1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Munavar-K F, Lenka N. Deubiquitinating enzymes at the crossroads of blood-brain barrier integrity and neurodegeneration: mechanistic insights, therapeutic targeting and future directions. Tissue Barriers 2025:2504738. [PMID: 40358463 DOI: 10.1080/21688370.2025.2504738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) carries immense significance concerning cellular homeostasis that encompasses both ubiquitination and deubiquitination as key facets for maintaining protein stability. The deubiquitinating enzymes (DUBs) have emerged as critical regulators of proteostasis, neuroinflammation and blood-brain barrier (BBB) integrity by controlling the fate of crucial proteins associated with barrier architectures in CNS and neurodegenerative disorders (NDs) alike. However, a concrete understanding of their specific neurodevelopmental and neuroprotective functions is yet to be discerned. This article discusses the multifaceted roles of DUBs in the maintenance of BBB integrity, neuroprotection and various NDs and also underscores the therapeutic prospects targeting the same. While DUBs like USP7, USP9X, USP27X, UCHL1, etc. participate in neural stem cell maintenance and neurogenesis, including BBB function, USP13, USP14, USP25, BRCC3 and CYLD, among others, are associated with BBB dysfunction and NDs. The mechanistic underpinning concerning their hitherto unexplored mode of action, DUB-substrate interactions and specificity would facilitate developing the therapeutic agonists and small-molecule inhibitors to prevent or reverse neuroinflammation, BBB impairment and developmental disorders. Recent innovations concerning DUB-targeting chimaeras (DUBTACs) and proteolysis-targeting chimaeras (PROTACs) can be explored further for their plausible administration via nanoparticle-based delivery approaches to alleviate the progressive neurodegeneration.
Collapse
Affiliation(s)
- Fahima Munavar-K
- BRIC-National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Nibedita Lenka
- BRIC-National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| |
Collapse
|
3
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Smith FM, Kosman DJ. Brain microvascular endothelial cells differentiated from a Friedreich's Ataxia patient iPSC are deficient in tight junction protein expression and paracellularly permeable. Front Mol Neurosci 2025; 18:1511388. [PMID: 40303283 PMCID: PMC12037585 DOI: 10.3389/fnmol.2025.1511388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Friedreich's Ataxia (FA) is a rare, inherited ataxia resulting from GAA triplet expansions in the first intron of the Frataxin (FXN) gene, which encodes a mitochondrial protein involved in the incorporation of iron into iron-sulfur clusters. We previously identified decreased levels of F-actin and tight junction (TJ) proteins, which coincided with paracellular permeability in an FXN shRNA-mediated knockdown immortalized human brain microvascular endothelial cell (BMVEC) model. This premise is underexplored in the FA literature, prompting us to confirm these findings using a patient-derived iPSC model. One line each of FA patient iPSCs and age- and sex-matched apparently healthy iPSCs were differentiated into BMVEC-like cells. We quantified actin glutathionylation, F-actin abundance, TJ expression and organization, and barrier integrity. In the absence of dysregulated F-actin organization, FA iBMVEC exhibited a loss of 50% ZO-1, 63% Occludin, and 19% Claudin-5 protein expression, along with a disruption in the bi-cellular organization of the latter two proteins. Functionally, this correlated with barrier hyperpermeability, delayed barrier maturation, and increased flux of the fluorescent tracer Lucifer Yellow. These data indicate that decreased barrier integrity is a pathophysiological phenotype of FA brain microvascular endothelial cells. Clinically, this may represent a targetable pathway to reduce brain iron accumulation, neuroinflammation, and neurodegeneration profiles in FA. Additionally, an investigation into other barrier systems, such as the blood-nerve barrier, blood-CSF barrier, or cardiac vasculature, may provide insights into the extra-neural symptoms experienced by FA patients.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
6
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
7
|
Hu N, Chen Z, Zhao X, Peng X, Wu Y, Yang K, Sun T. Endothelial Dysfunction in Huntington's Disease: Pathophysiology and Therapeutic Implications. Int J Mol Sci 2025; 26:1432. [PMID: 40003898 PMCID: PMC11855594 DOI: 10.3390/ijms26041432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. While traditionally viewed through the lens of neuronal dysfunction, emerging evidence highlights the critical role of endothelial dysfunction in HD pathogenesis. This review provides a comprehensive overview of endothelial dysfunction in HD, drawing on findings from both animal models and human studies. Key features of endothelial dysfunction in HD include impaired angiogenesis, altered cerebral blood flow, compromised neurovascular coupling and cerebrovascular reactivity, and increased blood-brain barrier permeability. Genetic factors such as the mutant huntingtin protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Brain-derived neurotrophic factor (BDNF), and the adenosine A2A receptor (ADORA2A) interact to influence endothelial function in complex ways. Various therapeutic approaches targeting endothelial dysfunction, including antioxidants, nitric oxide enhancers, calcium channel blockers, statins, and metformin, have shown promise in preclinical HD models but face translational challenges, particularly regarding optimal timing of intervention and patient stratification. The implications of these findings suggest that reconceptualizing HD as a neurovascular disorder, rather than purely neuronal, could lead to more effective treatment strategies. Future research priorities should include: (1) developing validated vascular biomarkers for disease progression, (2) advancing neuroimaging techniques to monitor endothelial dysfunction in real-time. These directions will be crucial for bridging the current gap between preclinical promise and clinical success in vascular-targeted HD therapeutics.
