1
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
2
|
De Conto F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024; 13:249. [PMID: 38535592 PMCID: PMC10975405 DOI: 10.3390/pathogens13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 02/11/2025] Open
Abstract
Influenza is one of the most prevalent causes of death worldwide. Influenza A viruses (IAVs) naturally infect various avian and mammalian hosts, causing seasonal epidemics and periodic pandemics with high morbidity and mortality. The recent SARS-CoV-2 pandemic showed how an animal virus strain could unpredictably acquire the ability to infect humans with high infection transmissibility. Importantly, highly pathogenic avian influenza A viruses (AIVs) may cause human infections with exceptionally high mortality. Because these latter infections pose a pandemic potential, analyzing the ecology and evolution features of host expansion helps to identify new broad-range therapeutic strategies. Although IAVs are the prototypic example of molecular strategies that capitalize on their coding potential, the outcome of infection depends strictly on the complex interactions between viral and host cell factors. Most of the studies have focused on the influenza virus, while the contribution of host factors remains largely unknown. Therefore, a comprehensive understanding of mammals' host response to AIV infection is crucial. This review sheds light on the involvement of the cellular cytoskeleton during the highly pathogenic AIV infection of mammalian hosts, allowing a better understanding of its modulatory role, which may be relevant to therapeutic interventions for fatal disease prevention and pandemic management.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int J Mol Sci 2022; 23:ijms232012408. [PMID: 36293269 PMCID: PMC9604028 DOI: 10.3390/ijms232012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.
Collapse
|
4
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
5
|
Vijayakumar P, Raut AA, Chingtham S, Murugkar HV, Kulkarni DD, Sood R, Singh VP, Mishra A. Proteomic analysis of differential expression of lung proteins in response to highly pathogenic avian influenza virus infection in chickens. Arch Virol 2021; 167:141-152. [PMID: 34786609 DOI: 10.1007/s00705-021-05287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Elucidation of the molecular pathogenesis underlying virus-host interactions is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) virus infection in chickens. However, the pathogenesis of HPAI virus in chickens is not completely understood. To identify the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we analyzed the lung proteome of a chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). Mass spectrometry data sets were searched against the chicken UniProt reference database. At the local false discovery rate level of 5%, a total of 3313 proteins with the presence of at least one unique peptide were identified in the chicken lung proteome datasets. Differential expression analysis of these proteins showed that 247 and 1754 proteins were downregulated at 12 h and 48 h postinfection, respectively. We observed expression of proteins of the predominant signaling pathways, including Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and JAK-STAT signaling. Activation of these pathways is associated with the cytokine storm effect and thus may be the cause of the severity of HPAI H5N1 infection in chickens. We also observed the expression of myeloid differentiation primary response protein (MyD88), inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), interleukin 1 receptor associated kinase 4 (IRAK4), RELA proto-oncogene NF-κB subunit (RELA), and mitochondrial antiviral signaling protein (MAVS), which are involved in critical signaling pathways, as well as other, less-commonly identified proteins such as hepatocyte nuclear factor 4 alpha (HNF4A), ELAV-like RNA binding protein 1 (ELAVL1), fibronectin 1 (FN1), COP9 signalosome subunit 5 (COPS5), cullin 1 (CUL1), breast cancer type 1 susceptibility protein (BRCA1), and the FYN proto-oncogene Src family tyrosine kinase (FYN) as main hub proteins that might play important roles in influenza pathogenesis in chickens. In summary, we identified the signaling pathways and the proteomic determinants associated with disease pathogenesis in chickens infected with HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India.,Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Orathanadu, 614625, Tamil Nadu, India
| | - Ashwin Ashok Raut
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Santhalembi Chingtham
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Harshad V Murugkar
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Diwakar D Kulkarni
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Richa Sood
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR -National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India
| | - Anamika Mishra
- Pathogenomics Laboratory, ICAR-National Institute of High-Security Animal Diseases, OIE Reference lab for Avian Influenza, Bhopal, 462021, Madhya Pradesh, India.
| |
Collapse
|
6
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
7
|
Anti-Influenza Activity of the Ribonuclease Binase: Cellular Targets Detected by Quantitative Proteomics. Int J Mol Sci 2020; 21:ijms21218294. [PMID: 33167434 PMCID: PMC7663932 DOI: 10.3390/ijms21218294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.
