MB-231 breast cancer cells transfected with shRNA against human ESR2 that permanently resulted in 90% reduction of ERβ mRNA and protein levels. Further, we demonstrate that clone selection results in strongly reduced levels of the aggressive functional properties of MDA-MB-231 cells, by transforming their morphological characteristics, eliminating the mesenchymal-like traits of triple-negative breast cancer cells. Monoclonal populations of shERβ MDA-MB-231 cells undergo universal matrix reorganization and pass on a mesenchymal-to-epithelial transition state. These striking changes are encompassed by the total prevention of tumorigenesis in vivo following ERβ maximum suppression and isolation of monoclonal cell populations in TNBC cells. We propose that these novel findings highlight the promising role of ERβ targeting in future pharmaceutical approaches for managing the metastatic dynamics of TNBC breast cancer.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Anastasios Koutsandreas
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Dimitrios Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research (N.C.S.R). "Demokritos", Athens, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
9
|
Zhang M, Wang W, Wang H, Liu Y, Li Z, Yi C, Shi Y, Ma T, Chen J. Downregulation of Insulin-Like Growth Factor-1 Receptor Mediates Chondrocyte Death and Matrix Degradation in Kashin-Beck Disease. Cartilage 2021; 13:809S-817S. [PMID: 34130517 PMCID: PMC8808940 DOI: 10.1177/19476035211021890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To explore the relationship between insulin-like growth factor (IGF)-1R expression and the pathological progression of Kashin-Beck disease (KBD). DESIGN KBD cartilage samples were collected from 5 patients. Additionally, T-2 toxin was administered to rats fed a selenium (Se)-deficient diet, and their knee joints were collected. Human C28/I2 chondrocytes and mouse hypertrophic ATDC5 chondrocytes were cultured in vitro and treated with T-2 toxin and Se supplementation. Subsequently, the cultured human and mouse chondrocytes were treated with the IGF-1R inhibitor, picropodophyllin. Chondrocyte death and caspase-3 activity were analyzed using flow cytometry and a specific kit, respectively. Protein and mRNA expression levels of IGF-1R and matrix molecules were measured using immunohistochemistry, western blotting, and quantitative real-time reverse transcription-polymerase chain reaction analyses. RESULTS The cartilages from patients with KBD and T-2 toxin-treated rats on a Se-deficient diet showed significantly decreased expression of IGF-1R compared to cartilages from controls. T-2 toxin decreased IGF-1R mRNA and protein levels in both C28/I2 and hypertrophic ATDC5 chondrocytes in a dose-dependent manner; however, Se supplementation reduced the decrease of IGF-1R induced by T-2 toxin. Furthermore, inhibition of IGF-1R resulted in chondrocyte death of C28/I2 and hypertrophic ATDC5 chondrocytes, as well as decreased type II collagen expression and increased MMP-13 expression at the mRNA and protein levels. CONCLUSION Downregulation of IGF-1R was associated with KBD cartilage destruction. Therefore, inhibition of IGF-1R may mediate chondrocyte death and extracellular matrix degeneration related to the pathological progression of KBD.