Collapse
Affiliation(s)
- Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Zihao Chen
- Institute of WUT-AMU, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Xin Peng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Yimeng Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
| | - Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (N.H.); (X.Z.); (X.P.); (Y.W.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
8
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
9
|
McGarry A, Moaddel R. A Pilot Proteomic Analysis of Huntington's Disease by Functional Capacity. Brain Sci 2025; 15:76. [PMID: 39851443 PMCID: PMC11764106 DOI: 10.3390/brainsci15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Background: The molecular biology of Huntington's Disease (HD) has grown substantially, with pathological considerations extending to genetic modifiers, epigenetic changes, transcriptomics, the proteome, and the metabolome. The metabolome and proteome are especially intriguing in that they most directly reflect the functional state of the cellular environment, which may involve some combination of pathology as well as compensation. Methods: We assessed CSF proteomics from eight participants by their functional severity (TFC range 3-13), with 47 proteins having a minimum r-value of 0.7 and nominal p-values < 0.05. Results: Our exploratory data reveal correlations between progression and several processes including inflammation, ECM homeostasis and NAD+ metabolism. Conclusions: Consistently identified targets that correlate with phenotype or progression may have value, if validated, as enrichment tools in clinical trials and potentially as markers of therapeutic response.
Collapse
Affiliation(s)
- Andrew McGarry
- Cooper University Healthcare at Rowan University, Camden, NJ 08103, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Nguyen CD, Yoo J, Jeong SJ, Ha HA, Yang JH, Lee G, Shin JC, Kim JH. Melittin - the main component of bee venom: a promising therapeutic agent for neuroprotection through keap1/Nrf2/HO-1 pathway activation. Chin Med 2024; 19:166. [PMID: 39605070 PMCID: PMC11603938 DOI: 10.1186/s13020-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
The Nuclear factor erythroid 2-related factor (Nrf2)/ Heme oxygenase-1 (HO-1) pathway, known for its significant role in regulating innate antioxidant defense mechanisms, is increasingly being recognized for its potential in neuroprotection studies. Derived from bee venom, melittin's neuroprotective effects have raised interest. This study confirmed that melittin specificity upregulated the weakened Nrf2/HO-1 signaling in mice brain. Interestingly, we also revealed melittin's efficient tactic, as it was suggested to first restore redox balance and then gradually stabilized other regulations of the mouse hippocampus. Using a neuro-stress-induced scopolamine model, chromatography and mass spectrometry analysis revealed that melittin crossed the compromised blood-brain barrier and accumulated in the hippocampus, which provided the chance to interact directly to weakened neurons. A wide range of improvements of melittin action were observed from various tests from behavior Morris water maze, Y maze test to immune florescent staining, western blots. As we need to find out what is the focus of melittin action, we conducted a careful observation in mice which showed that: the first signs of changes, in the hippocampus, within 5 h after melittin administration were the restoration of the Nrf2/HO-1 system and suppression of oxidative stress. After this event, from 7 to 12.5 h after administration, a diversity of conditions was all ameliorated: inflammation, apoptosis, neurotrophic factors, cholinergic function, and tissue ATP level. This chain reaction underscores that melittin focus was on redox balance's role, which revived multiple neuronal functions. Evidence of enhancement in the mouse hippocampus led to further exploration with hippocampal cell line HT22 model. Immunofluorescence analysis showed melittin-induced Nrf2 translocation to the nucleus, which would initiating the translation of antioxidant genes like HO-1. Pathway inhibitors pinpointed melittin's direct influence on the Nrf2/HO-1 pathway. 3D docking models and pull-down assays suggested melittin's direct interaction with Keap1, the regulator of the Nrf2/HO-1 pathway. Overall, this study not only highlighted melittin specifically effect on Nrf2/HO-1, thus rebalancing cellular redox, and also showed that this is an effective multi-faceted therapeutic strategy against neurodegeneration.
