1
|
Drobiova H, Al-Mulla F, Al-Temaimi R. ADAM9 Genetic Variants and Their Role in Modulating Enzyme Activity in Diabetes and Metabolic Traits. J Diabetes Res 2025; 2025:5519447. [PMID: 40330740 PMCID: PMC12052454 DOI: 10.1155/jdr/5519447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
A disintegrin and metalloproteinase Domain 9 (ADAM9) is a zinc-dependent proteinase involved in various biological processes. However, its role in the pathophysiology of metabolic syndrome remains unclear, and studies exploring the association between ADAM9 polymorphisms and metabolic traits are limited. In this study, we investigated the potential link between ADAM9 variants and metabolic syndrome traits in a cohort of adult participants from Kuwait. Using a genome-wide association study (GWAS), followed by a replication study, we identified two ADAM9 variants-ADAM9-E76K (rs61753672) and ADAM9-P750L (rs144750648)-that were associated with various metabolic traits. The replication phase confirmed the association of ADAM9-P750L with HbA1c levels and revealed new associations with systolic blood pressure, waist-to-hip ratio, fasting blood glucose, triglycerides, and cholesterol. Functional analysis showed that both variants exhibited reduced proteolytic activity, potentially contributing to the pathogenesis of Type 2 diabetes. These findings suggest that ADAM9 variants may play a significant role in metabolic health and diabetes risk.
Collapse
Affiliation(s)
- Hana Drobiova
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Fahd Al-Mulla
- Translational Medicine Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rabeah Al-Temaimi
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
2
|
Ding Y, Chen L, Xu J, Liu Q. NR2E3 inhibits the inflammation and apoptosis in diabetic retinopathy by regulating the AHR/IL-17A signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9081-9094. [PMID: 38884674 DOI: 10.1007/s00210-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Diabetic retinopathy (DR) is the most prevalent microvascular complication of diabetes mellitus, and it is the primary cause of blindness in the working-age population worldwide. Nevertheless, the pathogenic molecular mechanisms of DR remain elusive. Hub genes were identified through bioinformatics analysis in the GSE102485 and GSE60436 datasets. The DR mouse model was induced using streptozotocin (STZ, 150 mg/kg), and pathological changes in retinal tissue were assessed via HE staining. Apoptosis in retinal tissue cells was evaluated by the TUNEL assay. RT-qPCR and ELISA assays were employed to measure hub genes and inflammatory factor levels, respectively. The aryl hydrocarbon receptor (AHR)/interleukin (IL)-17A (AHR/IL-17A) pathway-associated proteins were detected by western blot. In the high glucose (HG)-induced ARPE-19 cells, CCK-8 and flow cytometry were used to perform cell function studies. Six hub genes associated with DR were screened. The expression levels of RHO, PRPH2, CRX, RCVRN, and NR2E3 were reduced, while the COL1A2 was elevated. NR2E3 overexpression reduced inflammatory factor (TNF-α, IL-1β, and IL-6) and cell apoptosis levels in DR. Furthermore, NR2E3 overexpression promoted HG-induced ARPE-19 cell proliferation. Mechanistically, NR2E3 overexpression facilitated the protein expression of AHR, while suppressing the IL-17 and ACT1 expressions. The introduction of Kyn-101, an AHR inhibitor, notably reversed the inhibitory effects of NR2E3 overexpression on inflammation and apoptosis, which were validated both in vivo and in vitro. NR2E3 inhibits the inflammation and apoptosis by regulating the AHR/IL-17A pathway, providing new insights into the DR treatment.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
3
|
Cherian P, Al-Khairi I, Abu-Farha M, Alramah T, Albatineh AN, Alhomaidah D, Safadi F, Ali H, Abdul-Ghani M, Tuomilehto J, Koistinen HA, Al-Mulla F, Abubaker J. Ethnic Variations in the Levels of Bone Biomarkers (Osteoprostegerin, Receptor Activator of Nuclear Factor Kappa-Β Ligand and Glycoprotein Non-Metastatic Melanoma Protein B) in People with Type 2 Diabetes. Biomedicines 2024; 12:1019. [PMID: 38790981 PMCID: PMC11117910 DOI: 10.3390/biomedicines12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The global incidence of Type 2 diabetes (T2D) is on the rise, fueled by factors such as obesity, sedentary lifestyles, socio-economic factors, and ethnic backgrounds. T2D is a multifaceted condition often associated with various health complications, including adverse effects on bone health. This study aims to assess key biomarkers linked to bone health and remodeling-Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL), and Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB)-among individuals with diabetes while exploring the impact of ethnicity on these biomarkers. A cross-sectional analysis was conducted on a cohort of 2083 individuals from diverse ethnic backgrounds residing in Kuwait. The results indicate significantly elevated levels of these markers in individuals with T2D compared to non-diabetic counterparts, with OPG at 826.47 (405.8) pg/mL, RANKL at 9.25 (17.3) pg/mL, and GPNMB at 21.44 (7) ng/mL versus 653.75 (231.7) pg/mL, 0.21 (9.94) pg/mL, and 18.65 (5) ng/mL in non-diabetic individuals, respectively. Notably, this elevation was consistent across Arab and Asian populations, except for lower levels of RANKL observed in Arabs with T2D. Furthermore, a positive and significant correlation between OPG and GPNMB was observed regardless of ethnicity or diabetes status, with the strongest correlation (r = 0.473, p < 0.001) found among Arab individuals with T2D. Similarly, a positive and significant correlation between GPNMB and RANKL was noted among Asian individuals with T2D (r = 0.401, p = 0.001). Interestingly, a significant inverse correlation was detected between OPG and RANKL in non-diabetic Arab individuals. These findings highlight dysregulation in bone remodeling markers among individuals with T2D and emphasize the importance of considering ethnic variations in T2D-related complications. The performance of further studies is warranted to understand the underlying mechanisms and develop interventions based on ethnicity for personalized treatment approaches.