Collapse
|
8
|
Chen S, Quan K, Wang D, Du Y, Qin T, Peng D, Liu X. Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Front Microbiol 2020; 11:583588. [PMID: 33193225 PMCID: PMC7641914 DOI: 10.3389/fmicb.2020.583588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
H5N1 subtype avian influenza virus (AIV) with a deletion of 20 amino acids at residues 49–68 in the stalk region of neuraminidase (NA) became a major epidemic virus. To determine the effect of truncation or deglycosylation of the NA stalk on virulence, we used site-directed mutagenesis to insert 20 amino acids in the short-stalk virus A/mallard/Huadong/S/2005 (SY) to recover the long-stalk virus (rSNA+). A series of short-stalk or deglycosylated-stalk viruses were also constructed basing on the long-stalk virus, and then the characteristics and pathogenicity of the resulting viruses were evaluated. The results showed that most of the short-stalk or deglycosylated-stalk viruses had smaller plaques, and increased thermal and low-pH stability, and a decreased neuraminidase activity when compared with the virus rSNA+. In a mallard ducks challenge study, most of the short-stalk or deglycosylated-stalk viruses showed increased pathological lesions and virus titers in the organ tissues and increased virus shedding in the oropharynx and cloaca when compared with the rSNA+ virus, while most of the short-stalk viruses, especially rSNA-20, showed higher pathogenicity than the deglycosylated-stalk virus. In addition, the short-stalk viruses showed a significantly upregulated expression of the immune-related factors in the lungs of the infected mallard ducks, including IFN-α, Mx1, and IL-8. The results suggested that NA stalk truncation or deglycosylation increases the pathogenicity of H5N1 subtype AIV in mallard ducks, which will provide a pre-warning for prevention and control of H5N1 subtype avian influenza in the waterfowl.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Wang Y, Zhang H, Ma D, Deng X, Wu D, Li F, Wu Q, Liu H, Wang J. Hsp70 Is a Potential Therapeutic Target for Echovirus 9 Infection. Front Mol Biosci 2020; 7:146. [PMID: 32766279 PMCID: PMC7379509 DOI: 10.3389/fmolb.2020.00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Echovirus is an important cause of viral pneumonia and encephalitis in infants, neonates, and young children worldwide. However, the exact mechanism of its pathogenesis is still not well understood. Here, we established an echovirus type 9 infection mice model, and performed two-dimensional gel electrophoresis (2DE) and tandem mass spectrometry (MS/MS)-based comparative proteomics analysis to investigate the differentially expressed host proteins in mice brain. A total of 21 differentially expressed proteins were identified by MS/MS. The annotation of the differentially expressed proteins by function using the UniProt and GO databases identified one viral protein (5%), seven cytoskeletal proteins (33%), six macromolecular biosynthesis and metabolism proteins (28%), two stress response and chaperone binding proteins (9%), and five other cellular proteins (25%). The subcellular locations of these proteins were mainly found in the cytoskeleton, cytoplasm, nucleus, mitochondria, and Golgi apparatus. The protein expression profiles and the results of quantitative RT-PCR in the detection of gene transcripts were found to complement each other. The differential protein interaction network was predicted using the STRING database. Of the identified proteins, heat shock protein 70 (Hsp70), showing consistent results in the proteomics and transcriptomic analyses, was analyzed through Western blotting to verify the reliability of differential protein expression data in this study. Further, evaluation of the function of Hsp70 using siRNA and quercetin, an inhibitor of Hsp70, showed that Hsp70 was necessary for the infection of echovirus type 9. This study revealed that echovirus infection could cause the differential expression of a series of host proteins, which is helpful to reveal the pathogenesis of viral infection and identify therapeutic drug targets. Additionally, our results suggest that Hsp70 could be a useful therapeutic host protein target for echovirus infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongbo Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuge Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Shobahah J, Xue S, Hu D, Zhao C, Wei M, Quan Y, Yu W. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus. Virol J 2017. [PMID: 28629377 PMCID: PMC5477107 DOI: 10.1186/s12985-017-0783-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Method Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Results Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. Conclusion The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.
Collapse
Affiliation(s)
- Jauharotus Shobahah
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Shengjie Xue
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Dongbing Hu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|