Collapse
Affiliation(s)
- Cong Duc Nguyen
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Jaehee Yoo
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Sang Jun Jeong
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hai-Anh Ha
- Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Jeong Cheol Shin
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea.
- Department of Acupuncture and Moxibustion Medicine, Dongshin University Gwangju Korean Medicine Hospital, 141, Wolsan-ro, Nam-gu, Gwangju City 61619, Republic of Korea , 141 Wolsan-Ro Nam-Gu, Gwangju, 61619, Republic of Korea.
| | - Jae-Hong Kim
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea.
- Department of Acupuncture and Moxibustion Medicine, Dongshin University Gwangju Korean Medicine Hospital, 141, Wolsan-ro, Nam-gu, Gwangju City 61619, Republic of Korea , 141 Wolsan-Ro Nam-Gu, Gwangju, 61619, Republic of Korea.
| |
Collapse
|
11
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Hossen F, Geng X, Sun GY, Yao X, Lee JC. Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway. Mol Neurobiol 2024; 61:8759-8776. [PMID: 38561558 PMCID: PMC11445398 DOI: 10.1007/s12035-024-04138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-β (oAβ) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAβ, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAβ and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAβ or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1β, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAβ and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAβ, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xue Geng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
13
|
Osaki T, Wan Z, Haratani K, Jin Y, Campisi M, Barbie DA, Kamm R, Sur M. miR126-mediated impaired vascular integrity in Rett syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617929. [PMID: 39415995 PMCID: PMC11482880 DOI: 10.1101/2024.10.11.617929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by mutations in melty-CpG binding protein 2 (MeCP2). MeCP2 is a non-cell type-specific DNA binding protein, and its mutation influences not only neural cells but also non-neural cells in the brain, including vasculature associated with endothelial cells. Vascular integrity is crucial for maintaining brain homeostasis, and its alteration may be linked to the pathology of neurodegenerative disease, but a non-neurogenic effect, especially the relationship between vascular alternation and Rett syndrome pathogenesis, has not been shown. Here, we recapitulate a microvascular network using Rett syndrome patient-derived induced pluripotent stem (iPS) cells that carry MeCP2[R306C] mutation to investigate early developmental vascular impact. To expedite endothelial cell differentiation, doxycycline (DOX)-inducible ETV2 expression vectors were inserted into the AAVS1 locus of Rett syndrome patient-derived iPS cells and its isogenic control by CRISPR/Cas9. With these endothelial cells, we established a disease microvascular network (Rett-dMVNs) and observed higher permeability in the Rett-dMVNs compared to isogenic controls, indicating altered barrier function by MeCP2 mutation. Furthermore, we unveiled that hyperpermeability is involved in the upregulation of miR126-3p in Rett syndrome patient-derived endothelial cells by microRNA profiling and RNAseq, and rescue of miR126-3p level can recover their phenotype. We discover miR126-3p-mediated vascular impairment in Rett syndrome patients and suggest the potential application of these findings for translational medicine.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhengpeng Wan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ylliah Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Roger Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Mriganka Sur
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
15
|
Greene C, Rebergue N, Fewell G, Janigro D, Godfrin Y, Campbell M, Lemarchant S. NX210c drug candidate peptide strengthens mouse and human blood-brain barriers. Fluids Barriers CNS 2024; 21:76. [PMID: 39334382 PMCID: PMC11438064 DOI: 10.1186/s12987-024-00577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alterations of blood-brain barrier (BBB) and blood-spinal cord barrier have been documented in various animal models of neurodegenerative diseases and in patients. Correlations of these alterations with functional deficits suggest that repairing barriers integrity may represent a disease-modifying approach to prevent neuroinflammation and neurodegeneration induced by the extravasation of blood components into the parenchyma. Here, we screened the effect of a subcommissural organ-spondin-derived peptide (NX210c), known to promote functional recovery in several models of neurological disorders, on BBB integrity in vitro and in vivo. METHODS In