Collapse
Affiliation(s)
- Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Tahani Alramah
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | | | - Doha Alhomaidah
- Department of Population Health, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fayez Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, OH 44308, USA
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait 15462, Kuwait;
| | - Muhammad Abdul-Ghani
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX 78030, USA
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (J.T.); (H.A.K.)
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heikki A. Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (J.T.); (H.A.K.)
- Department of Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| |
Collapse
|
4
|
Dadachanji R, Khavale S, Patil A, Mukherjee S. Investigating the association of previously identified genome-wide significant loci (rs10739076 and rs1784692) with PCOS susceptibility and its related traits in Indian women. Eur J Obstet Gynecol Reprod Biol 2024; 294:156-162. [PMID: 38245954 DOI: 10.1016/j.ejogrb.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE(S) Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy with an enigmatic etiology. Hallmark features include irregular menstrual cycles, insulin resistance and hyperandrogenemia and affected women are prone to development of adverse reproductive and cardiometabolic outcomes like anovulatory infertility, impaired glucose tolerance, type 2 diabetes, dyslipidemia, metabolic syndrome and cardiovascular disease. Genetic underpinnings of PCOS have been investigated extensively using genome-wide association studies, which have led to the identification of several novel susceptibility loci. However, as ethnic diversity contributes to phenotypic and genetic heterogeneity, we undertook the first genetic association study to determine the association of rs10739076 of PLGRKT and rs1784692 of ZBTB16 with PCOS susceptibility and its related traits in Indian women. STUDY DESIGN The present case-control study comprised 497 women with PCOS diagnosed according to the Rotterdam criteria and 233 age matched healthy women as controls. All participants were characterized in terms of anthropometric, hormonal and metabolic parameters and the variants were investigated by direct sequencing. Genotypic and genotype-phenotype association of these variants with PCOS susceptibility and its related biochemical and hormonal traits was analyzed with appropriate statistical tests. RESULTS The genotypic and allelic frequencies of rs1784692 of ZBTB16 were significantly decreased in lean women with PCOS only, and this variant was associated with lowered insulin levels, HOMA-IR, LH:FSH ratio along with increased ApoA1 levels and QUICKI in them. Although, the PLGRKT variant, rs10739076, showed similar frequency distribution in both lean and obese groups, it was found to be associated with reduced fasting glucose in all women with PCOS. CONCLUSION(S) To the best of our knowledge, this is the first study to demonstrate that ZBTB16 variant showed significant association with reduced PCOS susceptibility in lean rather than obese Indian women, highlighting the impact of obesity on determining genetic predisposition to PCOS in Indian women. In contrast, PLGRKT variant did not influence PCOS risk in lean or obese women. Importantly, both variants exerted a protective effect on glucose metabolism, insulin resistance, gonadotropin and lipid levels in women with PCOS. Determination of susceptibility variants for PCOS demand population specific replication studies to ascertain best candidate loci for PCOS.
Collapse
Affiliation(s)
- Roshan Dadachanji
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Sushma Khavale
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Anushree Patil
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India.
| |
Collapse
|
5
|
Rahman A, Abu-Farha M, Channanath A, Hammad MM, Anoop E, Chandy B, Melhem M, Al-Mulla F, Thanaraj TA, Abubaker J. Single nucleotide polymorphisms in vitamin D binding protein and 25-hydroxylase genes affect vitamin D levels in adolescents of Arab ethnicity in Kuwait. Front Endocrinol (Lausanne) 2023; 14:1257051. [PMID: 37929021 PMCID: PMC10623322 DOI: 10.3389/fendo.2023.1257051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Vitamin D deficiency (VDD) is widespread in the Arab world despite ample sunshine throughout the year. In our previous study, lifestyle and socio-demographic factors could explain only 45% of variability in vitamin D levels in Kuwaiti adolescents, suggesting that genetics might contribute to VDD in this region. Single nucleotide polymorphisms (SNP) in the 25-hydroxylase (CYP2R1) and the GC globulin (GC) genes have been reported to affect vitamin D levels in various ethnic groups in adults. In this study, we investigated the association of two SNPs from GC (rs4588 and rs7041) and three SNPs from CYP2R1 (rs10741657, rs11023374 and rs12794714) with vitamin D levels and VDD in a nationally representative sample of adolescents of Arab ethnicity from Kuwait. Multivariable linear regression, corrected for age, sex, parental education, governorate, body mass index, and exposure to sun, demonstrated that each of the 5 study variants showed significant associations with plasma 25(OH)D levels in one or more of the additive, recessive, and dominant genetic models - the rs10741657 under all the three models, rs12794714 under both the additive and recessive models, rs7041 under the recessive model; and rs4588 and rs11023374 under the dominant model. Minor alleles at rs4588 (T), rs7041 (A), rs11023374 (C), and rs12794714 (A) led to a decrease in plasma 25(OH)D levels - rs4588:[β (95%CI) = -4.522 (-8.66,-0.38); p=0.033]; rs7041:[β (95%CI) = -6.139 (-11.12,-1.15); p=0.016]; rs11023374:[β (95%CI) = -4.296 (-8.18,-0.40); p=0.031]; and rs12794714:[β (95%CI) = -3.498 (-6.27,-0.72); p=0.014]. Minor allele A at rs10741657 was associated with higher levels of plasma 25(OH)D levels [β (95%CI) = 4.844 (1.62,8.06); p=0.003)] and lower odds of vitamin D deficiency (OR 0.40; p=0.002). These results suggest that the CYP2R1 and GC SNP variants are partly responsible for the high prevalence of VDD in Kuwait. Genotyping these variants may be considered for the prognosis of VDD in Kuwait.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha M. Hammad
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Emil Anoop
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Betty Chandy
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Motasem Melhem
- Special Services Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Department of Biochemistry & Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
6
|
