1
|
Lin Q, Jin L, Peng R. New Progress in Zebrafish Liver Tumor Models: Techniques and Applications in Hepatocellular Carcinoma Research. Int J Mol Sci 2025; 26:780. [PMID: 39859497 PMCID: PMC11765702 DOI: 10.3390/ijms26020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often begin with the discovery of phenomena and gradually progress to the development of animal models and human trials. Among these, liver tumor animal models play a critical role in advancing related research. The zebrafish liver closely resembles the human liver in structure, function, and regenerative capacity. Additionally, the high transparency and rapid development of zebrafish embryos and larvae make them ideal model organisms for studying liver tumors. This review systematically summarizes recent methods for constructing zebrafish liver tumor models, including transplantation, transgenesis, induction, and gene knockout. Furthermore, the present paper explores the applications of these models in the study of liver cancer pathogenesis, metastasis, the tumor microenvironment, drug screening, and other related areas. By comparing the advantages and limitations of various models and integrating their distinct characteristics, this review provides insights for developing a novel liver tumor model that better aligns with clinical needs. This approach will offer valuable reference information for further in-depth studies of the pathological mechanisms of liver tumors and the development of new therapeutic drugs or strategies.
Collapse
Affiliation(s)
| | | | - Renyi Peng
- Institute of Life Sciences, Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Q.L.); (L.J.)
| |
Collapse
|
2
|
Zhu M, Li Y, Liu D, Gong Z. Partial Hepatectomy Promotes the Development of KRASG12V-Induced Hepatocellular Carcinoma in Zebrafish. Cancers (Basel) 2024; 16:1793. [PMID: 38791872 PMCID: PMC11119731 DOI: 10.3390/cancers16101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to investigate the effects of PH on the development of oncogenic krasG12V-induced HCC in zebrafish. The inducible HCC model in Tg(fabp10a:rtTA2s-M2; TRE2:EGFP-krasG12V) zebrafish was used. PH or sham surgery was performed before the induction of oncogenic krasG12V expression in the livers of transgenic zebrafish. Histological analysis was carried out to determine the progression of HCC and other HCC-associated features including hepatocyte proliferation, extracellular matrix production, and local oxidative stress. The similarity between the process of PH-induced liver regeneration and that of krasG12V-induced HCC development was further compared by RNA-Seq analysis. The results show that PH promotes the development of krasG12V-induced HCC in zebrafish possibly through enhancing neutrophil-mediated oxidative stress and promoting the upregulation of s100a1, and the downregulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Mingkai Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (M.Z.); (Y.L.)
| |
Collapse
|
3
|
Mei TTY, Aung HH, Tung WS, Naing C. Association between IL-10 gene polymorphisms (- 1082 A/G, -819 T/C, -592 A/C) and hepatocellular carcinoma: a meta-analysis and trial sequential analysis. BMC Cancer 2023; 23:842. [PMID: 37684564 PMCID: PMC10492326 DOI: 10.1186/s12885-023-11323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The carcinogenesis of hepatocellular carcinoma is complicated, and genetic factor may have the role in the malignant transformation of liver cells. IL-10 gene polymorphisms have been investigated for their potential roles in hepatocellular carcinoma This study aimed to investigate the relationship between polymorphisms of IL-10 (-1082 A/G, -819 T/C, -592 A/C), and hepatocellular carcinoma by performing a meta-analysis with eligible individual studies. METHODS This study followed the PRISMA 2020 Checklist. Relevant studies were searched in health-related databases. The Newcastle-Ottawa Scale criteria were used to evaluate the studies quality. Pooled odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of association between each polymorphism and hepatocellular carcinoma using five genetic models. Stratification was done by ethnic groups. Trial sequential analysis (TSA) was performed to determine the required information size. RESULTS Fifteen case-control studies (n = 8182) were identified. Overall, the heterozygous model showed a marginal significant association only between IL-10 (-1082 A/G) and hepatocellular carcinoma risk (OR: 0.82, 95% CI: 0.67-1.00, 9 studies). On stratification, IL-10 (-1082 A/G) was significantly associated with hepatocellular carcinoma risk in the non-Asian population under dominant (OR: 0.62, 95% CI: 0.45-0.86, 4 studies), heterozygous (OR: 0.60, 95% CI: 0.43-0.85) and allelic models (OR: 0.79, 95% CI: 0.64-0.99). IL-10 (-819 T/C) was significantly associated with hepatocellular carcinoma risk only among non-Asians under the dominant (OR: 1.47, 95% CI: 1.02-2.13, 8 studies), recessive (OR: 1.99, 95% CI: 1.03-3.86, and homozygous models (OR: 2.18, 95% CI: 1.13-4.23). For IL-10 (-592 A/C) with 11 studies, there was no significant association with hepatocellular carcinoma in all five genetic models (P values > 0.5). TSA plots indicated that the information size for firm evidence of effect was sufficient only for the analysis of IL-10 (-592 A/C), but not for the - 1082 A/G or -819 T/C. CONCLUSIONS Findings suggest that IL-10 (-1082 A/G and - 819 T/C) polymorphisms are associated with hepatocellular carcinoma in ethnic-specific manner. However, this evidence is not conclusive because the sample size was insufficient. IL-10 (-592 A/C) polymorphism was not associated with hepatocellular carcinoma albeit with sufficient information size. Future well-designed large case-control studies on IL-10 (-1082 A/G and - 819 T/C) with different ethnicities are recommended.
Collapse
Affiliation(s)
- Teresa Tan Yen Mei
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Htar Htar Aung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Wong Siew Tung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Cho Naing
- Faculty of Tropical Health and Medicine, James Cook University, Queensland, Australia
| |
Collapse
|
4
|
May L, Shows K, Nana-Sinkam P, Li H, Landry JW. Sex Differences in Lung Cancer. Cancers (Basel) 2023; 15:3111. [PMID: 37370722 PMCID: PMC10296433 DOI: 10.3390/cancers15123111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
5
|
Tang YL, Zhu L, Tao Y, Lu W, Cheng H. Role of targeting TLR4 signaling axis in liver-related diseases. Pathol Res Pract 2023; 244:154410. [PMID: 36917917 DOI: 10.1016/j.prp.2023.154410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Toll-like receptor 4 (TLR4) plays an important role as a key signal-receiving transmembrane protein molecule in the liver, and substances that target the liver exert therapeutic effects via TLR4-related signaling pathways. This article provides a comprehensive review of targeting the TLR4 signaling axis to play an important role in the liver based on endogenous substances. Articles were divided into 5 major types of liver disease, acute liver injury, viral hepatitis, alcoholic and non-alcoholic liver disease, cirrhosis, and liver cancer, to elucidate how various endogenous substances affect the liver via the TLR4 pathway and the important role of the pathway itself in liver-related diseases to discover the potential therapeutic implications of the TLR4-related pathway in the liver. The results indicate that activation of the TLR4-related signaling axis primarily plays a role in promoting disease progression in liver-related diseases, and the TLR4/MyD88/NF-κB axis plays the most dominant role. Therefore, exploring the full effects of drugs targeting the TLR4-related signaling axis in the liver and the new use of old drugs may be a new research direction.
Collapse
Affiliation(s)
- Ying-Le Tang
- Medical College, Yangzhou University, Yangzhou, China
| | - Lin Zhu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yan Tao
- Medical College, Yangzhou University, Yangzhou, China
| | - Wen Lu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China.
| |
Collapse
|
6
|
He F, Furones AR, Landegren N, Fuxe J, Sarhan D. Sex dimorphism in the tumor microenvironment - From bench to bedside and back. Semin Cancer Biol 2022; 86:166-179. [PMID: 35278635 DOI: 10.1016/j.semcancer.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023]
Abstract
Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Department of Urology, First affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Rodgers Furones
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Tumor Immunology Department, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden; Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
7
|
Luo H, Jiang Q, Luo Y, Yang M, Yu Y, Yu C, Wang X. Comprehensive analysis of ESR1-related ceRNA axis as a novel prognostic biomarker in hepatocellular carcinoma. Epigenomics 2022; 14:1393-1409. [PMID: 36695093 DOI: 10.2217/epi-2022-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aims: To further understand, detect and treat hepatocellular carcinoma (HCC), it is urgent to conduct more in-depth research on the mechanism of sex-associated differences. Materials & methods: We established a ceRNA triple regulatory axis associated with ESR1 in HCC and performed expression, survival and nuclear-cytoplasmic localization analyses. In addition to this, we performed methylation analysis and immune infiltration analysis of the ceRNA axis. Results: We constructed the LINC01018/hsa-miR-197-3p/GNA14 (lncRNA/miRNA/mRNA) ceRNA axis to further explain the mechanism of sex-related prognosis in the development of HCC and to provide new insights into candidate biomarkers for targeted therapies. Conclusion: Our study is an innovative attempt at demonstrating the mechanism underlying the prognosis associated with sex differences in HCC by constructing a ceRNA axis (LINC01018/hsa-miR-197-3p/GNA14).