Collapse
Affiliation(s)
- Meng Zhang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Wenjun Wang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China,Department of Biomedical Engineering, Chinese
PLA General Hospital, Beijing, People’s Republic of China
| | - Hui Wang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Yinan Liu
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Zhengzheng Li
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Chengfen Yi
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Yawen Shi
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Tianyou Ma
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Jinghong Chen
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China,Jinghong Chen, The Institute of Endemic Disease,
Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, People’s Republic
of China. Emails:
| |
Collapse
|
10
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
11
|
Godina C, Khazaei S, Tryggvadottir H, Visse E, Nodin B, Jirström K, Borgquist S, Bosch A, Isaksson K, Jernström H. Prognostic impact of tumor-specific insulin-like growth factor binding protein 7 (IGFBP7) levels in breast cancer: a prospective cohort study. Carcinogenesis 2021; 42:1314-1325. [PMID: 34606580 PMCID: PMC8598394 DOI: 10.1093/carcin/bgab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
The prognostic impact of insulin-like growth factor binding protein 7 (IGFBP7) in breast cancer is unclear. Host factors, including lifestyle, anthropometry and metabolic profile, might influence tumor-specific IGFBP7. This study aimed to investigate whether IGFBP7 levels and messenger ribonucleic acid (mRNA) expression are associated with the patient and tumor characteristics and prognosis in breast cancer. Patients with primary breast cancer in Lund, Sweden, were included preoperatively in the study between 2002 and 2012 (n = 1018). Tumor-specific IGFBP7 protein levels were evaluated with immunohistochemistry using tissue microarrays in tumors from 878 patients. IGFBP7 mRNA expression and its corresponding clinical data were obtained from The Cancer Genome Atlas and analyzed for 809 patients. Tumor-specific IGFBP7 protein levels were categorized based on Histo 300 scores into IGFBP7low (6.2%), IGFBP7intermediate (75.7%) and IGFBP7high (18.1%). Both low IGFBP7 protein levels and mRNA expression were associated with less aggressive tumor characteristics. Overall, IGFBP7low conferred low recurrence risk. The prognostic impact of IGFBP7high varied according to any alcohol consumption and tamoxifen treatment. IGFBP7high was associated with low recurrence risk in alcohol consumers but high recurrence risk in alcohol abstainers (Pinteraction= 0.039). Moreover, the combination of IGFBP7high and estrogen receptor-positive tumors was associated with low recurrence risk only in tamoxifen-treated patients (Pinteraction= 0.029). To conclude, IGFBP7low might be a good, independent prognosticator in breast cancer. The prognostic impact of IGFBP7high depends on host factors and treatment. IGFBP7 merits further investigation to confirm whether it could be a suitable biomarker for treatment selection.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| | - Somayeh Khazaei
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Edward Visse
- Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,Kristianstad Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| |
Collapse
|
12
|
Miranda F, Prazeres H, Mendes F, Martins D, Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 2021; 49:717-733. [PMID: 34739691 DOI: 10.1007/s11033-021-06863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase-protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.
Collapse
Affiliation(s)
- Flávia Miranda
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,U-Monitor Lda, Porto, Portugal.,Department of Molecular Pathology, Portuguese Institute of Oncology, Coimbra, Portugal
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,European Association for Professions in Biomedical Sciences, Brussels, Belgique
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal. .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Fernando Schmitt
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
13
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27:1000-1013. [PMID: 34389240 DOI: 10.1016/j.molmed.2021.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, Lyon, France
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
14
|
Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anticancer Agents Med Chem 2021; 22:1257-1271. [PMID: 34254930 DOI: 10.2174/1871520621666210712090017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences Bhopal, Madhya pradesh-462020, India
| |
Collapse
|
15
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
16
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
17
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
18
|
Guvakova MA, Prabakaran I, Wu Z, Hoffman DI, Huang Y, Tchou J, Zhang PJ. CDH2/N-cadherin and early diagnosis of invasion in patients with ductal carcinoma in situ. Breast Cancer Res Treat 2020; 183:333-346. [PMID: 32683564 DOI: 10.1007/s10549-020-05797-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE This proof-of-concept study investigates gene expression in core needle biopsies (CNB) to predict whether individuals diagnosed with ductal carcinoma in situ (DCIS) on CNB were affected by invasion at the time of diagnosis. METHODS Using a QuantiGene Plex 2.0 assay, 14 gene expression profiling was performed in 303 breast tissue samples. Preoperative diagnostic performance of a gene was measured by area under receiver-operating characteristic curve (AUC) with 95% confidence interval (CI). The gene mRNA positivity cutoff was computed using Gaussian mixture model (GMM); protein expression was measured by immunohistochemistry; DNA methylation was evaluated by targeted bisulfite sequencing. RESULTS mRNA from 69% (34/49) mammoplasties, 72% (75/104) CNB DCIS, and 89% (133/150) invasive breast cancers (IBC) were analyzed. Based on pre-and post-surgery DCIS chart reviews, 21 cases were categorized as DCIS synchronous with invasion and 54 DCIS were pure DCIS without pathologic evidence of invasive disease. The ectopic expression of neuronal cadherin CDH2 was probable in 0% mammoplasties, 6% pure DCIS, 29% synchronous DCIS, and 26% IBC. The CDH2 mRNA positivity in preoperative biopsies showing pure DCIS was predictive of a final diagnosis of invasion (AUC = 0.67; 95% CI 0.53-0.80; P = 0.029). Site-specific methylation of the CDH2 promoter (AUC = 0.76; 95% CI 0.54-0.97; P = 0.04) and measurements of N-cadherin, a pro-invasive cell-cell adhesion receptor encoded by CDH2 (AUC = 0.8; 95% CI 0.66-0.99; P < 0.005) had a discriminating power allowing for discernment of CDH2-positive biopsy. CONCLUSIONS Evidence of CDH2/N-cadherin expression, predictive of invasion synchronous with DCIS, may help to clarify a diagnosis and direct the course of therapy earlier in a patient's care.