van den Berg FF, Issa Y, Vreijling JP, Lerch MM, Weiss FU, Besselink MG, Baas F, Boermeester MA, van Santvoort HC. Whole-exome Sequencing Identifies SLC52A1 and ZNF106 Variants as Novel Genetic Risk Factors for (Early) Multiple-organ Failure in Acute Pancreatitis. Ann Surg 2022; 275:e781-e788. [PMID: 33427755 DOI: 10.1097/sla.0000000000004312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to identify genetic variants associated with early multiple organ failure (MOF) in acute pancreatitis. SUMMARY BACKGROUND DATA MOF is a life-threatening complication of acute pancreatitis, and risk factors are largely unknown, especially in early persistent MOF. Genetic risk factors are thought to enhance severity in complex diseases such as acute pancreatitis. METHODS A 2-phase study design was conducted. First, we exome sequenced 9 acute pancreatitis patients with early persistent MOF and 9 case-matched patients with mild edematous pancreatitis (phenotypic extremes) from our initial Dutch cohort of 387 patients. Secondly, 48 candidate variants that were overrepresented in MOF patients and 10 additional variants known from literature were genotyped in a replication cohort of 286 Dutch and German patients. RESULTS Exome sequencing resulted in 161,696 genetic variants, of which the 38,333 non-synonymous variants were selected for downstream analyses. Of these, 153 variants were overrepresented in patients with multiple-organ failure, as compared with patients with mild acute pancreatitis. In total, 58 candidate variants were genotyped in the joined Dutch and German replication cohort. We found the rs12440118 variant of ZNF106 to be overrepresented in patients with MOF (minor allele frequency 20.4% vs 11.6%, Padj=0.026). Additionally, SLC52A1 rs346821 was found to be overrepresented (minor allele frequency 48.0% vs 42.4%, Padj= 0.003) in early MOF. None of the variants known from literature were associated.Conclusions: This study indicates that SLC52A1, a riboflavin plasma membrane transporter, and ZNF106, a zinc finger protein, may be involved in disease progression toward (early) MOF in acute pancreatitis.
Collapse
Affiliation(s)
- Fons F van den Berg
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yama Issa
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen P Vreijling
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Departments of Clinical Chemistry, Genetics and Pediatrics, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Ulrich Weiss
- Departments of Clinical Chemistry, Genetics and Pediatrics, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Baas
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Marja A Boermeester
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, University Medical Center, Utrecht, The Netherlands; Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
7
|
Mohamed SA, Fernadez-Tajes J, Franks PW, Bennet L. GWAS in people of Middle Eastern descent reveals a locus protective of kidney function-a cross-sectional study. BMC Med 2022; 20:76. [PMID: 35227251 PMCID: PMC8886846 DOI: 10.1186/s12916-022-02267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Type 2 diabetes is one of the leading causes of chronic kidney failure, which increases globally and represents a significant threat to public health. People from the Middle East represent one of the largest immigrant groups in Europe today. Despite poor glucose regulation and high risk for early-onset insulin-deficient type 2 diabetes, they have better kidney function and lower rates of all-cause and cardiovascular-specific mortality compared with people of European ancestry. Here, we assessed the genetic basis of estimated glomerular filtration rate (eGFR) and other metabolic traits in people of Iraqi ancestry living in southern Sweden. METHODS Genome-wide association study (GWAS) analyses were performed in 1201 Iraqi-born residents of the city of Malmö for eGFR and ten other metabolic traits using linear mixed-models to account for family structure. RESULTS The strongest association signal was detected for eGFR in CST9 (rs13037490; P value = 2.4 × 10-13), a locus previously associated with cystatin C-based eGFR; importantly, the effect (major) allele here contrasts the effect (minor) allele in other populations, suggesting favorable selection at this locus. Additional novel genome-wide significant loci for eGFR (ERBB4), fasting glucose (CAMTA1, NDUFA10, TRIO, WWC1, TRAPPC9, SH3GL2, ABCC11), quantitative insulin-sensitivity check index (METTL16), and HbA1C (CAMTA1, ME1, PAK1, RORA) were identified. CONCLUSIONS The genetic effects discovered here may help explain why people from the Middle East have better kidney function than those of European descent. Genetic predisposition to preserved kidney function may also underlie the observed survival benefits in Middle Eastern immigrants with type 2 diabetes.
Collapse
Affiliation(s)
- Siham A Mohamed
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Juan Fernadez-Tajes
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden. .,Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Clinical Research and Trial Center, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
8
|
Guo J, Wu J, Wei D, Wang T, Hu Y, Lin Y, Chen M, Yang L, Wen Y, Cai Y, Xu X, Li H, Wu S, Xie X. Association between greenness and dyslipidemia in patients with coronary heart disease: A proteomic approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113199. [PMID: 35042090 DOI: 10.1016/j.ecoenv.2022.113199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Residential surrounding greenness may be protective of dyslipidemia are often theorized but remain poorly quantified. In particular, the underlying biological mechanisms of blood lipid changes with green spaces remain unclear. METHODS Our observational epidemiology study included a residentially stable sample of 1035 coronary heart disease patients, and proteomics study included 16 participants. Normalized Difference Vegetation Index (NDVI) was used to evaluate residential greenness exposures. Proteomics technology was used to identify plasma greenness-related proteome disturbance, and the pathway analysis was employed to evaluate the potential biological mechanisms of greenness decreasing dyslipidemia risk. RESULT Higher residential surrounding greenness in the 500-m area was associated with lower risks of dyslipidemia (odds ratio (OR) = 0.871, 95% confidence interval (CI): 0.763, 0.994 for per one-quartile NDVI increase). Lymphocytes mediated 18.7% of the association between greenness and dyslipidemia. Greenness related proteins (including PLXDC1, IGFBP2 and LY6D) may regulate the biological functions of lipid metabolism and transport-related proteins (including ADIPOQ and CES1) through a series of biological processes. CONCLUSION People in greener surroundings have a lower risk of dyslipidemia, which may be due to their lower inflammation, stronger lipid transporter activity, and normal cholesterol metabolism.