Collapse
Affiliation(s)
- Huiyan Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyin Jiang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuehua Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Miaolun Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yifan Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chengyang Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiongwen Wang
- Department of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
8
|
Zong Z, Dang Y, Zhang Y, Yu L, Liu C, Wang J. Promotion effect on liver tumor progression of microcystin-LR at environmentally relevant levels in female krasV12 transgenic zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106313. [PMID: 36182864 DOI: 10.1016/j.aquatox.2022.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microcystin-LR (MC-LR) is a kind of natural toxin which exists widely in aquatic environments and has been reported to be hepatotoxic and carcinogenic. At present, the promoting mechanism of MC-LR on hepatocellular carcinoma (HCC) remains largely unexplored. In this study, the hepatocellular promoting effect of MC-LR was described in KrasV12 transgenic zebrafish, a doxycycline (DOX) inducible HCC model. Our results showed that MC-LR could aggravate the progression of HCC at an environmentally relevant concentration (3 μg/L), which was accompanied by the decreased activity and down-regulated transcription level of serine/threonine phosphatase 2A (PP2A). Using TMT labeling quantitative phosphoproteomics, we found that the 1049 phosphopeptides were significantly changed (508 up-regulated and 541 down-regulated) in liver from combined exposure to DOX and 3 μg/L MC-LR group compared to the DOX group. Enriched pathways by KEGG analysis suggested that differentially phosphorylated proteins were mainly related to Wnt signaling pathway. Furthermore, the mRNA expression and protein abundance of β-Catenin in Wnt signaling pathway were significantly up-regulated following exposure to MC-LR. In short, our results suggested that MC-LR significantly inhibited the activity of PP2A, which in turn activated Wnt signaling, eventually resulting in progression of liver tumor in transgenic zebrafish.
Collapse
Affiliation(s)
- Zijing Zong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Giuffrè M, Zuliani E, Visintin A, Tarchi P, Martingano P, Pizzolato R, Bonazza D, Masutti F, Moretti R, Crocè LS. Predictors of Hepatocellular Carcinoma Early Recurrence in Patients Treated with Surgical Resection or Ablation Treatment: A Single-Center Experience. Diagnostics (Basel) 2022; 12:diagnostics12102517. [PMID: 36292205 PMCID: PMC9600725 DOI: 10.3390/diagnostics12102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the sixth most diagnosed malignancy and the fourth leading cause of cancer-related death worldwide, with poor overall survival despite available curative treatments. One of the most crucial factors influencing survival in HCC is recurrence. The current study aims to determine factors associated with early recurrence of HCC in patients with BCLC Stage 0 or Stage A treated with surgical resection or local ablation. Materials and Methods: We retrospectively enrolled 58 consecutive patients diagnosed with HCC within BCLC Stage 0 or Stage A and treated either by surgical resection or local ablation with maximum nodule diameter < 50 mm. In the first year of follow-up after treatment, imaging was performed regularly one month after treatment and then every three months. Each case was discussed collectively by the Liver Multidisciplinary Group to decide diagnosis, treatment, follow-up, and disease recurrence. Variables resulting in statistically significant difference were then studied by Cox regression analysis; univariately and then multivariately based on forward stepwise Cox regression. Results are represented in hazard ratio (H.R.) with 95% confidence interval (C.I.). Results: There was no statistically significant difference in recurrence rates (34.8 vs. 45.7%, log-rank test, p = 0.274) between patients undergoing surgical resection and local ablation, respectively. Early recurrence was associated with male gender (HR 2.5, 95% C.I. 1.9−3.1), nodule diameter > 20 mm (HR 4.5, 95% C.I. 3.9−5.1), platelet count < 125 × 103 cell/mm3 (HR 1.6, 95% C.I. 1.2−1.9), platelet-lymphocyte ratio < 95 (HR 2.1, 95% C.I. 1.7−2.6), lymphocyte-monocyte ratio < 2.5 (HR 1.9, 95% C.I. 1.4−2.5), and neutrophil-lymphocyte ratio > 2 (HR 2.7, 95% C.I. 2.2−3.3). Discussion and Conclusions: Our results are in line with the current literature. Male gender and tumor nodule dimension are the main risk factors associated with early HCC recurrence. Platelet count and other combined scores can be used as predictive tools for early HCC recurrence, although more studies are needed to define cut-offs.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 341349 Trieste, Italy
- Correspondence:
| | - Enrico Zuliani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 341349 Trieste, Italy
| | - Alessia Visintin
- Liver Clinic, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Paola Tarchi
- Surgical Clinic, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Paola Martingano
- Diagnostic and Interventional Radiology, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Riccardo Pizzolato
- Diagnostic and Interventional Radiology, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Deborah Bonazza
- Anatomic Pathology and Histology, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Flora Masutti
- Liver Clinic, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 341349 Trieste, Italy
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 341349 Trieste, Italy
- Liver Clinic, University Hospital of Trieste (Azienda Sanitaria Giuliano-Isontina), 34149 Trieste, Italy
| |
Collapse
|
10
|
Yu A, Cable C, Sharma S, Shihan MH, Mattis AN, Mileva I, Hannun YA, Duwaerts CC, Chen JY. Targeting acid ceramidase ameliorates fibrosis in mouse models of non-alcoholic steatohepatitis. Front Med (Lausanne) 2022; 9:881848. [PMID: 36275798 PMCID: PMC9582277 DOI: 10.3389/fmed.2022.881848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Carson Cable
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mahbubul H. Shihan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aras N. Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Izolda Mileva
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A. Hannun
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Y. Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Ho PT, Balzanelli MG, Distratis P, Lazzaro R, Tran DK, Nguyen KCD, Bui TM, Nguyen TT, Pham ST, Nguyen HSD, Tran VT, Ho TT, Dipalma G, Inchingolo F, Quek C, Pham HT, Isacco CG, Santacroce L, Pham VH. Characteristics of Hepatitis B Virus Genotype and Sub-Genotype in Hepatocellular Cancer Patients in Vietnam. Diagnostics (Basel) 2022; 12:diagnostics12102393. [PMID: 36292082 PMCID: PMC9600587 DOI: 10.3390/diagnostics12102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Untreated chronic hepatitis B virus (HBV) infection can lead to chronic liver disease and may progress to cirrhosis or hepatocellular carcinoma (HCC). HBV infection has been prevalent in Vietnam, but there is little information available on the genotypes, sub-genotypes, and mutations of HBV in patients with HBV-related HCC confirmed by histopathological diagnosis. We studied the molecular characteristics of HBV and its genetic variants in Vietnamese HCC patients after liver tumor resection. We conducted a descriptive cross-sectional study on 107 HBV-related HCC hospitalized patients from October 2018 to April 2019. The specimens collected included EDTA anticoagulant blood and liver tissues. Extracted HBV DNA was subjected to whole genome sequencing by the Sanger method. We discovered 62 individuals (57.9%) with genotype B and 45 patients (42.1%) with genotype C, with only sub-genotypes B4 and C1. Among the mutations, the double mutation, A1762T-G1764A, had the most significant frequency (73/107 samples; 68.2%) and was higher in genotype C than in genotype B (p < 0.001). The most common genotypes found in HCC patients in this investigation were B and C, with sub-genotypes B4 and C1 for each. The prevalence of genotype B4 was greater in HBV-infected Vietnamese HCC patients.
Collapse
Affiliation(s)
- Phat Tan Ho
- Cho Ray Hospital Ho Chi Minh Vietnam, Phat Tan Ho, Ho Chi Minh 749000, Vietnam
| | - Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy
| | - Pietro Distratis
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy
| | - Rita Lazzaro
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy
| | - Duy Khanh Tran
- Nam Khoa Biotek, Ho Chi Minh 500000, Vietnam
- Environmental Engineering, Ho Chi Minh University of Technology, Ho Chi Minh 700000, Vietnam
| | - Kieu C. D. Nguyen
- American Stem Cells Hospital Ho Chi Minh, Ho Chi Minh 700000, Vietnam
| | | | | | - Son Truong Pham
- Western Sydney Local Health District, Sydney 2170, Australia
| | | | - Vinh Thanh Tran
- Cho Ray Hospital Ho Chi Minh Vietnam, Phat Tan Ho, Ho Chi Minh 749000, Vietnam
| | - Toan Trong Ho
- Cho Ray Hospital Ho Chi Minh Vietnam, Phat Tan Ho, Ho Chi Minh 749000, Vietnam
| | - Gianna Dipalma
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Camelia Quek
- Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Huong Thien Pham
- Multidisciplinary Clinic, University of Medicine Pham Ngoc Thach, Ho Chi Minh 700000, Vietnam
| | - Ciro Gargiulo Isacco
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (L.S.); (V.H.P.)
