1
|
López-Canul M, Oveisi A, He Q, Vigano ML, Farina A, Comai S, Gobbi G. Neuropathic pain impairs sleep architecture, non-rapid eye movement sleep, and reticular thalamic neuronal activity. Int J Neuropsychopharmacol 2025; 28:pyaf017. [PMID: 40121517 PMCID: PMC12084830 DOI: 10.1093/ijnp/pyaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a chronic and debilitating condition frequently comorbid with insomnia. However, the alterations in sleep architecture under NP conditions and the mechanisms underlying both pain and sleep disturbances remain poorly understood. The reticular thalamic nucleus (RTN) plays a crucial role in non-rapid eye movement sleep (NREMS) and pain processing, but its involvement in NP-related sleep disruptions has not been fully elucidated. METHODS To investigate sleep-related electrophysiological changes in NP, we performed continuous 24-hour electroencephalogram/electromyogram (EEG/EMG) recordings in rats exhibiting allodynia following L5-L6 spinal nerve lesions. Additionally, we assessed the in vivo neuronal activity of the RTN in both NP and sham-operated control rats. Spectral analyses were conducted to examine alterations in sleep oscillatory dynamics. Reticular thalamic nucleus neuronal responses to nociceptive pinch stimuli were classified as increased, decreased, or unresponsive. RESULTS Neuropathic pain rats exhibited a significant reduction in NREMS (-20%, P < .001) and an increase in wakefulness (+ 19.13%, P < .05) compared to controls, whereas rapid eye movement sleep (REMS) remained unchanged. Sleep fragmentation was pronounced in NP animals (P < .0001), with frequent brief awakenings, particularly during the inactive/light phase. Spectral analysis revealed increased delta and theta power during both NREMS and REMS. Reticular thalamic nucleus neurons in NP rats displayed a higher basal tonic firing rate, along with increased phasic activity (number of bursts), although the percentage of spikes in bursts remained unchanged. CONCLUSIONS Neuropathic pain is characterized by disrupted sleep architecture, reduced NREMS, and heightened RTN neuronal firing activity with partial compensation of burst activity. Given that RTN burst activity is essential for optimal NREMS, its disruption may contribute to NP-induced sleep impairments. These findings suggest that altered EEG/EMG signals, alongside dysregulated RTN neuronal activity, may serve as potential brain markers for NP-related insomnia.
Collapse
Affiliation(s)
| | - Anahita Oveisi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Qianzi He
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Antonio Farina
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Research Institute, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Alpay B, Cimen B, Akaydin E, Onat F, Bolay H, Sara Y. Extrasynaptic δGABAA receptors mediate resistance to migraine-like phenotype in rats. J Headache Pain 2024; 25:75. [PMID: 38724972 PMCID: PMC11083752 DOI: 10.1186/s10194-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, 06560, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye.
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
| |
Collapse
|
3
|
Bai Y, Pacheco-Barrios K, Pacheco-Barrios N, Liang G, Fregni F. Neurocircuitry basis of motor cortex-related analgesia as an emerging approach for chronic pain management. NATURE. MENTAL HEALTH 2024; 2:496-513. [PMID: 40376387 PMCID: PMC12080556 DOI: 10.1038/s44220-024-00235-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2025]
Abstract
Aside from movement initiation and control, the primary motor cortex (M1) has been implicated in pain modulation mechanisms. A large body of clinical data has demonstrated that stimulation and behavioral activation of M1 result in clinically important pain relief in patients with specific chronic pain syndromes. However, despite its clinical importance, the full range of circuits for motor cortex-related analgesia (MCRA) remains an enigma. This review draws on insights from experimental and clinical data and provides an overview of the neurobiological mechanisms of MCRA, with particular emphasis on its neurocircuitry basis. Based on structural and functional connections of the M1 within the pain connectome, neural circuits for MCRA are discussed at different levels of the neuroaxis, specifically, the endogenous pain modulation system, the thalamus, the extrapyramidal system, non-noxious somatosensory systems, and cortico-limbic pain signatures. We believe that novel insights from this review will expedite our understanding of M1-induced pain modulation and offer hope for successful mechanism-based refinements of this interventional approach in chronic pain management.