Collapse
Affiliation(s)
- Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jieyu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Donghong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Tinggui Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuduan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yawen Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Mingjun Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Le Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yeyin Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yingying Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huanyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
9
|
Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula. Genes (Basel) 2021; 12:genes12101637. [PMID: 34681031 PMCID: PMC8535608 DOI: 10.3390/genes12101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
The Arabian Peninsula, located at the nexus of Africa, Europe, and Asia, was implicated in early human migration. The Arab population is characterized by consanguinity and endogamy leading to inbreeding. Global genome-wide association (GWA) studies on metabolic traits under-represent the Arab population. Replicability of GWA-identified association signals in the Arab population has not been satisfactorily explored. It is important to assess how well GWA-identified findings generalize if their clinical interpretations are to benefit the target population. Our recent study from Kuwait, which performed genome-wide imputation and meta-analysis, observed 304 (from 151 genes) of the 4746 GWA-identified metabolic risk variants replicable in the Arab population. A recent large GWA study from Qatar found replication of 30 GWA-identified lipid risk variants. These complementing studies from the Peninsula increase the confidence in generalizing metabolic risk loci to the Arab population. However, both the studies reported a low extent of transferability. In this review, we examine the observed low transferability in the context of differences in environment, genetic correlations (allele frequencies, linkage disequilibrium, effect sizes, and heritability), and phenotype variance. We emphasize the need for large-scale GWA studies on deeply phenotyped cohorts of at least 20,000 Arab individuals. The review further presents GWA-identified metabolic risk variants generalizable to the Arab population.
Collapse
|
10
|
Al-Thani HF, Ahmad MN, Younes S, Zayed H. Genetic Variants Associated With Alzheimer Disease in the 22 Arab Countries: A Systematic Review. Alzheimer Dis Assoc Disord 2021; 35:178-186. [PMID: 33769987 DOI: 10.1097/wad.0000000000000447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Alzheimer disease (AD) is a progressive and complex neurodegenerative disease. Approximately 70% of AD risk is attributed to genetic risk factors, including variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes. Several studies have revealed a considerable number of candidate loci and genes for AD among different ethnic populations. However, the outcomes of these studies have been inconsistent. In this study, we aimed to investigate the spectrum of variants that are associated with the onset and development of AD among 22 Arab countries. METHODOLOGY We systematically searched 4 literature databases (Science Direct, Scopus, PubMed, and Web of Science) from the date of inception until July 2020 using various search terms to obtain all the reported genetic data on Arab AD cases. RESULTS In total, 18 studies were included, comprising a total of 2173 individuals, of whom 888 were clinically diagnosed AD patients and were genetically tested for genes and variants associated with AD. A total of 27 variants in 8 genes were found to be associated with AD. Of these variants, 17 were unique to the Arab population and 10 were shared with other ethnic groups. CONCLUSIONS There is a dearth of studies on the genetics of AD in the Arab world. There seems to be distinctive genetic and clinical susceptibility profiles for Arab patients with AD.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
11
|
Eaaswarkhanth M, Pathak AK, Ongaro L, Montinaro F, Hebbar P, Alsmadi O, Metspalu M, Al-Mulla F, Thanaraj TA. Unraveling a fine-scale high genetic heterogeneity and recent continental connections of an Arabian Peninsula population. Eur J Hum Genet 2021; 30:307-319. [PMID: 33753911 PMCID: PMC8904638 DOI: 10.1038/s41431-021-00861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.
Collapse
Affiliation(s)
| | - Ajai K Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Bari, Italy
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Osama Alsmadi
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.
| | | |
Collapse
|
12
|
Somekh J. A methodology for predicting tissue-specific metabolic roles of receptors applied to subcutaneous adipose. Sci Rep 2020; 10:19535. [PMID: 33177567 PMCID: PMC7659321 DOI: 10.1038/s41598-020-73214-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/11/2020] [Indexed: 01/18/2023] Open
Abstract
The human biological system uses 'inter-organ' communication to achieve a state of homeostasis. This communication occurs through the response of receptors, located on target organs, to the binding of secreted ligands from source organs. Albeit years of research, the roles these receptors play in tissues is only partially understood. This work presents a new methodology based on the enrichment analysis scores of co-expression networks fed into support vector machines (SVMs) and k-NN classifiers to predict the tissue-specific metabolic roles of receptors. The approach is primarily based on the detection of coordination patterns of receptors expression. These patterns and the enrichment analysis scores of their co-expression networks were used to analyse ~ 700 receptors and predict metabolic roles of receptors in subcutaneous adipose. To facilitate supervised learning, a list of known metabolic and non-metabolic receptors was constructed using a semi-supervised approach following literature-based verification. Our approach confirms that pathway enrichment scores are good signatures for correctly classifying the metabolic receptors in adipose. We also show that the k-NN method outperforms the SVM method in classifying metabolic receptors. Finally, we predict novel metabolic roles of receptors. These predictions can enhance biological understanding and the development of new receptor-targeting metabolic drugs.