| | - Van Hung Pham
- Nam Khoa Biotek, Ho Chi Minh 500000, Vietnam
- School of Medicine, Phan Chau Trinh Medical University, Ho Chi Minh, 700000, Vietnam
- Correspondence: (L.S.); (V.H.P.)
| |
Collapse
|
12
|
Chen S, Wu J, Li M, Sun Q, Gong Z, Letcher RJ, Liu C. A high-throughput screening assay for identification of chemicals with liver tumor promoting potential using a transgenic zebrafish line. CHEMOSPHERE 2022; 297:134169. [PMID: 35245594 DOI: 10.1016/j.chemosphere.2022.134169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Traditional high-throughput methods for identification of chemicals with liver tumor promotion potentials are based on established cancer cell lines, and rapid and cost-effective high-throughput screening assays in whole organisms are presently lacking. In this study, a transgenic zebrafish liver cancer model was employed to develop a method that could be used to identify chemicals with liver tumor promotion effect quickly and accurately. The method consisted of three parts, including exposure preparation, exposure process and image acquisition. In brief, after chemical exposure for 7 days, 96-well plate exposure system for zebrafish larvae was assessed by microplate reader. Then, the liver cancer promoting potential chemicals were evaluated by field area and field average intensity of fluorescence. The results were further validated by conducting histopathological examination. Our data demonstrated that the high-throughput screening assay developed in this study was reproducible and could be used to rapidly screen chemicals with liver tumor promoting potentials by using tris-(2-chloropropyl)-phosphate (TDCIPP) as a positive control. Furthermore, some other positive chemicals found in previous studies and environmental compounds were assessed using the established method. Results indicated that 86.7% of the positive chemicals and five environmental compounds out of seventeen compounds could enhance liver tumor progression.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Wu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
14
|
Srivastava A, Sharma H, Khanna S, Sadhu Balasundaram T, Chowdhury S, Chowdhury R, Mukherjee S. Interleukin-6 Induced Proliferation Is Attenuated by Transforming Growth Factor-β-Induced Signaling in Human Hepatocellular Carcinoma Cells. Front Oncol 2022; 11:811941. [PMID: 35127527 PMCID: PMC8810489 DOI: 10.3389/fonc.2021.811941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is often associated with an inflammatory setting. A plethora of cytokines are secreted in this milieu, actively contributing to the progression of the disease; however, the extent of cytokine interaction and how it contributes to HCC development remains an enigma. In this regard, our analysis of available patient-derived data suggests that cytokines like interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) are enriched in HCC. We further analyzed the effect of these cytokines independently or in combination on HCC cells. Importantly, IL-6 was found to induce a STAT-3-dependent proliferation and mediate its pro-proliferative effects through activation and direct interaction with the p65 subunit of NFkB. Alternatively, TGF-β was found to induce a SMAD-dependent induction of epithelial to mesenchymal transition (EMT) coupled to growth arrest in these cells. Interestingly, the simultaneous addition of IL-6 and TGF-β failed to profoundly impact EMT markers but resulted in attenuation of IL-6-induced pro-proliferative effects. Analysis of the putative molecular mechanism revealed a decrease in IL-6 receptor (IL-6R) transcript levels, reduced expression of IL-6-induced STAT-3, and its nuclear localization upon addition of TGF-β along with IL-6. Consequently, a reduced p65 activation was also observed in combination treatment. Importantly, SMAD levels were unperturbed and the cells showed more TGF-β-like features under combination treatment. Finally, we observed that TGF-β resulted in enrichment of repressive chromatin mark (H3K27me3) coupled to growth arrest, while IL-6 induced an open chromatin signature (H3K4me3) associated with an enhanced expression of EZH2. Overall, for the first time, we show that TGF-β attenuates IL-6-induced effects by regulating the receptor level, downstream signaling, and the epigenome. Understanding the complex interactions between these cytokines can be imperative to a better understanding of the disease, and manipulation of cytokine balance can act as a prospective future therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| |
Collapse
|
15
|
Duc VT, Chien PC, Huyen LDM, Chau TLM, Chanh NDT, Soan DTM, Huyen HC, Thanh HM, Hy LNG, Nam NH, Uyen MTT, Nhi LHH, Minh LHN. Deep Learning Model With Convolutional Neural Network for Detecting and Segmenting Hepatocellular Carcinoma in CT: A Preliminary Study. Cureus 2022; 14:e21347. [PMID: 35186603 PMCID: PMC8849436 DOI: 10.7759/cureus.21347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. Early detection and accurate diagnosis of HCC play an important role in patient management. This study aimed to develop a convolutional neural network-based model to identify and segment HCC lesions utilizing dynamic contrast agent-enhanced computed tomography (CT). Methods This retrospective study used CT image sets of histopathology-confirmed hepatocellular carcinoma over three phases (arterial, venous, and delayed). The proposed convolutional neural network (CNN) segmentation method was based on the U-Net architecture and trained using the domain adaptation technique. The proposed method was evaluated using 115 liver masses of 110 patients (87 men and 23 women; mean age, 56.9 years ± 11.9 (SD); mean mass size, 6.0 cm ± 3.6). The sensitivity for identifying HCC of the model and Dice score for segmentation of liver masses between radiologists and the CNN model were calculated for the test set. Results The sensitivity for HCC identification of the model was 100%. The median Dice score for HCC segmenting between radiologists and the CNN model was 0.81 for the test set. Conclusion Deep learning with CNN had high performance in the identification and segmentation of HCC on dynamic CT.
Collapse
|
16
|
Tsai YW, Jeng KS, He MK, Hsieh YW, Lai HH, Lai CY, Huang CC, Chang CF, Huang CT, Her GM. MXD3 Promotes Obesity and the Androgen Receptor Signaling Pathway in Gender-Disparity Hepatocarcinogenesis. Cells 2021; 10:3434. [PMID: 34943942 PMCID: PMC8700344 DOI: 10.3390/cells10123434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022] Open
Abstract
Obesity is closely linked to metabolic diseases, particularly non-alcoholic steatohepatitis (NASH) or non-alcoholic fatty liver disease (NAFLD), ultimately leading to hepatocellular carcinoma (HCC). However, the molecular mechanisms of NASH-associated HCC (NAHCC) remain elusive. To explore the impact of Max dimerization protein 3 (MXD3), a transcription factor that regulates several cellular functions in disorders associated with metabolic diseases, we conditionally expressed Mxd3 proteins using Tet-on mxd3 transgenic zebrafish (MXs) with doxycycline (MXs + Dox) or without doxycycline (MXs - Dox) treatment. Overexpression of global MXD3 (gMX) or hepatic Mxd3 (hMX) was associated with obesity-related NAFLD pathophysiology in gMX + Dox, and liver fibrosis and HCC in hMX + Dox. Oil Red O (ORO)-stained signals were seen in intravascular blood vessels and liver buds of larval gMX + Dox, indicating that Mxd3 functionally promotes lipogenesis. The gMX + Dox-treated young adults exhibited an increase in body weight and visceral fat accumulation. The hMX + Dox-treated young adults showed normal body characteristics but exhibited liver steatosis and NASH-like phenotypes. Subsequently, steatohepatitis, liver fibrosis, and NAHCC were found in 6-month-old gMX + Dox adults compared with gMX - Dox adults at the same stage. Overexpression of Mxd3 also enhanced AR expression accompanied by the increase of AR-signaling pathways resulting in hepatocarcinogenesis in males. Our results demonstrate that global actions of Mxd3 are central to the initiation of obesity in the gMX zebrafish through their effects on adipogenesis and that MXD3 could serve as a therapeutic target for obesity-associated liver diseases.
Collapse
Affiliation(s)
- Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (K.-S.J.); (C.-F.C.)
| | - Mu-Kuang He
- Taipei First Girls High School, Taipei 100, Taiwan;
| | - Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.L.); (C.-Y.L.)
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.L.); (C.-Y.L.)
| | - Chi-Yu Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.L.); (C.-Y.L.)
| | - Chun-Chieh Huang
- Department of Radiology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (K.-S.J.); (C.-F.C.)
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.L.); (C.-Y.L.)
| |
Collapse
|
17
|
Castro-Gil MP, Torres-Mena JE, Salgado RM, Muñoz-Montero SA, Martínez-Garcés JM, López-Torres CD, Mendoza-Vargas A, Gabiño-López NB, Villa-Treviño S, Del Pozo-Yauner L, Arellanes-Robledo J, Krötzsch E, Pérez-Carreón JI. The transcriptome of early GGT/KRT19-positive hepatocellular carcinoma reveals a downregulated gene expression profile associated with fatty acid metabolism. Genomics 2021; 114:72-83. [PMID: 34861383 DOI: 10.1016/j.ygeno.2021.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.