Collapse
Affiliation(s)
- Marina A Guvakova
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Harrison Department of Surgical Research, Perelman School of Medicine, University of Pennsylvania, 416 Hill Pavilion, 380S University Avenue, Philadelphia, PA, 19104, USA.
| | - Indira Prabakaran
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Harrison Department of Surgical Research, Perelman School of Medicine, University of Pennsylvania, 416 Hill Pavilion, 380S University Avenue, Philadelphia, PA, 19104, USA
| | - Zhengdong Wu
- Department of Materials Science and Engineering, School of Engineering and Applied Science, 220 S 33rd St, Philadelphia, PA, 19104, USA
| | - Daniel I Hoffman
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Harrison Department of Surgical Research, Perelman School of Medicine, University of Pennsylvania, 416 Hill Pavilion, 380S University Avenue, Philadelphia, PA, 19104, USA
| | - Ye Huang
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Harrison Department of Surgical Research, Perelman School of Medicine, University of Pennsylvania, 416 Hill Pavilion, 380S University Avenue, Philadelphia, PA, 19104, USA
| | - Julia Tchou
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Harrison Department of Surgical Research, Perelman School of Medicine, University of Pennsylvania, 416 Hill Pavilion, 380S University Avenue, Philadelphia, PA, 19104, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 6 Founders, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Jin L, Shen F, Weinfeld M, Sergi C. Insulin Growth Factor Binding Protein 7 (IGFBP7)-Related Cancer and IGFBP3 and IGFBP7 Crosstalk. Front Oncol 2020; 10:727. [PMID: 32500027 PMCID: PMC7242731 DOI: 10.3389/fonc.2020.00727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
The insulin/insulin-like growth factors (IGFs) have crucial tasks in the growth, differentiation, and proliferation of healthy and pernicious cells. They are involved in coordinated complexes, including receptors, ligands, binding proteins, and proteases. However, the systems can become dysregulated in tumorigenesis. Insulin-like growth factor-binding protein 7 (IGFBP7) is a protein belonging to the IGFBP superfamily (also termed GFBP-related proteins). Numerous studies have provided evidence that IGFBP3 and IGFBP7 are involved in a variety of cancers, including hepatocellular carcinoma (HCC), breast cancer, gastroesophageal cancer, colon cancer, prostate cancer, among many others. Still, very few suggest an interaction between these two molecules. In studying several cancer types in our laboratories, we found that both proteins share some crucial signaling pathways. The objective of this review is to present a comprehensive overview of the relationship between IGFBP7 and cancer, as well as highlighting IGFBP3 crosstalk with IGFBP7 reported in recent studies.
Collapse
Affiliation(s)
- Li Jin
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Division of Experimental Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Key Laboratory of Fermentation Engineering, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
20
|
Piperigkou Z, Karamanos NK. Estrogen receptor-mediated targeting of the extracellular matrix network in cancer. Semin Cancer Biol 2020; 62:116-124. [PMID: 31310807 DOI: 10.1016/j.semcancer.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
|
21
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
22
|
Buraschi S, Morcavallo A, Neill T, Stefanello M, Palladino C, Xu SQ, Belfiore A, Iozzo RV, Morrione A. Discoidin Domain Receptor 1 functionally interacts with the IGF-I system in bladder cancer. Matrix Biol Plus 2020; 6-7:100022. [PMID: 33543020 PMCID: PMC7852334 DOI: 10.1016/j.mbplus.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance. We discovered that the collagen receptor DDR1 cross-talks with insulin growth factor I (IGF-I) signaling in bladder cancer DDR1 co-precipitates with the IGF-IR and the insulin receptor (IR), and is phosphorylated upon stimulation with IGF ligands This collagen receptor modulates IGF-I-evoked motility and anchorage-independent growth DDR1 complexes with Pyk2, myosin IIA, IGF-IR and/or IR and regulates actin dynamics
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alaide Morcavallo
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manuela Stefanello
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shi-Qiong Xu
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
23
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
24
|
Javir G, Joshi K. Evaluation of the combinatorial effect of Tinospora cordifolia and Zingiber officinale on human breast cancer cells. 3 Biotech 2019; 9:428. [PMID: 31696033 DOI: 10.1007/s13205-019-1930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/29/2019] [Indexed: 01/04/2023] Open
Abstract