Collapse
Affiliation(s)
- Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel.
| |
Collapse
|
13
|
Hebbar P, Abubaker JA, Abu-Farha M, Alsmadi O, Elkum N, Alkayal F, John SE, Channanath A, Iqbal R, Pitkaniemi J, Tuomilehto J, Sladek R, Al-Mulla F, Thanaraj TA. Genome-wide landscape establishes novel association signals for metabolic traits in the Arab population. Hum Genet 2020; 140:505-528. [PMID: 32902719 PMCID: PMC7889551 DOI: 10.1007/s00439-020-02222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
While the Arabian population has a high prevalence of metabolic disorders, it has not been included in global studies that identify genetic risk loci for metabolic traits. Determining the transferability of such largely Euro-centric established risk loci is essential to transfer the research tools/resources, and drug targets generated by global studies to a broad range of ethnic populations. Further, consideration of populations such as Arabs, that are characterized by consanguinity and a high level of inbreeding, can lead to identification of novel risk loci. We imputed published GWAS data from two Kuwaiti Arab cohorts (n = 1434 and 1298) to the 1000 Genomes Project haplotypes and performed meta-analysis for associations with 13 metabolic traits. We compared the observed association signals with those established for metabolic traits. Our study highlighted 70 variants from 9 different genes, some of which have established links to metabolic disorders. By relaxing the genome-wide significance threshold, we identified ‘novel’ risk variants from 11 genes for metabolic traits. Many novel risk variant association signals were observed at or borderline to genome-wide significance. Furthermore, 349 previously established variants from 187 genes were validated in our study. Pleiotropic effect of risk variants on multiple metabolic traits were observed. Fine-mapping illuminated rs7838666/CSMD1 rs1864163/CETP and rs112861901/[INTS10,LPL] as candidate causal variants influencing fasting plasma glucose and high-density lipoprotein levels. Computational functional analysis identified a variety of gene regulatory signals around several variants. This study enlarges the population ancestry diversity of available GWAS and elucidates new variants in an ethnic group burdened with metabolic disorders.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Naser Elkum
- Sidra Medical and Research Center, Doha, Qatar
| | - Fadi Alkayal
- Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Sumi Elsa John
- Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | | | - Rasheeba Iqbal
- Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Janne Pitkaniemi
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Robert Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Fahd Al-Mulla
- Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| | | |
Collapse
|
14
|
Osman W, Hassoun A, Jelinek HF, Almahmeed W, Afandi B, Tay GK, Alsafar H. Genetics of type 2 diabetes and coronary artery disease and their associations with twelve cardiometabolic traits in the United Arab Emirates population. Gene 2020; 750:144722. [PMID: 32360841 DOI: 10.1016/j.gene.2020.144722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND The United Arab Emirates (UAE) population has a high rate of type 2 diabetes mellitus (T2DM) and other metabolic risk factors for coronary artery disease (CAD). Previous studies have indicated strong genetic associations between T2DM and CAD. The objective of this study was to replicate previously reported significant genetic associations for T2DM and CAD which were in a genome-wide significance level in a cohort from the Arab population of the UAE, and to investigate the associations of these loci with twelve cardiometabolic traits that may influence the development of T2DM and CAD. METHODS A total of nine hundreds and fourteen Emiratis were recruited to this study to investigate associations of 101 loci for T2DM (422 patients and 455 controls), and 53 loci for CAD (160 patients and 245 controls), using logistic regression models which incorporating possible confounding factors. Results are presented using odds ratios with their corresponding 95% confidence intervals and p-values. Linear regression models, which included possible covariates were applied to determine any associations between the T2DM and CAD reported loci with the twelve cardiometabolic traits and results were presented as effect sizes (beta), standard errors, and p-values. Furthermore, the overall risks for all the loci found to be associated with T2DM and CAD were determined using the cumulative effects of the risk alleles. For those found to be associated with the twelve cardiometabolic traits, risks were determined using calculations of their polygenic risk scores. RESULTS The mean age of the T2DM group was 61.5 ± 11.3 and of the CAD group was 66.2 ± 9.3 years. The prevalence of most of the cardiovascular disease risk factors in this cohort were high: mean body mass index (BMI) = 29.4, T2DM (51.9%), hypertension (60.9%), dyslipidemia (68.8%), and smoking (47.9%). All individuals who were tested for CAD (n = 405) also had a diagnosis of T2DM. The highest association variant for T2DM was in SNP rs1977833 in HHEX (p = 0.0016, OR = 0.56 for allele A), which is a multi-ethnic locus for T2DM. The strongest association with CAD was detected with SNP rs264 in LPL, which encodes lipoprotein lipase (p = 0.009, OR = 1.96 for allele A). For the cardiometabolic traits analyses, most notable associations were those of FTO with BMI and waist circumference; ABO with height; KCNK16 with diastolic blood pressure; PROX1-AS1, GCKR, and MIR129-LEP with fasting blood glucose; random blood glucose with ZEB2 and THADA; HbA1c levels with TLE1 and FAM99B loci; HDL-cholesterol levels with BRAF; and triglyceride levels with ZEB2. Furthermore, accumulation of risk alleles and polygenic scores of the associated loci was clearly associated with increased risks for all tested diseases and traits in this cohort. CONCLUSIONS The present study highlighted many known genetic loci, which are linked to T2DM and CAD and their associations with major cardiometabolic traits in Arab descendants. We confirmed that some loci are associated with T2DM, CAD, and metabolic traits independently of the ethnic background, with a novel association also detected between height and ABO.