Collapse
Affiliation(s)
| | | | - Rosa M Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | - Said A Muñoz-Montero
- Department of Computational Genomics, National Institute of Genomic Medicine, CDMX, Mexico
| | | | | | | | | | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, CDMX, Mexico
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology, CDMX, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", CDMX, Mexico
| | | |
Collapse
|
18
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
19
|
Mao Y, Zong Z, Dang Y, Yu L, Liu C, Wang J. Promotion effect of microcystin-LR on liver tumor progression in kras V12 transgenic zebrafish following acute or subacute exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112673. [PMID: 34438271 DOI: 10.1016/j.ecoenv.2021.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is widely distributed in the natural environment and causes hepatotoxicity. However, whether MC-LR promotes liver tumor progression remains controversial. krasV12 transgenic zebrafish were used as an inducible liver tumor model to evaluate the potential tumor-promoting effect of MC-LR. First, krasV12 transgenic larvae were exposed to 0, 0.1 and 1 mg/L MC-LR with 20 mg/L doxycycline (Dox) for 4 d. The gray values and histopathological examinations of the liver demonstrated that MC-LR aggravated liver tumor progression, which could be inhibited by the Protein arginine methyltransferase 5 (Prmt5) inhibitor compound 5 (CMP5). Second, 1-month-old juvenile transgenic zebrafish were exposed to 0, 20 mg/L Dox, 1 μg/L MC-LR, and 20 mg/L Dox with 0.1 or 1 μg/L MC-LR for 15 d to determine whether the exposure to environmental concentrations of MC-LR promoted hepatocellular carcinoma (HCC) progression. We found that environmental concentrations of MC-LR increased the hepatosomatic index (HSI) and gray value (intensity/area) and promoted HCC progression. The results indicate that environmental concentrations of MC-LR have the potential to promote liver tumor progression. Taken together, the present study demonstrates that MC-LR can promote tumor in krasV12 transgenic zebrafish and that the upregulation of prmt5 expression might contribute to MC-LR-mediated promotion of liver tumorigenesis.
Collapse
Affiliation(s)
- Yuchao Mao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijing Zong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Lerebours A, Murzina S, Song Y, Tollefsen KE, Benedetti M, Regoli F, Rotchell JM, Nahrgang J. Susceptibility of polar cod (Boreogadus saida) to a model carcinogen. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105434. [PMID: 34333338 DOI: 10.1016/j.marenvres.2021.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Studies that aim to characterise the susceptibility of the ecologically relevant and non-model fish polar cod (Boreogadus saida) to model carcinogens are required. Polar cod were exposed under laboratory conditions for six months to control, 0.03 μg BaP/g fish/week and 0.3 μg BaP/g fish/week dietary benzo(a)pyrene (BaP), a reference carcinogen. The concentrations of the 3-OH-BaP bile metabolite and transcriptional responses of genes involved in DNA adduct recognition (xpc), helicase activity (xpd), DNA repair (xpf, rad51) and tumour suppression (tp53) were assessed after 0, 1, 3 and 6 months of exposure, alongside body condition indexes (gonadosomatic index, hepatosomatic index and condition factor). Micronuclei and nuclear abnormalities in blood and spleen, and liver histopathological endpoints were assessed at the end of the experiment. Fish grew steadily over the whole experiment and no mortality was recorded. The concentrations of 3-OH-BaP increased significantly after 1 month of exposure to the highest BaP concentration and after 6 months of exposure to all BaP concentrations showing the biotransformation of the mother compound. Nevertheless, no significant induction of gene transcripts involved in DNA damage repair or tumour suppression were observed at the selected sampling times. These results together with the absence of chromosomal damage in blood and spleen cells, the subtle increase in nuclear abnormalities observed in spleen cells and the low occurrence of foci of cellular alteration suggested that the exposure was below the threshold of observable effects. Taken together, the results showed that polar cod was not susceptible to carcinogenesis using the BaP exposure regime employed herein.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom; UMR CNRS LIENSs, Littoral Environnement et Sociétés, Université de La Rochelle, La Rochelle, 17 000, France.
| | - Svetlana Murzina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910, Petrozavodsk, Russia
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Maura Benedetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics UiT the Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
21
|
Zhu Y, Yang D, Duan X, Zhang Y, Chen D, Gong Z, Liu C. Perfluorooctane sulfonate promotes doxycycline-induced liver tumor progression in male Kras v12 transgenic zebrafish. ENVIRONMENTAL RESEARCH 2021; 196:110962. [PMID: 33675800 DOI: 10.1016/j.envres.2021.110962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that has been widely detected in the environment and has caused growing international concern. The liver is the main target organ of PFOS exposure. Animal experiments have shown that PFOS exposure can increase the risk of liver tumorigenesis. However, whether PFOS can accelerate liver tumor progression is still unclear. In this study, transgenic zebrafish Tg(fabp10:rtTA2s-M2; TRE2:EGFP-KRASG12V), a hepatocellular carcinoma (HCC) model that can cause liver tumorigenesis by doxycycline (DOX) induction, was used to investigate the effect of PFOS exposure in HCC progression. The male krasV12 transgenic zebrafish were exposed to 20 mg/L DOX, 500 μg/L PFOS or combined 20 mg/L DOX and 500 μg/L PFOS for 10 d. The results showed that co-treated with PFOS and DOX caused oncogenic Kras-induced liver enlargement, increased the percentages of zebrafish with HCC, and aggravated metabolic reprogramming of liver. To the best of our knowledge, this study for the first proved that PFOS could promote liver tumor progression. Decreased vitamin D level and increased fatty acid intake caused by PFOS might be responsible for the tumor-promoting effects. The results suggest that attention should be paid to the tumor-promoting effects of PFOS when assessing its environmental health risks, and these findings provide new insights into the toxicity of PFOS.
Collapse
Affiliation(s)
- Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Dandong Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinbin Duan
- Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daqing Chen
- Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Heo JW, Kim SE, Sung MK. Sex Differences in the Incidence of Obesity-Related Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms22031253. [PMID: 33513939 PMCID: PMC7865604 DOI: 10.3390/ijms22031253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, with 9.6 million people estimated to have died of cancer in 2018. Excess body fat deposition is a risk factor for many types of cancer. Men and women exhibit differences in body fat distribution and energy homeostasis regulation. This systematic review aimed to understand why sex disparities in obesity are associated with sex differences in the incidence of gastrointestinal cancers. Cancers of the esophagus, liver, and colon are representative gastrointestinal cancers, and obesity is a convincing risk factor for their development. Numerous epidemiological studies have found sex differences in the incidence of esophageal, liver, and colorectal cancers. We suggest that these sexual disparities are partly explained by the availability of estrogens and other genetic factors regulating inflammation, cell growth, and apoptosis. Sex differences in gut microbiota composition may contribute to differences in the incidence and phenotype of colorectal cancer. To establish successful practices in personalized nutrition and medicine, one should be aware of the sex differences in the pathophysiology and associated mechanisms of cancer development.