vitro, bEnd.3 endothelial cell (EC) monolayers and two different primary human BBB models containing EC, astrocytes and pericytes, in static and microfluidic conditions, were treated with NX210c (1-100 µM), or its vehicle, for 4 h and up to 5 days. Tight junction (TJ) protein levels, permeability to dextrans and transendothelial electrical resistance (TEER) were evaluated. In vivo, young and old mice (3- and 21-month-old, respectively) were treated daily intraperitoneally with NX210c at 10 mg/kg or its vehicle for 5 days and their brains collected at day 6 to measure TJ protein levels by immunohistochemistry. RESULTS NX210c induced an increase in claudin-5 protein expression after 24-h and 72-h treatments in mouse EC. Occludin level was also increased after a 24-h treatment. Accordingly, NX210c decreased by half the permeability of EC to a 40-kDa FITC-dextran and increased TEER. In the human static BBB model, NX210c increased by ∼ 25% the TEER from 3 to 5 days. NX210c also increased TEER in the human 3D dynamic BBB model after 4 h, which was associated with a reduced permeability to a 4-kDa FITC-dextran. In line with in vitro results, after only 5 days of daily treatments in mice, NX210c restored aging-induced reduction of claudin-5 and occludin levels in the hippocampus, and also in the cortex for occludin. CONCLUSIONS In summary, we have gathered preclinical data showing the capacity of NX210c to strengthen BBB integrity. Through this property, NX210c holds great promises of being a disease-modifying treatment for several neurological disorders with high unmet medical needs.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | | | | | | | - Yann Godfrin
- Axoltis Pharma, 60 avenue Rockefeller, Lyon, 69008, France
- Godfrin Life-Sciences, Caluire-et-Cuire, 69300, France
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | | |
Collapse
|
16
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
17
|
Solana-Balaguer J, Garcia-Segura P, Campoy-Campos G, Chicote-González A, Fernández-Irigoyen J, Santamaría E, Pérez-Navarro E, Masana M, Alberch J, Malagelada C. Motor skill learning modulates striatal extracellular vesicles' content in a mouse model of Huntington's disease. Cell Commun Signal 2024; 22:321. [PMID: 38863004 PMCID: PMC11167907 DOI: 10.1186/s12964-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.
Collapse
Affiliation(s)
- Júlia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Departamento de Salud, UPNA, Navarrabiomed, Pamplona, IdiSNA, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
18
|
Avila A, Zhang SL. A circadian clock regulates the blood-brain barrier across phylogeny. VITAMINS AND HORMONES 2024; 126:241-287. [PMID: 39029975 DOI: 10.1016/bs.vh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
As the central regulatory system of an organism, the brain is responsible for overseeing a wide variety of physiological processes essential for an organism's survival. To maintain the environment necessary for neurons to function, the brain requires highly selective uptake and elimination of specific molecules through the blood-brain barrier (BBB). As an organism's activities vary throughout the day, how does the BBB adapt to meet the changing needs of the brain? A mechanism is through temporal regulation of BBB permeability via its circadian clock, which will be the focal point of this chapter. To comprehend the circadian clock's role within the BBB, we will first examine the anatomy of the BBB and the transport mechanisms enabling it to fulfill its role as a restrictive barrier. Next, we will define the circadian clock, and the discussion will encompass an introduction to circadian rhythms, the Transcription-Translation Feedback Loop (TTFL) as the mechanistic basis of circadian timekeeping, and the organization of tissue clocks found in organisms. Then, we will cover the role of the circadian rhythms in regulating the cellular mechanisms and functions of the BBB. We discuss the implications of this regulation in influencing sleep behavior, the progression of neurodegenerative diseases, and finally drug delivery for treatment of neurological diseases.
Collapse
Affiliation(s)
- Ashley Avila
- Cell Biology Department, Emory University, Atlanta, GA, United States
| | - Shirley L Zhang
- Cell Biology Department, Emory University, Atlanta, GA, United States.
| |
Collapse
|
19
|
Reynaud-Dulaurier R, Clément R, Yjjou S, Cresson C, Saoudi Y, Faideau M, Decressac M. The Blood-Brain Barrier Is Unaffected in the Ndufs4-/- Mouse Model of Leigh Syndrome. Int J Mol Sci 2024; 25:4828. [PMID: 38732047 PMCID: PMC11084937 DOI: 10.3390/ijms25094828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Decressac
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Université Grenoble Alpes, 38000 Grenoble, France; (R.R.-D.); (R.C.); (S.Y.); (C.C.); (Y.S.); (M.F.)