Collapse
Affiliation(s)
- Wael Osman
- College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Khalifa University Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Ahmed Hassoun
- Dubai Diabetes Centre, Dubai Health Authority, Dubai, United Arab Emirates
| | - Herbert F Jelinek
- Clinical Medicine, Macquarie University, Sydney, Australia; School of Community Health, Charles Sturt University, Albury, Australia
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates; Institute of Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Bachar Afandi
- Endocrine Diabetes Center, Tawam Hospital, SEHA, Al-Ain, United Arab Emirates
| | - Guan K Tay
- School of Health and Medical Sciences, Edith Cowan University, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Australia
| | - Habiba Alsafar
- Khalifa University Center for Biotechnology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Khalifa University, United Arab Emirates; College of Medicine and Health Sciences, Khalifa University, United Arab Emirates.
| |
Collapse
|
15
|
Eaaswarkhanth M, dos Santos ALC, Gokcumen O, Al-Mulla F, Thanaraj TA. Genome-Wide Selection Scan in an Arabian Peninsula Population Identifies a TNKS Haplotype Linked to Metabolic Traits and Hypertension. Genome Biol Evol 2020; 12:77-87. [PMID: 32068798 PMCID: PMC7093833 DOI: 10.1093/gbe/evaa033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the extreme and varying environmental conditions prevalent in the Arabian Peninsula, it has experienced several waves of human migrations following the out-of-Africa diaspora. Eventually, the inhabitants of the peninsula region adapted to the hot and dry environment. The adaptation and natural selection that shaped the extant human populations of the Arabian Peninsula region have been scarcely studied. In an attempt to explore natural selection in the region, we analyzed 662,750 variants in 583 Kuwaiti individuals. We searched for regions in the genome that display signatures of positive selection in the Kuwaiti population using an integrative approach in a conservative manner. We highlight a haplotype overlapping TNKS that showed strong signals of positive selection based on the results of the multiple selection tests conducted (integrated Haplotype Score, Cross Population Extended Haplotype Homozygosity, Population Branch Statistics, and log-likelihood ratio scores). Notably, the TNKS haplotype under selection potentially conferred a fitness advantage to the Kuwaiti ancestors for surviving in the harsh environment while posing a major health risk to present-day Kuwaitis.
Collapse
Affiliation(s)
| | - Andre Luiz Campelo dos Santos
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo
- Department of Archeology, Federal University of Pernambuco, Recife, Brazil
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
16
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
17
|
Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Sci Rep 2020; 10:152. [PMID: 31932636 PMCID: PMC6957513 DOI: 10.1038/s41598-019-57072-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Consanguineous populations of the Arabian Peninsula, which has seen an uncontrolled rise in type 2 diabetes incidence, are underrepresented in global studies on diabetes genetics. We performed a genome-wide association study on the quantitative trait of fasting plasma glucose (FPG) in unrelated Arab individuals from Kuwait (discovery-cohort:n = 1,353; replication-cohort:n = 1,196). Genome-wide genotyping in discovery phase was performed for 632,375 markers from Illumina HumanOmniExpress Beadchip; and top-associating markers were replicated using candidate genotyping. Genetic models based on additive and recessive transmission modes were used in statistical tests for associations in discovery phase, replication phase, and meta-analysis that combines data from both the phases. A genome-wide significant association with high FPG was found at rs1002487 (RPS6KA1) (p-discovery = 1.64E-08, p-replication = 3.71E-04, p-combined = 5.72E-11; β-discovery = 8.315; β-replication = 3.442; β-combined = 6.551). Further, three suggestive associations (p-values < 8.2E-06) with high FPG were observed at rs487321 (CADPS), rs707927 (VARS and 2Kb upstream of VWA7), and rs12600570 (DHX58); the first two markers reached genome-wide significance in the combined analysis (p-combined = 1.83E-12 and 3.07E-09, respectively). Significant interactions of diabetes traits (serum triglycerides, FPG, and glycated hemoglobin) with homeostatic model assessment of insulin resistance were identified for genotypes heterozygous or homozygous for the risk allele. Literature reports support the involvement of these gene loci in type 2 diabetes etiology.
Collapse
|
18
|
Eaaswarkhanth M, Melhem M, Sharma P, Nizam R, Al Madhoun A, Chaubey G, Alsmadi O, AlOzairi E, Al-Mulla F. Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. APPLICATION OF CLINICAL GENETICS 2019; 12:63-70. [PMID: 31213875 PMCID: PMC6541754 DOI: 10.2147/tacg.s198593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/13/2019] [Indexed: 01/11/2023]
Abstract
Background: The association of mitochondrial DNA (mtDNA) variations with obesity has been investigated in diverse populations across the world. However, such obesity-associated mtDNA examinations are rarely conducted in Arab populations. Materials and methods: We re-sequenced mtDNA displacement loop (D-loop) region of 395 Arab individuals of Kuwait. We categorized the individuals based on their BMI scores as obese (n=232; BMI ≥30 kg/m2), overweight (n=110; BMI ≥25 kg/m2 and <30 kg/m2), and lean (n=53; BMI <25 kg/m2). We performed all the statistical tests by combining obese and overweight individuals in one group. Association analyses were conducted applying Fisher's exact test and logistic regression model. Results: We identified that the mtDNA variations m.73A>G, and m.523delAC were positively correlated with obesity, while m.310T>C, and m.16318A>T were negatively associated. All these variants, except m.16318A>T, remain statistically significant after adjusting for age and gender. We found that the variant m.73A>G increases the likelihood of being obese by 6-fold, whereas haplogroup H decreases the probability of being obese in Arab individuals of Kuwait. Haplotype analysis revealed that a haplotype, A263G-C309CT-T310C, defining the H2a clade of H haplogroup, reduces the probability of being obese. Conclusion: Our study reports, for the first time, the obesity-related mtDNA variants in Arabs of Kuwait. Based on the mtDNA D-loop region variations, we detected particular variants and haplogroup that are related with increased and decreased probability of being obese in the Kuwait Arab population.