Collapse
Affiliation(s)
| | - Sung-Eun Kim
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
23
|
Chang K, Mo L, Wang C, Hsieh C, Hsu H, Tseng Y, Tseng Y. Long‐term effects of hormone replacement therapy on hepatocellular carcinoma risk and overall survival rate in women with chronic hepatitis C: A population‐based cohort study in Taiwan. ADVANCES IN DIGESTIVE MEDICINE 2020. [DOI: 10.1002/aid2.13250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kuo‐Kuan Chang
- Department of Hepatogastroenterology Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation) Tainan Taiwan
| | - Lein‐Ray Mo
- Department of Hepatogastroenterology Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation) Tainan Taiwan
| | - Chun‐Hsiang Wang
- Department of Hepatogastroenterology Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation) Tainan Taiwan
| | - Chia‐Chi Hsieh
- Departments of Nursing Chang Bing Show Chwan Memorial Hospital Changhua Taiwan
| | - Hua‐Yin Hsu
- Departments of Nursing Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation) Tainan Taiwan
| | - Yi‐Chen Tseng
- Departments of Obstetrics & Gynecology An Nan Hospital, China Medical University Tainan Taiwan
| | - Yuan‐Tsung Tseng
- Committee of Medical Research, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation) Tainan Taiwan
| |
Collapse
|
24
|
Mai Q, Sheng D, Chen C, Gou Q, Chen M, Huang X, Yin H, Chen X, Chen Z. Steroid 5 alpha-reductase 3 (SRD5A3) promotes tumor growth and predicts poor survival of human hepatocellular carcinoma (HCC). Aging (Albany NY) 2020; 12:25395-25411. [PMID: 33229626 PMCID: PMC7803539 DOI: 10.18632/aging.104142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
Steroid 5 alpha-reductase 3 (SRD5A3) is an important molecule in glycosylation metabolism and steroid hormone formation. It is differentially expressed in human fetal liver, endometrial cancer and prostate cancer; however, its prognostic value and biological function in hepatocellular carcinoma (HCC) remain unclear. Here, bioinformatics analysis was employed to explore the expression and prognostic significance of SRD5A3 in various cancers including HCC. Additionally, clinical specimens of HCC were applied to analyze the expression of SRD5A3. SRD5A3-underexpressed HCC cell lines were established to test the effect of SRD5A3 on cell proliferation in in vitro and in vivo. We found that the elevated expression of SRD5A3 was common in many cancers with poor prognosis. Moreover, public datasets and our specimens revealed that SRD5A3 was also upregulated in HCC tissues and associated with clinical stage and patient’s gender. Kaplan-Meier survival analysis showed that higher SRD5A3 level predicted poor overall survival, progression-free survival, relapse-free survival and disease specific survival in HCC patients. Further experiments showed that the lack of SRD5A3 inhibited the growth of HCC. Collectively, these findings indicate that SRD5A3 functions as an oncogene and might serve as a potential biomarker for prognosis and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Qicong Mai
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Dafeng Sheng
- PET/CT Center, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Qing Gou
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Meng Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Heng Yin
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaoming Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Zide Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
25
|
Deng S, Ramos-Castaneda M, Velasco WV, Clowers MJ, Gutierrez BA, Noble O, Dong Y, Zarghooni M, Alvarado L, Caetano MS, Yang S, Ostrin EJ, Behrens C, Wistuba II, Stabile LP, Kadara H, Watowich SS, Moghaddam SJ. Interplay between estrogen and Stat3/NF-κB-driven immunomodulation in lung cancer. Carcinogenesis 2020; 41:1529-1542. [PMID: 32603404 PMCID: PMC7896112 DOI: 10.1093/carcin/bgaa064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Berenice A Gutierrez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oscar Noble
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiping Dong
- Department of Oncology Radiotherapy, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Melody Zarghooni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucero Alvarado
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Edwin J Ostrin
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Humam Kadara
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
26
|
Zhao Y, Meng F, Ding C, Yu Y, Zhang G, Tzeng C. Gender-differentiated metabolic abnormalities of adult zebrafish with zinc pyrithione (ZPT) -induced hepatotoxicity. CHEMOSPHERE 2020; 257:127177. [PMID: 32480090 DOI: 10.1016/j.chemosphere.2020.127177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Zinc pyrithione (ZPT) is an extensively used microbicidal agent and its toxicity to multiple organs has been gradually recognized. However, details of the mechanism of ZPT toxicity are lacking and profile studies at metabolic level are still greatly limited. In this work we investigated the effects of ZPT on metabolic pathways of zebrafish liver after twenty-one days of exposure. Our integrated approach was underpinned by gas chromatography coupled with mass spectroscopy (GC-MS) and liver function analysis. Metabolomic profiles were generated from the livers of ZPT-treated zebrafish and 172 significantly altered metabolite peaks were detected. As a result, ZPT caused altered perturbation of metabolic pathways in male and female zebrafish liver. Moreover, ZPT induced the liver injury with the changes of the metabolites 2,4-diaminobutyric acid (2,4-DABA) with significant distinction between male and female zebrafish. ZPT caused gender-differentiated liver metabolic changes associated with the disruption of glycogenolysis and glycolysis metabolism, purine and pyrimidine metabolism, oxidative phosphorylation, arginine biosynthesis, and amino acid metabolism. Conclusively, exposure of ZPT may result in gender-differentiated metabolic abnormalities of adult zebrafish with induced hepatotoxicity.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Cunbao Ding
- School of Life Sciences, North China University of Science and Technology, Hebei, China
| | - Yang Yu
- College of Environmental Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Guisen Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Chimeng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
27
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
28
|
Luu S, Hsu C, Silberfein EJ. Demographic and Clinicopathologic Factors of Patients With Hepatocellular Carcinoma in a Safety Net Hospital. J Surg Res 2020; 256:374-380. [PMID: 32739621 DOI: 10.1016/j.jss.2020.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/02/2020] [Accepted: 06/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Safety net hospitals have historically cared for a disproportionate number of patients of low socioeconomic status, racial and ethnic minorities, and patients with cancer. These innate challenges make safety net hospitals important in understanding how to improve access to cancer care in order to fit the needs of vulnerable patients and ultimately improve their outcomes. The purpose of this study is to characterize the current state and treatment of hepatocellular carcinoma (HCC) at Ben Taub Hospital, a safety net hospital in Houston, Texas. MATERIALS AND METHODS A retrospective chart review was performed to review the demographic characteristics, clinicopathologic data, treatment strategies, and outcomes of HCC patients at Ben Taub Hospital between January 2012 and December 2014. RESULTS Two-hundred twenty-six men and 78 women with a mean age of 58 y underwent evaluation. Most (87%) were either uninsured or covered by Medicaid. The majority (69%) of patients presented with advanced (stage 2 or more) disease, with 58% of patients presenting with multiple lesions. Of the 40% that presented with a solitary lesion, the average size was 4.97 cm. Transarterial chemoembolization was used in 37% of patients and sorafenib was given to 26% of patients. Five patients underwent successful transplant. One hundred seventeen (38%) patients died of their disease, 25 patients are alive with no evidence of disease, and 159 patients have been lost to follow-up. CONCLUSIONS Most patients with HCC presented to this safety net hospital with advanced disease; however, multiple local and systemic treatments were offered. Screening programs to detect HCC at an earlier stage are essential for successful long-term outcomes in a resource-strapped hospital with limited access to liver transplantation.
Collapse
Affiliation(s)
- Sommer Luu
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Cary Hsu
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
29
|
Chen S, Gong Z, Letcher RJ, Liu C. Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1, 3-dichloro-2-propyl) phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110220. [PMID: 31991394 DOI: 10.1016/j.ecoenv.2020.110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A previous study reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could promote the progression of hepatocellular carcinoma (HCC) in female HCC model zebrafish. Due to the existence of gender disparity in the development of HCC between females and males, whether the promotion effect of TDCIPP still exists in male HCC model zebrafish remains unclear. In this study, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), referred as kras transgenic zebrafish which was shown to be an inducible liver tumor model, was applied as experimental model to assess the promotion potential of TDCIPP for HCC in males. In brief, kras males were exposed to 20 mg/L doxycycline (DOX), 0.3 mg/L TDCIPP and a binary mixture of 20 mg/L DOX with 0.3 mg/L TDCIPP, and after exposure liver size, histopathology and transcriptional profiles of liver from these treatments were examined. With the involvement of TDCIPP, the liver size was significantly increased and the lesion of hepatocyte became more aggressive. Furthermore, expressions of genes involved in DNA replication and inflammatory response were simultaneously up-regulated in the treatment of TDCIPP compared with the solvent control and in the treatment of the binary mixture of the two chemicals compared to the single DOX treatment. Overall, our results suggested that TDCIPP had promotion effect on the progression of liver tumor in kras males.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
30
|
Mawed SA, He Y, Zhang J, Mei J. Strategy of Hepatic Metabolic Defects Induced by beclin1 Heterozygosity in Adult Zebrafish. Int J Mol Sci 2020; 21:E1533. [PMID: 32102330 PMCID: PMC7073209 DOI: 10.3390/ijms21041533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic disorders have been increasing in recent years because of high carbohydrate diets. Hepatocytes depend mainly on the basal autophagy to maintain hepatic glucose/lipid homeostasis in mammals. However, the regulatory mechanisms of autophagy in hepatic energy metabolism are still unknown in fish species. Accordingly, mutant zebrafish lines of autophagy-related genes beclin1 and atg7 were generated by CRISPR/Cas9 gene-editing technology. Interestingly, unlike atg7+/-, male beclin1+/- zebrafish displayed liver defects in the morphology and histology, including abnormal hepatocyte proliferation, hemorrhagic and inflammatory phenotypes. A significant decrease in hepatocyte glycogen and an increase in hepatocyte lipids were detected in the histological assay that coincidence with the hepatic gene expression. Meanwhile, loss of heterozygosity for beclin1 creates a suitable microenvironment for hepatic tumorigenesis via phosphorylation of Akt kinase, which in turn affects liver autophagy. The reduction in autophagy activity in male beclin1+/- liver leads to a disturbance in the glucose/lipid metabolism and negatively regulates apoptosis accompanied by the induction of cellular proliferation and acute inflammatory response. Our findings highlight an important role of beclin1 in zebrafish liver development and energy metabolism, suggesting the crucial role of autophagy in maintaining homeostasis of the nutrient metabolism in fish species.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Yan He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| | - Jin Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.A.M.); (J.Z.)