| |
Collapse
|
20
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
21
|
Villavicencio-Tejo F, Olesen MA, Navarro L, Calisto N, Iribarren C, García K, Corsini G, Quintanilla RA. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 2023; 42:4. [PMID: 38103074 DOI: 10.1007/s12640-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
Collapse
Affiliation(s)
- Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Laura Navarro
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nancy Calisto
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Iribarren
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile.
| |
Collapse
|
22
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
23
|
Aly AEE, Caron NS, Black HF, Schmidt ME, Anderson C, Ko S, Baddeley HJE, Anderson L, Casal LL, Rahavi RSM, Martin DDO, Hayden MR. Delivery of mutant huntingtin-lowering antisense oligonucleotides to the brain by intranasally administered apolipoprotein A-I nanodisks. J Control Release 2023; 360:913-927. [PMID: 37468110 DOI: 10.1016/j.jconrel.2023.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.
Collapse
Affiliation(s)
- Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Helen J E Baddeley
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Reza S M Rahavi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's a Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
24
|
Crouch EE, Joseph T, Marsan E, Huang EJ. Disentangling brain vasculature in neurogenesis and neurodegeneration using single-cell transcriptomics. Trends Neurosci 2023; 46:551-565. [PMID: 37210315 PMCID: PMC10560453 DOI: 10.1016/j.tins.2023.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In the adult brain, neurovascular interactions continue to play essential roles in maintaining brain function and homeostasis. This review focuses on recent advances that leverage single-cell transcriptomics of vascular cells to uncover their subtypes, their organization and zonation in the embryonic and adult brain, and how dysfunction in neurovascular and gliovascular interactions contributes to the pathogenesis of neurodegenerative diseases. Finally, we highlight key challenges for future research in neurovascular biology.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elise Marsan
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Pathology Service (113B), San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA.
| |
Collapse
|
25
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jung-Kai Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Sun
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Lin Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
26
|
Pepe G, Fioriniello S, Marracino F, Capocci L, Maglione V, D'Esposito M, Di Pardo A, Della Ragione F. Blood–Brain Barrier Integrity Is Perturbed in a Mecp2-Null Mouse Model of Rett Syndrome. Biomolecules 2023; 13:biom13040606. [PMID: 37189354 DOI: 10.3390/biom13040606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked MECP2 gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated. Impaired vascular function has been previously reported in RTT mouse models; however, whether an altered brain vascular homeostasis and the subsequent blood–brain barrier (BBB) breakdown occur in RTT and contribute to the disease-related cognitive impairment is still unknown. Interestingly, in symptomatic Mecp2-null (Mecp2-/y, Mecp2tm1.1Bird) mice, we found enhanced BBB permeability associated with an aberrant expression of the tight junction proteins Ocln and Cldn-5 in different brain areas, in terms of both transcript and protein levels. Additionally, Mecp2-null mice showed an altered expression of different genes encoding factors with a role in the BBB structure and function, such as Cldn3, Cldn12, Mpdz, Jam2, and Aqp4. With this study, we provide the first evidence of impaired BBB integrity in RTT and highlight a potential new molecular hallmark of the disease that might open new perspectives for the setting-up of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | | | | | - Maurizio D'Esposito
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | - Floriana Della Ragione
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| |
Collapse
|
27
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
28
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Al-Ahmad AJ. Human-Induced Pluripotent Stem Cell-Based Model of the Blood-Brain at 10 Years: A Retrospective on Past and Current Disease Models. Handb Exp Pharmacol 2023; 281:141-156. [PMID: 36943490 DOI: 10.1007/164_2023_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The initial discovery and derivation of induced pluripotent stem cells (iPSCs) by Yamanaka and colleagues in 2006 revolutionized the field of personalized medicine, as it opened the possibility to model diseases using patient-derived stem cells. A decade of adoption of iPSCs within the community of the blood-brain barrier (BBB) significantly opened the door for modeling diseases at the BBB, a task until then considered challenging, if not impossible.In this book chapter, we provided an extensive review of the literature on the use of iPSC-based models of the human BBB to model neurological diseases including infectious diseases (COVID-19, Streptococcus, Neisseria) neurodevelopmental diseases (adrenoleukodystrophy, Allan-Herndon-Dudley Syndrome, Batten's disease, GLUT1 deficiency syndrome), and neurodegenerative diseases (Alzheimer's disease, the current findings and observations, but also the challenges and limitations inherent to the use of iPSC-based models in reproducing the human BBB during health and diseases in a Petri dish.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
30
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
31
|
Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. LAB ON A CHIP 2022; 22:3579-3602. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) represents a key challenge in developing brain-penetrating therapeutic molecules. BBB dysfunction is also associated with the onset and progression of various brain diseases. The BBB-on-a-chip (μBBB), an organ-on-chip technology, has emerged as a powerful in vitro platform that closely mimics the human BBB microenvironments. While the μBBB technology has seen wide application in the study of brain cancer, its utility in other brain disease models ("μBBB+") is less appreciated. Based on the advances of the μBBB technology and the evolution of in vitro models for brain diseases over the last decade, we propose the concept of a "μBBB+" system and summarize its major promising applications in pathological studies, personalized medical research, drug development, and multi-organ-on-chip approaches. We believe that such a sophisticated "μBBB+" system is a highly tunable and promising in vitro platform for further advancement of the understanding of brain diseases.