The present study was aimed to investigate the anticancer potential of the combination treatment of Tinospora cordifolia (TC) and Zingiber officinale (ZO) using network pharmacology approach. In silico analysis of the anticancer activity of TC + ZO was carried out using Cytoscape 3.2.0 software to elucidate the mechanism. The MTT assay confirms the combination of TC and ZO is more active (IC50; 2 μg ml-1) as compared to TC (509 μg ml-1) and ZO (1 mg ml-1) alone in MCF-7 cells. The TC + ZO combination treatment inhibits DNA synthesis, migration, and induces apoptosis in MCF-7 cells as compared to TC and ZO alone at a concentration of 1 µg ml-1. TC + ZO combination treatment arrested cell cycle significantly at the G0/G1 phase. The proposed synergistic activity of the two herbs in the treatment of several cancers was correlated with an appropriate associated target/s, based on the pharmacological network. Interestingly, when both the plants used in combination, were found to regulate a total of 16 genes in 27 types of cancers. Further, ALOX5, MMP2, and MMP9 genes were identified as major targets which are responsible for the TC + ZO anticancer activity. According to merged and sub-networks of source-bioactive, bioactive-target, target-disease of TC, ZO alone and their combination; MMP9 was selected for validation purpose. The real-time PCR analysis confirmed that the TC + ZO combination treatment significantly down-regulated MMP9 mRNA expression by fivefold via up-regulation of its downstream target ER-α by 3.5-fold. In conclusion, the network analysis and in vitro validation confirmed the potent synergistic activity of TC + ZO combination treatment in breast cancer.
Collapse
Affiliation(s)
- Gitanjali Javir
- 1Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra India
- 2Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra 411041 India
| | - Kalpana Joshi
- 2Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra 411041 India
| |
Collapse
|
25
|
Tavianatou AG, Piperigkou Z, Barbera C, Beninatto R, Masola V, Caon I, Onisto M, Franchi M, Galesso D, Karamanos NK. Molecular size-dependent specificity of hyaluronan on functional properties, morphology and matrix composition of mammary cancer cells. Matrix Biol Plus 2019; 3:100008. [PMID: 33543007 PMCID: PMC7852304 DOI: 10.1016/j.mbplus.2019.100008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERβ-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.
Collapse
Key Words
- BTH, bovine testes hyaluronidase
- Breast cancer
- CD44
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Epithelial-to-mesenchymal transition
- Estrogen receptors
- HA, hyaluronan or hyaluronic acid
- HAS, hyaluronan synthase
- HMW HA, high molecular weight hyaluronan
- HYAL, hyaluronidase
- Hyaluronan
- LMW HA, low molecular weight hyaluronan
- MET, mesenchymal-to-epithelial transition
- MMPs, matrix metalloproteinases
- SDC, syndecan
- SEM, scanning electron microscopy
- Scanning electron microscopy
- TIMPs, tissue inhibitors of metalloproteinases
- o-HA, hyaluronan oligomers
- s-HA, sulfated hyaluronan
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| |
Collapse
|
26
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
27
|
Ahmad N, Chen S, Wang W, Kapila S. 17β-estradiol Induces MMP-9 and MMP-13 in TMJ Fibrochondrocytes via Estrogen Receptor α. J Dent Res 2018; 97:1023-1030. [PMID: 29621430 DOI: 10.1177/0022034518767108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) disorders, including degenerative TMJ disease, occur primarily in women of reproductive age. Previous studies showed elevated estrogen levels in subjects with TMJ disorders relative to controls and the presence of estrogen receptors α and β (ERα and ERβ) in TMJ fibrocartilage. Additionally, estrogen-induced overexpression of specific matrix metalloproteinases (MMPs), including MMP-9 and MMP-13, in TMJ fibrocartilage is accompanied by loss of extracellular matrices. However, the contribution of ERα and ERβ in estrogen-mediated induction of MMP-9 and MMP-13 and the signaling cascade leading to the upregulation of these MMPs have not been elucidated. Here, we show that specific siRNAs and selective ER antagonists effectively block ERα or ERβ expression in primary mouse TMJ fibrochondrocytes, but that only blockage of ERα suppresses MMP-9 and MMP-13 levels induced by 17β-estradiol (E2). Overexpression of ERα but not ERβ enhances E2-induced MMP-9. Using the same loss-of-function and gain-of-function approaches, we demonstrate that E2 stimulates ERK activation through ERα and that inhibition of ERK phosphorylation reduces E2-induced MMP-9. Furthermore, we reveal that E2 promotes NF-κB and ELK-1 activation through ERα/ERK signaling and that knockdown of either one decreases the respective activity of these signaling mediators and MMP-9 expression induced by E2, indicating that both contribute to E2/ERα/ERK-mediated MMP-9 upregulation. This is supported by findings in which mutated binding sites of either NF-κB or ELK-1 in the MMP-9 promoter lead to a significant reduction of E2-stimulated promoter activity. Our findings provide novel molecular mechanisms for the understanding of E2-mediated upregulation of MMPs, having implications to pathophysiologic TMJ cartilage matrix turnover that may yield therapeutic intervention targets for TMJ disorders.