Collapse
Affiliation(s)
| | - Motasem Melhem
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Prem Sharma
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Osama Alsmadi
- Department of Cell Therapy & Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Ebaa AlOzairi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| |
Collapse
|
19
|
Hosseinzadeh N, Mehrabi Y, Daneshpour MS, Zayeri F, Guity K, Azizi F. Identifying new associated pleiotropic SNPs with lipids by simultaneous test of multiple longitudinal traits: An Iranian family-based study. Gene 2019; 692:156-169. [DOI: 10.1016/j.gene.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
|
20
|
Hebbar P, Abubaker JA, Abu-Farha M, Tuomilehto J, Al-Mulla F, Thanaraj TA. A Perception on Genome-Wide Genetic Analysis of Metabolic Traits in Arab Populations. Front Endocrinol (Lausanne) 2019; 10:8. [PMID: 30761081 PMCID: PMC6362414 DOI: 10.3389/fendo.2019.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Despite dedicated nation-wide efforts to raise awareness against the harmful effects of fast-food consumption and sedentary lifestyle, the Arab population continues to struggle with an increased risk for metabolic disorders. Unlike the European population, the Arab population lacks well-established genetic risk determinants for metabolic disorders, and the transferability of established risk loci to this population has not been satisfactorily demonstrated. The most recent findings have identified over 240 genetic risk loci (with ~400 independent association signals) for type 2 diabetes, but thus far only 25 risk loci (ADAMTS9, ALX4, BCL11A, CDKAL1, CDKN2A/B, COL8A1, DUSP9, FTO, GCK, GNPDA2, HMG20A, HNF1A, HNF1B, HNF4A, IGF2BP2, JAZF1, KCNJ11, KCNQ1, MC4R, PPARγ, SLC30A8, TCF7L2, TFAP2B, TP53INP1, and WFS1) have been replicated in Arab populations. To our knowledge, large-scale population- or family-based association studies are non-existent in this region. Recently, we conducted genome-wide association studies on Arab individuals from Kuwait to delineate the genetic determinants for quantitative traits associated with anthropometry, lipid profile, insulin resistance, and blood pressure levels. Although these studies led to the identification of novel recessive variants, they failed to reproduce the established loci. However, they provided insights into the genetic architecture of the population, the applicability of genetic models based on recessive mode of inheritance, the presence of genetic signatures of inbreeding due to the practice of consanguinity, and the pleiotropic effects of rare disorders on complex metabolic disorders. This perspective presents analysis strategies and study designs for identifying genetic risk variants associated with diabetes and related traits in Arab populations.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Genetics and Bioinformatics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- Doctoral Program in Population Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jehad Ahmed Abubaker
- Genetics and Bioinformatics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Genetics and Bioinformatics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Genetics and Bioinformatics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Fahd Al-Mulla
| | | |
Collapse
|
21
|
Assessment of coding region variants in Kuwaiti population: implications for medical genetics and population genomics. Sci Rep 2018; 8:16583. [PMID: 30409984 PMCID: PMC6224454 DOI: 10.1038/s41598-018-34815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Consanguineous populations of the Arabian Peninsula have been underrepresented in global efforts that catalogue human exome variability. We sequenced 291 whole exomes of unrelated, healthy native Arab individuals from Kuwait to a median coverage of 45X and characterised 170,508 single-nucleotide variants (SNVs), of which 21.7% were ‘personal’. Up to 12% of the SNVs were novel and 36% were population-specific. Half of the SNVs were rare and 54% were missense variants. The study complemented the Greater Middle East Variome by way of reporting many additional Arabian exome variants. The study corroborated Kuwaiti population genetic substructures previously derived using genome-wide genotype data and illustrated the genetic relatedness among Kuwaiti population subgroups, Middle Eastern, European and Ashkenazi Jewish populations. The study mapped 112 rare and frequent functional variants relating to pharmacogenomics and disorders (recessive and common) to the phenotypic characteristics of Arab population. Comparative allele frequency data and carrier distributions of known Arab mutations for 23 disorders seen among Arabs, of putative OMIM-listed causal mutations for 12 disorders observed among Arabs but not yet characterized for genetic basis in Arabs, and of 17 additional putative mutations for disorders characterized for genetic basis in Arab populations are presented for testing in future Arab studies.
Collapse
|
22
|
Hebbar P, Nizam R, Melhem M, Alkayal F, Elkum N, John SE, Tuomilehto J, Alsmadi O, Thanaraj TA. Genome-wide association study identifies novel recessive genetic variants for high TGs in an Arab population. J Lipid Res 2018; 59:1951-1966. [PMID: 30108155 DOI: 10.1194/jlr.p080218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormal blood lipid levels are influenced by genetic and lifestyle/dietary factors. Although many genetic variants associated with blood lipid traits have been identified in Europeans, similar data in Middle Eastern populations are limited. We performed a genome-wide association study with Arab individuals (discovery cohort: 1,353; replication cohort: 1,176) from Kuwait to identify possible associations of genetic variants with high lipid levels. We used Illumina HumanOmniExpress BeadChip and candidate SNP genotyping in the discovery and replication phases, respectively. For association tests, we used genetic models that were based on additive and recessive modes of inheritance. High triglycerides (TGs) were recessively associated with six risk variants (rs1002487/RPS6KA1, rs11805972/LAD1) rs7761746/Or5v1, rs39745/CTTNBP2-LSM8, rs2934952/PGAP3, and rs9626773/RP11-191L9.4-CERK) at genome-wide significance (P 6.12E-09), and another six variants (rs10873925/ST6GALNAC5, rs4663379/SPP2-ARL4C, rs10033119/NPY1R, rs17709449/LINC00911-FLRT2, rs11654954/CDK12-NEUROD2, and rs9972882/STARD3) were associated at borderline significance (P 5.0E-08). High TG was also additively associated with rs11654954. All of the 12 identified markers are novel and are harbored in runs of homozygosity. Literature evidence supports the involvement of these gene loci in lipid-related processes. This study in an Arab population augments international efforts to identify genetic regulation of lipid traits.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Dasman Diabetes Institute, Dasman 15462, Kuwait.,Faculty of Medicine, Univerisity of Helsinki, Helsinki, Finland