| |
Collapse
|
31
|
Han Q, Yang D, Yin C, Zhang J. Androgen Receptor (AR)-TLR4 Crosstalk Mediates Gender Disparities in Hepatocellular Carcinoma Incidence and Progression. J Cancer 2020; 11:1094-1103. [PMID: 31956356 PMCID: PMC6959060 DOI: 10.7150/jca.30682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Androgen receptor (AR) has a role in regulating malignancies and gender disparities in hepatocellular carcinoma (HCC). Recently, TLR4 activation is demonstrated to be required for HCC progression; however, whether and how TLR4 interacts with AR is largely unknown. Methods: The tumorigenesis was detected in female and male mice induced by DEN/CCL4, then TLR4 and AR signals were detected in liver tissues by qPCR and FACS. The proliferation, colony formation and migration of HCC cell treated with TLR4 agonist LPS, or/and androgen DHT were evaluated in vitro. Furthermore, the expression of TLR4 and AR was detected by IHC in tissue microarray of HCC, and correlation of AR and TLR4 was defined. Results: Male mice are more susceptible to develop HCC than female mice. Meanwhile, we found baseline TLR4 levels were higher in male mice than in female mice. AR expression in male mice was increased by treatment with DEN/CCL4. And, AR was constitutively expressed in human HCC cell lines. Dihydrotestosterone (DHT) stimulated TLR4 expression in both HepG2 and HepG2 2.15 cells, which could be blocked by silencing AR. On the other hand, treatment with LPS stimulated AR expression, but it was blocked by treatment with TLR4 antagonist and in cells deficient for TLR4. DHT treatment exacerbated TLR4-induced cellular proliferation, colony formation, migration, and invasion of HepG2 cells. The positive relationship between AR and TLR4 was confirmed in human HCC samples. Conclusions: DHT-AR-TLR4 signaling enhances the development of HCC cells and facilitates their migration and invasion, demonstrating a mechanism underlying gender disparity in HCC.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Dan Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
32
|
Mardian Y, Yano Y, Ratnasari N, Choridah L, Wasityastuti W, Setyawan NH, Hayashi Y. "Sarcopenia and intramuscular fat deposition are associated with poor survival in Indonesian patients with hepatocellular carcinoma: a retrospective study". BMC Gastroenterol 2019; 19:229. [PMID: 31888500 PMCID: PMC6937974 DOI: 10.1186/s12876-019-1152-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A large-scale Japanese study showed that low skeletal muscle index (SMI) and intramuscular fat (IMF) deposition are associated with hepatocellular carcinoma (HCC) survival. Here, we evaluated the effects of SMI and IMF on the survival of Indonesian HCC patients, whose characteristics differ from those of Japanese patients. METHODS SMI and mean muscle attenuation (MA) were evaluated using computed tomography images of the third lumbar vertebra (L3) in a prospective cohort of 100 Indonesian HCC patients. Clinical, laboratory and body composition data were analysed using the Kaplan-Meier method and Cox regression model to investigate which factors are associated with prognosis. RESULTS Of 100 patients, 31 were diagnosed with sarcopenia (L3 SMI value ≤36.2 cm2/m2 for men and ≤ 29.6 cm2/m2 for women), and 65 had IMF deposition (MA value ≤44.4 HU for men and ≤ 39.3 HU for women). These groups had shorter median survival than the reference groups (both P < 0.0001). In multivariable analysis, sarcopenia (hazard ratio [HR], 1.921; P = 0.016), IMF deposition (HR, 3.580; P < 0.001), Barcelona Clinic Liver Cancer (BCLC) stages C and D (HR: 2.396, P < 0.01 and HR: 6.131, P < 0.01, respectively), Japan Integrated Staging (JIS) score 4 (HR: 2.067, P = 0.020), and male gender (HR: 3.211, P < 0.001) were independently associated with mortality. CONCLUSION Sarcopenia and IMF deposition showed superior value in combination with BCLC stage and JIS score for predicting the survival of Indonesian HCC patients. Increased awareness and strategies to prevent or reverse these factors might improve patient outcomes. (Electric word counts: 249).
Collapse
Affiliation(s)
- Yan Mardian
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Disease, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiko Yano
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Disease, Kobe University Graduate School of Medicine, Kobe, Japan.
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Neneng Ratnasari
- Division of Gastroenterohepatology, Department of Internal Medicine, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Lina Choridah
- Department of Radiology, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Widya Wasityastuti
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Disease, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nurhuda Hendra Setyawan
- Department of Radiology, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Yoshitake Hayashi
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Disease, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
33
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
34
|
Chen S, Dang Y, Gong Z, Letcher RJ, Liu C. Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras V12 transgenic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113315. [PMID: 31606661 DOI: 10.1016/j.envpol.2019.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been detected in various environmental media and has been implicated as a weak mutagen or carcinogen, but whether TDCIPP can promote the progression of liver tumor remains unclear. In this study, krasV12 genetically modified zebrafish, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), a model system in which liver tumors can be induced by doxycycline (DOX), was used to evaluate the liver tumor promotion potential of TDCIPP. Briefly, krasV12 transgenic females were exposed to 0.3 mg/L TDCIPP, 20 mg/L DOX or a binary mixture of 0.3 mg/L TDCIPP with 20 mg/L DOX, and liver size, histopathology, and transcriptional profiles of liver were determined. Treatment with TDCIPP resulted in increased liver size and caused more aggressive hepatocellular carcinoma (HCC). Compared with the exposure to DOX, TDCIPP in the presence of DOX up-regulated the expression of genes relevant with salmonella infection and the toll-like receptor signaling pathway. These results implied an occurrence of inflammatory reaction, which was sustained by the increase in the amount of infiltrated neutrophils in the liver of Tg(lyz:DsRed2) transgenic zebrafish larvae whose neutrophils were labelled by red fluorescent protein under the lysozyme C promoter. Furthermore, compared with the binary exposure of DOX and TDCIPP, treatment with a ternary mixture of TDCIPP, DOX and inflammatory response inhibitor (ketoprofen) significantly decrease the liver size and the amounts of neutrophils in the livers of kras and lyz double transgenic zebrafish larvae. Collectively, our results suggested that TDCIPP could promote the liver tumor progression by induction of hepatic inflammatory responses.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Li Y, Agrawal I, Gong Z. Reversion of tumor hepatocytes to normal hepatocytes during liver tumor regression in an oncogene-expressing transgenic zebrafish model. Dis Model Mech 2019; 12:dmm039578. [PMID: 31515263 PMCID: PMC6826027 DOI: 10.1242/dmm.039578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Tumors are frequently dependent on primary oncogenes to maintain their malignant properties (known as 'oncogene addiction'). We have previously established several inducible hepatocellular carcinoma (HCC) models in zebrafish by transgenic expression of an oncogene. These tumor models are strongly oncogene addicted, as the induced and histologically proven liver tumors regress after suppression of oncogene expression by removal of a chemical inducer. However, the question of whether the liver tumor cells are eliminated or revert to normal cells remains unanswered. In the present study, we generated a novel Cre/loxP transgenic zebrafish line, Tg(fabp10: loxP-EGFP-stop-loxP-DsRed; TRE: CreERT2) (abbreviated to CreER), in order to trace tumor cell lineage during tumor regression after crossing with the xmrk (activated EGFR homolog) oncogene transgenic line, Tg(fabp10: rtTA; TRE: xmrk; krt4: EGFP) We found that, during HCC regression, restored normal liver contained both reverted tumor hepatocytes (RFP+) and newly differentiated hepatocytes (GFP+). RNA sequencing (RNA-seq) analyses of the RFP+ and GFP+ hepatocyte populations after tumor regression confirmed the conversion of tumor cells to normal hepatocytes, as most of the genes and pathways that were deregulated in the tumor stages were found to have normal regulation in the tumor-reverted hepatocytes. Thus, our lineage-tracing studies demonstrated the potential for transformed tumor cells to revert to normal cells after suppression of expression of a primary oncogene. This observation may provide a basis for the development of a therapeutic approach targeting addicted oncogenes or oncogenic pathways.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Ira Agrawal
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
36
|
Liver-specific androgen receptor knockout attenuates early liver tumor development in zebrafish. Sci Rep 2019; 9:10645. [PMID: 31337771 PMCID: PMC6650507 DOI: 10.1038/s41598-019-46378-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe cancer types and many genetic and environmental factors contribute to the development of HCC. Androgen receptor (AR) signaling is increasingly recognized as one of the important factors associated with HCC. Previously, we have developed an inducible HCC model in kras transgenic zebrafish. In the present study, to investigate the role of AR in liver tumor development, we specifically knocked out ar gene in the liver of zebrafish via the CRISPR/Cas9 system and the knockout zebrafish was named L-ARKO for liver-specific ar knockout. We observed that liver-specific knockout of ar attenuated liver tumor development in kras transgenic zebrafish at the early stage (one week of tumor induction). However, at the late stage (two weeks of tumor induction), essentially all kras transgenic fish continue to develop HCC irrespective of the absence or presence of ar gene, indicating an overwhelming role of the driver oncogene kras over ar knockout. Consistently, cell proliferation was reduced at the early stage, but not the late stage, of liver tumor induction in the kras/L-ARKO fish, indicating that the attenuant effect of ar knockout was at least in part via cell proliferation. Furthermore, androgen treatment showed acceleration of HCC progression in kras fish but not in kras/L-ARKO fish, further indicating the abolishment of ar signalling. Therefore, we have established a tissue-specific ar knockout zebrafish and it should be a valuable tool to investigate AR signalling in the liver in future.