Collapse
Affiliation(s)
- Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Shiping Hao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Nicolas H Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
32
|
Linville RM, Nerenberg RF, Grifno G, Arevalo D, Guo Z, Searson PC. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington's disease. Fluids Barriers CNS 2022; 19:54. [PMID: 35773691 PMCID: PMC9245306 DOI: 10.1186/s12987-022-00347-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene, which leads to neuronal loss and decline in cognitive and motor function. Increasing evidence suggests that blood-brain barrier (BBB) dysfunction may contribute to progression of the disease. Studies in animal models, in vitro models, and post-mortem tissue find that disease progression is associated with increased microvascular density, altered cerebral blood flow, and loss of paracellular and transcellular barrier function. Here, we report on changes in BBB phenotype due to expansion of CAG repeats using an isogenic pair of induced pluripotent stem cells (iPSCs) differentiated into brain microvascular endothelial-like cells (iBMECs). We show that CAG expansion associated with juvenile HD alters the trajectory of iBMEC differentiation, producing cells with ~ two-fold lower percentage of adherent endothelial cells. CAG expansion is associated with diminished transendothelial electrical resistance and reduced tight junction protein expression, but no significant changes in paracellular permeability. While mutant huntingtin protein (mHTT) aggregates were not observed in HD iBMECs, widespread transcriptional dysregulation was observed in iBMECs compared to iPSCs. In addition, CAG expansion in iBMECs results in distinct responses to pathological and therapeutic perturbations including angiogenic factors, oxidative stress, and osmotic stress. In a tissue-engineered BBB model, iBMECs show subtle changes in phenotype, including differences in cell turnover and immune cell adhesion. Our results further support that CAG expansion in BMECs contributes to BBB dysfunction during HD.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renée F Nerenberg
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Diego Arevalo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Pfalzer AC, Yan Y, Kang H, Totten M, Silverman J, Bowman AB, Erikson K, Claassen DO. Alterations in metal homeostasis occur prior to canonical markers in Huntington disease. Sci Rep 2022; 12:10373. [PMID: 35725749 PMCID: PMC9209499 DOI: 10.1038/s41598-022-14169-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
The importance of metal biology in neurodegenerative diseases such as Huntingtin Disease is well documented with evidence of direct interactions between metals such as copper, zinc, iron and manganese and mutant Huntingtin pathobiology. To date, it is unclear whether these interactions are observed in humans, how this impacts other metals, and how mutant Huntington alters homeostatic mechanisms governing levels of copper, zinc, iron and manganese in cerebrospinal fluid and blood in HD patients. Plasma and cerebrospinal fluid from control, pre-manifest, manifest and late manifest HD participants were collected as part of HD-Clarity. Levels of cerebrospinal fluid and plasma copper, zinc, iron and manganese were measured as well as levels of mutant Huntingtin and neurofilament in a sub-set of cerebrospinal fluid samples. We find that elevations in cerebrospinal fluid copper, manganese and zinc levels are altered early in disease prior to alterations in canonical biomarkers of HD although these changes are not present in plasma. We also evidence that CSF iron is elevated in manifest patients. The relationships between plasma and cerebrospinal fluid metal are altered based on disease stage. These findings demonstrate that there are alterations in metal biology selectively in the CSF which occur prior to changes in known canonical biomarkers of disease. Our work indicates that there are pathological changes related to alterations in metal biology in individuals without elevations in neurofilament and mutant Huntingtin.