Collapse
Affiliation(s)
- N Ahmad
- 1 Biology Department, Henry Ford College, Dearborn, MI, USA.,2 Wayne County Community College, Detroit, MI, USA
| | - S Chen
- 3 Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - W Wang
- 4 Private Practice, Ann Arbor, MI, USA
| | - S Kapila
- 3 Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Sainio AO, Järveläinen HT. Decorin-mediated oncosuppression - a potential future adjuvant therapy for human epithelial cancers. Br J Pharmacol 2018; 176:5-15. [PMID: 29488209 PMCID: PMC6284329 DOI: 10.1111/bph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Currently, the multifaceted role of the extracellular matrix (ECM) in tumourigenesis has been realized. One ECM macromolecule exhibiting potent oncosuppressive actions in tumourigenesis is decorin, the prototype of the small leucine-rich proteoglycan gene family. The actions of decorin include its ability to function as an endogenous pan-receptor tyrosine kinase inhibitor, a regulator of both autophagy and mitophagy, as well as a modulator of the immune system. In this review, we will discuss these topics in more detail. We also provide a summary of preclinical studies exploring the value of decorin-mediated oncosuppression, as a potential future adjuvant therapy for epithelial cancers. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Annele Orvokki Sainio
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Hannu Tapio Järveläinen
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland
| |
Collapse
|
29
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
30
|
Majumder A, Singh M, Tyagi SC. Post-menopausal breast cancer: from estrogen to androgen receptor. Oncotarget 2017; 8:102739-102758. [PMID: 29254284 PMCID: PMC5731994 DOI: 10.18632/oncotarget.22156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
In the United States, breast cancer is the second leading cause of death among women, and even though different therapies can treat primary breast tumors, most breast cancer-related deaths (>95%) occur due to metastasis. A majority (~70%) of breast tumors are found to express estrogen receptor, and a significant portion (~90%) of ER-positive (ER+) breast tumors are also androgen receptor-positive (AR+). Although ER is known to promote tumorigenesis, the role and underlying mechanism(s) of AR in these closely knit processes remain controversial. Endocrine therapies are the most commonly used treatment for patients with ER+ breast tumors; but, ~30%-50% of initially responsive patients develop resistance to these therapies. Whereas 70%–90% of all breast tumors are AR+ and AR overexpression is correlated with endocrine resistance, but the precise molecular mechanism(s) for this association is yet to be studied. Multiple mechanisms have been proposed to show AR and ER interactions, which indicate that AR may preferentially regulate expression of a subset of ER-responsive genes and that may be responsible for breast cancer and its progression in affected patients. On the other hand, most of the ER+ breast tumors found in post-menopausal women (~80%); and they have very low 17β-estradiol and high androgen levels, but how these hormonal changes make someone more prone to cancer phenotype has long been a disputed issue. In this study, we have discussed multiple molecular mechanisms that we believe are central to the understanding of the overall contributions of AR in breast cancer and its metastasis in post-menopausal women.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| |
Collapse
|
31
|
Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression. Int J Mol Sci 2017; 18:ijms18091921. [PMID: 28880250 PMCID: PMC5618570 DOI: 10.3390/ijms18091921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022] Open
Abstract
The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer.
Collapse
|