Collapse
|
37
|
Yang Q, Salim L, Yan C, Gong Z. Rapid Analysis of Effects of Environmental Toxicants on Tumorigenesis and Inflammation Using a Transgenic Zebrafish Model for Liver Cancer. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:396-405. [PMID: 30852708 DOI: 10.1007/s10126-019-09889-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Liver cancer remains to be a major health concern in the world today. Several major risk factors such as hepatitis viral infection and non-alcoholic steatohepatitis have been well established for causing liver cancer, but the contribution of environmental pollutants to liver inflammation and carcinogenesis remains poorly studied. Here, we aimed at the development of a rapid assay to test selected environmental toxicants for their potential roles in induction of inflammation and stimulation of liver tumorigenesis. By using an established kras oncogene transgenic zebrafish model for liver cancer, we tested a total of eight selected chemicals. First, using LPS (lipopolysaccharides) as a positive control, we confirmed its effects on induction of inflammation and stimulation of liver tumorigenesis as indicated by increases of neutrophils and the size of oncogenic livers respectively. Next, we tested two heavy metals (arsenic and chromium) and five organic toxicants (bisphenol A, lindane, N-nitrosodiethylamine, and 3,3',4,4',5-pentachlorobiphenyl [PCB126], and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]). We observed a good correlation on induction of inflammation and their ability for stimulation of liver tumorigenesis. Most toxicants, namely chromium, bisphenol A, lindane, N-nitrosodiethylamine, and PCB126, resulted in increased inflammation and liver tumorigenesis, while arsenic and TCDD had opposite effects. Thus, our study established a screening system to rapidly assess the effects of candidate chemicals on liver tumorigenesis and inflammation.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Lyana Salim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore.
| |
Collapse
|
38
|
Li H, Lu JW, Huo X, Li Y, Li Z, Gong Z. Effects of sex hormones on liver tumor progression and regression in Myc/xmrk double oncogene transgenic zebrafish. Gen Comp Endocrinol 2019; 277:112-121. [PMID: 30926469 DOI: 10.1016/j.ygcen.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) shows clear sex disparity with men being more prone to developing HCC and having higher mortality than women. Previous studies have indicated that sex hormones play important roles in HCC initiation and development, but the effects of sex hormones on HCC in clinical trials remain inconsistent. Using zebrafish liver tumor model co-induced by oncogenes Myc and xmrk, we observed similar sex disparity between male and female zebrafish in liver tumor progression and regression; i.e. male Myc/xmrk transgenic zebrafish developed HCC significantly faster and regressed HCC significantly slower than female Myc/xmrk transgenic zebrtafish. To investigate the effects of sex hormones on liver tumor progression and regression, Myc/xmrk fish were treated with either androgen or estrogen, we observed that androgen promoted HCC progression and retarded HCC regression in females, while estrogen attenuated HCC progression and accelerated HCC regression in males. Furthermore, androgen promoted cell proliferation while estrogen inhibited it. Overall, the present study suggested that sex hormones affected liver tumor progression and regression in the Myc/xmrk transgenic zebrafish.
Collapse
Affiliation(s)
- Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhen Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
40
|
Yang Q, Yan C, Wang X, Gong Z. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis Model Mech 2019; 12:dmm.038240. [PMID: 30718259 PMCID: PMC6398506 DOI: 10.1242/dmm.038240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cachexia affects up to 80% of patients with advanced solid cancer and leads to excessive muscle wasting. Here, using an inducible zebrafish hepatocellular carcinoma (HCC) model driven by oncogenic krasG12V, we observed a progressive muscle-wasting phenotype in adult zebrafish, characterized by significant loss of body weight and muscle fibers. By differential feeding, we observed that overfeeding caused fatty liver, accelerated carcinogenesis and muscle wasting. Interestingly, leptin, an obesity hormone, was upregulated in oncogenic hepatocytes and overfeeding groups. We also found that leptin expression progressively increased during human liver disease progression. By using leptin receptor (lepr)-knockout fish, we found that tumor fish in the lepr mutant background had a higher survival rate and significantly lower muscle-wasting level after tumor induction than the tumor fish in the wild-type background. Chemical inhibitors targeting leptin signaling also alleviated the muscle-wasting phenotype, indicating that leptin signaling may be a new therapeutic target for cancer patients with muscle wasting. Summary: Through a zebrafish model, this study demonstrates that leptin plays an important role in cancer-induced muscle wasting and that the leptin pathway may be a therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| |
Collapse
|
41
|
Huo X, Li H, Li Z, Yan C, Mathavan S, Liu J, Gong Z. Transcriptomic analyses of oncogenic hepatocytes reveal common and different molecular pathways of hepatocarcinogenesis in different developmental stages and genders in kras G12V transgenic zebrafish. Biochem Biophys Res Commun 2019; 510:558-564. [PMID: 30739784 DOI: 10.1016/j.bbrc.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is mainly due to genetic changes in hepatocytes. However, molecular expression in hepatocytes during hepatocarcinogenesis has not been characterized. In this study, using an inducible kras transgenic zebrafish models for HCC, transcriptomic profiles of oncogenic hepatocytes from larvae, male and female adult fish following a brief induction of oncogenic kras were investigated. We found that oncogenic hepatocytes from all the three sources possess most of the cancer hallmarks at molecular level, including Sustaining proliferative signaling, Evading growth suppressors, Resisting cell death, Avoiding immune destruction, Inflammation, Reprogramming of energy metabolism, Angiogenesis, and Activating invasion and metastasis, suggesting the malignant transformation at molecular level could occur at the early stage of hepatocarcinogensis and can be captured in hepatocytes. However, each group of oncogenic hepatocytes also had their own characteristics. Larval oncogenic hepatocytes have cancer stem cell features. Female oncogenic hepatocytes showed resemblance to a mild human HCC subtype while male oncogenic hepatocytes resembled a severe HCC subtype, consistent with the observed sex disparity of HCC in both zebrafish and human. Finally, the two adult groups were more similar to each other than to the larval group, indicating an overwhelming effect of development over the gender.
Collapse
Affiliation(s)
- Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhen Li
- Genome Institute of Singapore, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
42
|
Pioglitazone Reduces Hepatocellular Carcinoma Development in Two Rodent Models of Cirrhosis. J Gastrointest Surg 2019; 23:101-111. [PMID: 30367397 PMCID: PMC6328630 DOI: 10.1007/s11605-018-4004-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the deadliest malignancies worldwide due to the lack of effective treatments. Chemoprevention in high-risk patients is a promising, alternative strategy. In this study, pioglitazone was investigated for its ability to prevent hepatocarcinogenesis in two rodent models of cirrhosis. METHODS In the first model, male Wistar rats were given repeated, low-dose injections of diethylnitrosamine (DEN) to accurately recapitulate the progression of fibrosis to cirrhosis and HCC. In the second model, a single dose of DEN was administered to male C57Bl/6 pups at day fifteen followed by administration of a choline-deficient, L-amino acid defined, high-fat diet (CDAHFD) at week six for 24 weeks. Pioglitazone treatment started at the first signs of fibrosis in both models. RESULTS Pioglitazone effectively reduced fibrosis progression and HCC development in both models. Gross tumor nodules were significantly reduced after pioglitazone treatment (7.4 ± 1.6 vs. 16.6 ± 2.6 in the rat DEN model and 5.86 ± 1.82 vs. 13.2 ± 1.25 in the mouse DEN+CDAHFD model). In both models, pioglitazone reduced the activation of mitogen-activated protein kinase (MAPK) and upregulated the hepato-protective AMP-activated protein kinase (AMPK) pathway via increasing circulating adiponectin production. CONCLUSION Pioglitazone is an effective agent for chemoprevention in rodents and could be repurposed as a multi-targeted drug for delaying liver fibrosis and hepatocarcinogenesis.