Collapse
Affiliation(s)
- Anna C. Pfalzer
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Yan Yan
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Hakmook Kang
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Melissa Totten
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - James Silverman
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Aaron B. Bowman
- grid.169077.e0000 0004 1937 2197School of Health Sciences, Purdue University, West Lafayette, IN USA
| | - Keith Erikson
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - Daniel O. Claassen
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| |
Collapse
|
34
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
35
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
36
|
Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14050987. [PMID: 35631573 PMCID: PMC9145636 DOI: 10.3390/pharmaceutics14050987] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) has shown to be a significant obstacle to brain medication delivery. The BBB in a healthy brain is a diffusion barrier that prevents most substances from passing from the blood to the brain; only tiny molecules can pass across the BBB. The BBB is disturbed in specific pathological illnesses such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The goal of this study is to offer a general overview of current brain medication delivery techniques and associated topics from the last five years. It is anticipated that this review will stimulate readers to look into new ways to deliver medications to the brain. Following an introduction of the construction and function of the BBB in both healthy and pathological conditions, this review revisits certain contested questions, such as whether nanoparticles may cross the BBB on their own and if medications are selectively delivered to the brain by deliberately targeted nanoparticles. Current non-nanoparticle options are also discussed, including drug delivery via the permeable BBB under pathological circumstances and the use of non-invasive approaches to improve brain medication absorption.
Collapse
|
37
|
Kong G, Lê Cao KA, Hannan AJ. Alterations in the Gut Fungal Community in a Mouse Model of Huntington's Disease. Microbiol Spectr 2022; 10:e0219221. [PMID: 35262396 PMCID: PMC9045163 DOI: 10.1128/spectrum.02192-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide expansion in the HTT gene, which is expressed throughout the brain and body, including the gut epithelium and enteric nervous system. Afflicted individuals suffer from progressive impairments in motor, psychiatric, and cognitive faculties, as well as peripheral deficits, including the alteration of the gut microbiome. However, studies characterizing the gut microbiome in HD have focused entirely on the bacterial component, while the fungal community (mycobiome) has been overlooked. The gut mycobiome has gained recognition for its role in host homeostasis and maintenance of the gut epithelial barrier. We aimed to characterize the gut mycobiome profile in HD using fecal samples collected from the R6/1 transgenic mouse model (and wild-type littermate controls) from 4 to 12 weeks of age, corresponding to presymptomatic through to early disease stages. Shotgun sequencing was performed on fecal DNA samples, followed by metagenomic analyses. The HD gut mycobiome beta diversity was significantly different from that of wild-type littermates at 12 weeks of age, while no genotype differences were observed at the earlier time points. Similarly, greater alpha diversity was observed in the HD mice by 12 weeks of age. Key taxa, including Malassezia restricta, Yarrowia lipolytica, and Aspergillus species, were identified as having a negative association with HD. Furthermore, integration of the bacterial and fungal data sets at 12 weeks of age identified negative correlations between the HD-associated fungal species and Lactobacillus reuteri. These findings provide new insights into gut microbiome alterations in HD and may help identify novel therapeutic targets. IMPORTANCE Huntington's disease (HD) is a fatal neurodegenerative disorder affecting both the mind and body. We have recently discovered that gut bacteria are disrupted in HD. The present study provides the first evidence of an altered gut fungal community (mycobiome) in HD. The genomes of many thousands of gut microbes were sequenced and used to assess "metagenomics" in particular the different types of fungal species in the HD versus control gut, in a mouse model. At an early disease stage, before the onset of symptoms, the overall gut mycobiome structure (array of fungi) in HD mice was distinct from that of their wild-type littermates. Alterations of multiple key fungi species were identified as being associated with the onset of disease symptoms, some of which showed strong correlations with the gut bacterial community. This study highlights the potential role of gut fungi in HD and may facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J Control Release 2022; 343:777-797. [DOI: 10.1016/j.jconrel.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
39
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
40
|
Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sci 2021; 11:brainsci11101267. [PMID: 34679332 PMCID: PMC8533690 DOI: 10.3390/brainsci11101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare hereditary neurodegenerative disorder characterized by multiple metabolic dysfunctions including defects in mitochondrial homeostasis and functions. Although we have recently reported age-related changes in the respiratory capacities in different brain areas in HD mice, the precise mechanisms of how mitochondria become compromised in HD are still poorly understood. In this study, we investigated mRNA and protein levels of selected subunits of electron transport system (ETS) complexes and ATP-synthase in the cortex and striatum of symptomatic R6/2 mice. Our findings reveal a brain-region-specific differential expression of both nuclear and mitochondrial-encoded ETS components, indicating defects of transcription, translation and/or mitochondrial import of mitochondrial ETS components in R6/2 mouse brains.