| | | | | | | | - Naser Elkum
- Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | | | | | | |
Collapse
|
23
|
Hachiya T, Komaki S, Hasegawa Y, Ohmomo H, Tanno K, Hozawa A, Tamiya G, Yamamoto M, Ogasawara K, Nakamura M, Hitomi J, Ishigaki Y, Sasaki M, Shimizu A. Genome-wide meta-analysis in Japanese populations identifies novel variants at the TMC6-TMC8 and SIX3-SIX2 loci associated with HbA 1c. Sci Rep 2017; 7:16147. [PMID: 29170429 PMCID: PMC5701039 DOI: 10.1038/s41598-017-16493-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Glycated haemoglobin (HbA1c) is widely used as a biomarker for the diagnosis of diabetes, for population-level screening, and for monitoring the glycaemic status during medical treatment. Although the heritability of HbA1c has been estimated at ~55-75%, a much smaller proportion of phenotypic variance is explained by the HbA1c-associated variants identified so far. To search for novel loci influencing the HbA1c levels, we conducted a genome-wide meta-analysis of 2 non-diabetic Japanese populations (n = 7,704 subjects in total). We identified 2 novel loci that achieved genome-wide significance: TMC6-TMC8 (P = 5.3 × 10-20) and SIX3-SIX2 (P = 8.6 × 10-9). Data from the largest-scale European GWAS conducted for HbA1c supported an association between the novel TMC6-TMC8 locus and HbA1c (P = 2.7 × 10-3). The association analysis with glycated albumin and glycation gap conducted using our Japanese population indicated that the TMC6-TMC8 and SIX3-SIX2 loci may influence the HbA1c level through non-glycaemic and glycaemic pathways, respectively. In addition, the pathway-based analysis suggested that the linoleic acid metabolic and 14-3-3-mediated signalling pathways were associated with HbA1c. These findings provide novel insights into the molecular mechanisms that modulate the HbA1c level in non-diabetic subjects.
Collapse
Affiliation(s)
- Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Yutaka Hasegawa
- Division of Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Atsushi Hozawa
- Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8573, Japan
| | - Gen Tamiya
- Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8573, Japan
| | - Masayuki Yamamoto
- Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8573, Japan
| | - Kuniaki Ogasawara
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
- Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Motoyuki Nakamura
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
- Department of Internal Medicine, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Jiro Hitomi
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
- Department of Anatomy, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
- Division of Innovation and Education, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, 028-3694, Japan.
| |
Collapse
|
24
|
John SE, Antony D, Eaaswarkhanth M, Hebbar P, Alkayal F, Tuomilehto J, Alsmadi O, Thanaraj TA. Genetic variants associated with warfarin dosage in Kuwaiti population. Pharmacogenomics 2017; 18:757-764. [PMID: 28592190 DOI: 10.2217/pgs-2017-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Assessing the distinct prevalence or absence of genetic variants associated with differential response to the anticoagulant medication of warfarin in different population groups is actively pursued by pharmacogenomics community. Populations from Arabian Peninsula are underrepresented in such studies. By way of examining exome- and genome-wide genotype data from 1395 Arab individuals in Kuwait, we report distinct occurrence of warfarin response-related variants rs12460590_A/CYP2A7, rs2108622_T/CYP4F2, rs2884737_C/VKORC1 and distinct absence of rs11150606_C/PRSS53 in Kuwaiti population. The presented results in conjunction with similar literature reports on Qatari population enhance the worldwide understanding on population-specific distributions of genetic variants associated with warfarin drug dosage.
Collapse
Affiliation(s)
- Sumi Elsa John
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Dinu Antony
- Functional Genomics Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Muthukrishnan Eaaswarkhanth
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Prashantha Hebbar
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Fadi Alkayal
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Jaakko Tuomilehto
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Osama Alsmadi
- Functional Genomics Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Thangavel Alphonse Thanaraj
- Population Genomics & Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait
| |
Collapse
|
25
|
Hebbar P, Alkayal F, Nizam R, Melhem M, Elkum N, John SE, Abufarha M, Alsmadi O, Thanaraj TA. The TCN2 variant of rs9606756 [Ile23Val] acts as risk loci for obesity-related traits and mediates by interacting with Apo-A1. Obesity (Silver Spring) 2017; 25:1098-1108. [PMID: 28417558 DOI: 10.1002/oby.21826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Despite alarming obesity levels in the Arabian Peninsula, its population lacks convincingly identified genetic determinants of obesity. A genome-wide association study was performed for obesity-related anthropometric traits in Arabs and to decipher mechanisms by which the variants mediate traits. METHODS The Illumina HumanOmniExpress BeadChip was used to genotype 1,353 Arab individuals (largely with Class I obesity) from Kuwait. Genome-wide association tests for obesity-related anthropometric traits were performed. Top associations were tested for replication in an independent cohort (1,176 unrelated Arabs). Resultant variants were investigated for interactions with obesity-related plasma biomarkers. Pathway analysis was performed on genes harboring markers in linkage disequilibrium (LD) with identified variants. RESULTS The rs9606756[c.67A>G,p.Ile23Val] variant from TCN2 was associated with waist circumference (WC) at nearly genome-wide significance (P = 8.92E-08). WC was inversely related with Apo-A1 or high-density lipoprotein levels; individuals with the AG genotype exhibited stronger relationship than those with the reference AA genotype. Interaction involving the AG genotype (effect allele = G) significantly contributed to an increase in anthropometric traits (particularly WC). Genes harboring single-nucleotide polymorphisms in LD with rs9606756 mapped onto an interaction network (with TP53 as central element) of established obesity/diabetes-related protein components. CONCLUSIONS The TCN2 variant acts as a risk factor for WC in the Arab population. The variant mediates obesity-related anthropometric traits via interactions with Apo-A1/high-density lipoprotein or TP53.
Collapse
Affiliation(s)
| | | | | | | | - Naser Elkum
- Sidra Medical and Research Center, Research Department Doha, Qatar
| | | | | | | | | |
Collapse
|