Collapse
|
43
|
Shi M, Zhou H, Lei M, Chen L, Zellmer L, He Y, Yang W, Xu N, Liao DJ. Spontaneous Cancers, But Not Many Induced Ones in Animals, Resemble Semi-New Organisms that Possess a Unique Programmed Cell Death Mode Different from Apoptosis, Senescent Death, Necrosis and Stress-Induced Cell Death. J Cancer 2018; 9:4726-4735. [PMID: 30588258 PMCID: PMC6299389 DOI: 10.7150/jca.26502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
There are four basic cell death modes in animals, i.e. physiological senescent death (SD) and apoptosis as well as pathological necrosis and stress-induced cell death (SICD). There have been numerous publications describing “apoptosis” in cancer, mostly focused on killing cancer cells using radio- or chemo-therapy, with few on exploring how cancer cells die naturally without such treatments. Spontaneous benign or malignant neoplasms are immortal and autonomous, but they still retain some allegiance to their parental tissue or organ and thus are still somewhat controlled by the patient's body. Because of these properties of immortality, semi-autonomy, and semi-allegiance to the patient's body, spontaneous tumors have no redundant cells and resemble “semi-new organisms” parasitizing the patients, becoming a unique tissue type possessing a hitherto unannotated cell death mode besides SD, apoptosis, necrosis and SICD. Particularly, apoptosis aims to expunge redundant cells, whereas this new mode does not. In contrast to spontaneous tumors, many histologically malignant tumors induced in experimental animals, before they reach an advanced stage, regress after withdrawal of the inducer. This mortal and non-autonomous nature disqualifies these animal lesions as authentic neoplasms and as semi-new organisms but makes them a good tissue type for apoptosis studies. Ruminating over cell death in spontaneous cancers and many inauthentic tumors induced in animals from these new slants makes us realize that “whether cancer cells undergo apoptosis” is not an easy question with a simple answer. Our answer is that cancer cells have an uncharacterized programmed cell death mode, which is not apoptosis.
Collapse
Affiliation(s)
- Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang 550004, Guizhou Province, China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China at Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China at Guizhou Medical University, Guiyang 550004, Guizhou Province, China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, China
| |
Collapse
|
44
|
Liu S, Chen X, Chen R, Wang J, Zhu G, Jiang J, Wang H, Duan S, Huang J. Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget 2018; 8:36354-36367. [PMID: 28422739 PMCID: PMC5482660 DOI: 10.18632/oncotarget.16754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Wnt signal pathway genes are known to be involved with cancer development. Here we tested the hypothesis whether DNA methylation of genes part of the Wnt signaling pathway could help the diagnosis of non-small cell lung cancer (NSCLC). The methylation levels of SFRP1, SFRP2, WIF1 and PRKCB in 111 NSCLC patients were evaluated by quantitative methylation-specific PCR (qMSP). Promoter methylation levels of four candidate genes were significantly higher in tumor tissues compared with the adjacent tissues. SFRP1, SFRP2 and PRKCB genes were all shown to be good predictors of NSCLC risk (SFRP1: AUC = 0.711; SFRP2: AUC = 0.631; PRKCB: AUC = 0.650). The combined analysis showed that the methylation status of the four genes had a sensitivity of 70.3% and a specificity of 73.9% in the prediction of NSCLC risk for study cohort. A higher diagnostic value with an AUC of 0.945 (95% CI: 0.923–0.967, sensitivity: 90.6%, specificity: 93.0%) was found in TCGA cohort. In addition, SFRP1 and SFRP2 hypermethylation events were specific to male patients. Further TCGA data mining analysis suggested that SFRP1_cg15839448, SFRP2_cg05774801, and WIF1_cg21383810 were inversely associated with the host gene expression. Moreover, GEO database analysis showed that 5′-Aza-deoxycytidine was able to upregulate gene expression in several lung cancer cell lines. Subsequent dual-luciferase reporter assay showed a crucial regulatory function of PRKCB promoter. In summary, our study showed that a panel of Wnt signal pathway genes (SFRP1, SFRP2, WIF1 and PRKCB) had the potential as methylation biomarkers in the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Shunlin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ruhua Chen
- Department of Respiratory Medicine, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, China
| | - Guoliang Zhu
- Department of Pathology, Huzhou First People's Hospital, Huzhou, Zhejiang 313000, China
| | - Jianzhong Jiang
- Department of Geriatrics, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Hongwei Wang
- Realgen Biotechnology Co., Ltd. Zhangjiang High Technology Park, Shanghai 201203, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
45
|
He Y, Yuan C, Chen L, Liu Y, Zhou H, Xu N, Liao DJ. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action. Int J Med Sci 2018; 15:309-322. [PMID: 29511367 PMCID: PMC5835702 DOI: 10.7150/ijms.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Biomedical research has advanced swiftly in recent decades, largely due to progress in biotechnology. However, this rapid spread of new, and not always-fully understood, technology has also created a lot of false or irreproducible data and artifacts, which sometimes have led to erroneous conclusions. When describing various scientific issues, scientists have developed a habit of saying "on one hand… but on the other hand…", because discrepant data and conclusions have become omnipresent. One reason for this problematic situation is that we are not always thoughtful enough in study design, and sometimes lack enough philosophical contemplation. Another major reason is that we are too rushed in introducing new technology into our research without assimilating technical details. In this essay, we provide examples in different research realms to justify our points. To help readers test their own weaknesses, we raise questions on technical details of RNA reverse transcription, polymerase chain reactions, western blotting and immunohistochemical staining, as these methods are basic and are the base for other modern biotechnologies. Hopefully, after contemplation and reflection on these questions, readers will agree that we indeed know too little about these basic techniques, especially about the artifacts they may create, and thus many conclusions drawn from the studies using those ever-more-sophisticated techniques may be even more problematic.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City, Hubei 443002, P.R. China
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yanjie Liu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
46
|
An J, Zhang Z, Liu Z, Wang R, Hui D, Jin Y. Overexpression of Cullin7 is associated with hepatocellular carcinoma progression and pathogenesis. BMC Cancer 2017; 17:828. [PMID: 29207970 PMCID: PMC5718086 DOI: 10.1186/s12885-017-3839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Background Overexpression of Cullin7 is associated with some types of malignancies. However, the part of Cullin7 in hepatocellular carcinoma remains unclear. The aim of this study was to investigate the role of Cullin7 in pathogenesis and the progression of hepatocellular carcinoma. Methods In the present study, the expression of Cullin7 in hepatocellular carcinoma cell lines and five surgical hepatocellular carcinoma specimens was detected with quantitative reverse transcription PCR and western blotting. In addition, the protein expression of Cullin7 was examined in 162 cases of archived hepatocellular carcinoma using immunohistochemistry. Results We found elevated expression of both mRNA and protein levels of Cullin7 in hepatocellular carcinoma cell lines, and Cullin7 protein was significantly upregulated in hepatocellular carcinoma compared with paired normal hepatic tissues. The immunohistochemistry analysis revealed that overexpression of Cullin7 occurred in 69.1% of hepatocellular carcinoma samples, which was a significantly higher rate than that in adjacent normal hepatic tissue (P < 0.01). Statistical analysis found that overexpression of Cullin7 was significantly associated with lymph node metastasis, tumor thrombus of the portal vein and advanced clinical stage (P < 0.05). Furthermore, by overexpressing Cullin7 in hepatocellular carcinoma HepG2 cells, we revealed that Cullin7 could significantly enhance cell proliferation, growth, migration and invasion. Conversely, knocking down Cullin7 expression with short hairpin RNAi in hepatocellular carcinoma HepG2 cells inhibited cell proliferation, growth, migration and invasion. Conclusion Our studies provide evidence that overexpression of Cullin7 plays an important role in the pathogenesis and progression of hepatocellular carcinoma and may be a valuable marker for hepatocellular carcinoma management.
Collapse
Affiliation(s)
- Jun An
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhigang Zhang
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhiyong Liu
- Department of Emergency Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayang Hui
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Yi Jin
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
47
|
Activation of liver stromal cells is associated with male-biased liver tumor initiation in xmrk and Myc transgenic zebrafish. Sci Rep 2017; 7:10315. [PMID: 28871112 PMCID: PMC5583234 DOI: 10.1038/s41598-017-10529-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is more prevalent in men than in women. Previously we have found that some stromal cells, including hepatic stellate cells (HSCs), neutrophils and macrophages, play crucial roles in promoting sex disparity in krasV12-induced zebrafish HCC. The activation of HSCs is mediated by serotonin while activation of neutrophils and macrophages is mediated by cortisol. To ensure that these findings are also applicable to other oncogene induced tumors, stromal cell activation was compared between male and female fish during liver tumorigenesis initiated by xmrk or Myc oncogene. Consistently, we observed male-biased liver tumorigenesis in the xmrk and Myc models. In both models, there was a higher rate of HSC activation accompanied with a higher level of serotonin in male liver tumors. For tumor-infiltrated neutrophils and macrophages, significantly higher densities in male liver tumors were observed in both xmrk and Myc models. However, the male-biased increase of cortisol was observed only in xmrk- but not apparently in Myc expressing liver tumors. Overall, these observations are consistent with the observations in the kras liver tumor model, indicating that the serotonin- and cortisol-mediated pathways also play roles in sex disparity of liver tumors caused by other molecular pathways.
Collapse
|