Collapse
|
41
|
Shedding a new light on Huntington's disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry 2021; 26:5441-5463. [PMID: 32514103 DOI: 10.1038/s41380-020-0787-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.
Collapse
|
42
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
43
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
44
|
Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021; 22:7710. [PMID: 34299328 PMCID: PMC8307585 DOI: 10.3390/ijms22147710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Tuuli-Maria Sonninen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Sanni Peltonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
45
|
Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN. Blood-Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. BIOCHEMISTRY (MOSCOW) 2021; 86:746-760. [PMID: 34225598 DOI: 10.1134/s0006297921060122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.
Collapse
Affiliation(s)
- Alla B Salmina
- Division of Brain Sciences, Research Center of Neurology, Moscow, 125367, Russia. .,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yuliya K Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Nataliya A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena A Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yana V Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Ekaterina V Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| |
Collapse
|
46
|
Sun H, Hu H, Liu C, Sun N, Duan C. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis 2021; 36:723-735. [PMID: 33635479 DOI: 10.1007/s11011-021-00694-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier (BBB) comprises the interface between blood, brain and cerebrospinal fluid. Its primary function, which is mainly carried out by tight junctions, is to stabilize the tightly controlled microenvironment of the brain. To study the development and maintenance of the BBB, as well as various roles their intrinsic mechanisms that play in neurological disorders, suitable measurements are required to demonstrate integrity and functional changes at the interfaces between the blood and brain tissue. Markers and plasma proteins with different molecular weight (MW) are used to measure the permeability of BBB. In addition, the expression changes of tight-junction proteins form the basic structure of BBB, and imaging modalities are available to study the disruption of BBB. In the present review, above mentioned methods are depicted in details, together with the pros and cons as well as the differences between these methods, which maybe benefit research studies focused on the detection of BBB breakdown.
Collapse
Affiliation(s)
- Huixin Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiling Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chuanjie Liu
- Weihai City Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, Shandong Province, China
| | - Nannan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
47
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
48
|
Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:640212. [PMID: 34041235 PMCID: PMC8141848 DOI: 10.3389/fcell.2021.640212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raj Bose
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Soumyabrata Banerjee
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute, Ascension St. Mary's, Saginaw, MI, United States
| |
Collapse
|
49
|
Aryal R, Patabendige A. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biol 2021; 11:200396. [PMID: 33878948 PMCID: PMC8059575 DOI: 10.1098/rsob.200396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood–brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries. These endothelial cells are continuously exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function. Flow disturbances as experienced during AF can disrupt the BBB and leave the brain vulnerable to damage. Investigating the plausible mechanisms in detail, linking AF to cerebrovascular damage is difficult in humans, leading to paucity of available clinical data. Here, we discuss the available evidence for BBB disruption during AF due to altered cerebral blood flow, and how this may contribute to an increased risk of dementia and worsening of stroke outcomes.
Collapse
Affiliation(s)
- Ritambhara Aryal
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
An Improved Method for Physical Separation of Cerebral Vasculature and Parenchyma Enables Detection of Blood-Brain-Barrier Dysfunction. NEUROSCI 2021. [DOI: 10.3390/neurosci2010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The neurovascular niche is crucial for constant blood supply and blood-brain barrier (BBB) function and is altered in a number of different neurological conditions, making this an intensely active field of research. Brain vasculature is unique for its tight association of endothelial cells with astrocytic endfeet processes. Separation of the vascular compartment by centrifugation-based methods confirmed enrichment of astrocytic endfeet processes, making it possible to study the entire vascular niche with such methods. Several centrifugation-based separation protocols are found in the literature; however, with some constraints which limit their applicability and the scope of the studies. Here, we describe and validate a protocol for physically separating the neurovascular niche from the parenchyma, which is optimized for smaller tissue quantities. Using endothelial, neuronal, and astrocyte markers, we show that quantitative Western blot-based target detection can be performed of both the vessel-enriched and parenchymal fractions using as little as a single mouse brain hemisphere. Validation of our protocol in rodent stroke models by detecting changes in tight junction protein expression, serum albumin signals and astrocyte activation, i.e., increased glial fibrillary acidic protein expression, between the ipsilateral and the lesion-free contralateral hemisphere demonstrates this protocol as a new way of detecting BBB breakdown and astrogliosis, respectively.
Collapse
|