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | | | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kumari M, Hasija Y, Trivedi R. Acute and sub-acute metabolic change in different brain regions induced by moderate blunt traumatic brain injury. Neuroreport 2024; 35:75-80. [PMID: 38064354 DOI: 10.1097/wnr.0000000000001982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The objective of the study was to observe the effect of moderate closed-head injury on hippocampal, thalamic, and striatal tissue metabolism with time. Closed head injury is responsible for metabolic changes. These changes can be permanent or temporary, depending on the injury's impact. For the experiment, 20 rats were randomly divided into four groups, each containing five animals. Animals were subjected to injury using a modified Marmarou's weight drop device; hippocampal, thalamic, and striatal tissue samples were collected after 1 day, 3 days, and 7 days of injury. NMR spectra were acquired following sample processing. Changes in myo-inositol, creatine, glutamate, succinate, lactate, and N-acetyl aspartic acid in hippocampal tissues were observed at day 3 PI. The tyrosine level in the hippocampus was altered at day 7 PI. While thalamic and striatal tissue samples showed altered levels of branched-chain amino acids and myo-inositol at day 1PI. Taurine, gamma amino butyric acid (GABA), choline, and alpha keto-glutarate levels were found to be significantly altered in striatal tissues at days 1 and 3PI. Acetate and GABA levels were altered in the thalamus on day 1 PI. The choline level in the thalamus was found to alter at all-time points after injury. The alteration in these metabolites may be due to the alteration in their respective pathways. Neurotransmitter and energy metabolism pathways were found to be altered in all three brain regions after TBI. This study may help better understand the effect of injury on the metabolic balance of a specific brain region and recovery.
Collapse
Affiliation(s)
- Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
| |
Collapse
|
5
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Park S, Cho J, Huh Y. Distinct Role of Parvalbumin Expressing Neurons in the Reticular Thalamic Nucleus in Nociception. Exp Neurobiol 2023; 32:387-394. [PMID: 38196134 PMCID: PMC10789177 DOI: 10.5607/en23018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Loss of inhibition is suggested to cause pathological pain symptoms. Indeed, some human case reports suggest that lesions including the thalamic reticular nucleus (TRN) which provides major inhibitory inputs to other thalamic nuclei, may induce thalamic pain, a type of neuropathic pain. In support, recent studies demonstrated that activation of GABAergic neurons in the TRN reduces nociceptive responses in mice, reiterating the importance of the TRN in gating nociception. However, whether biochemically distinct neuronal types in the TRN differentially contribute to gating nociception has not been investigated. We, therefore, investigated whether the activity of parvalbumin (PV) and somatostatin (SOM) expressing neurons in the somatosensory TRN differentially modulate nociceptive behaviors using optogenetics and immunostaining techniques. We found that activation of PV neurons in the somatosensory TRN significantly reduced nociceptive behaviors, while activation of SOM neurons in the TRN had no such effect. Also, selective activation of PV neurons, but not SOM neurons, in the TRN activated relatively more PV neurons in the primary somatosensory cortex, which delivers inhibitory effect in the cortex, when measured with cFos and PV double staining. Results of our study suggest that PV neurons in the somatosensory TRN have a stronger influence in regulating nociception and that their activations may provide further inhibition in the somatosensory cortex by activating cortical PV neurons.
Collapse
Affiliation(s)
- Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Yeowool Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
- Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Korea
| |
Collapse
|
7
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
8
|
Ding W, Yang L, Shi E, Kim B, Low S, Hu K, Gao L, Chen P, Ding W, Borsook D, Luo A, Choi JH, Wang C, Akeju O, Yang J, Ran C, Schreiber KL, Mao J, Chen Q, Feng G, Shen S. The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption. Nat Commun 2023; 14:6696. [PMID: 37880241 PMCID: PMC10600211 DOI: 10.1038/s41467-023-42283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic pain is highly prevalent and is linked to a broad range of comorbidities, including sleep disorders. Epidemiological and clinical evidence suggests that chronic sleep disruption (CSD) leads to heightened pain sensitivity, referred to as CSD-induced hyperalgesia. However, the underlying mechanisms are unclear. The thalamic reticular nucleus (TRN) has unique integrative functions in sensory processing, attention/arousal and sleep spindle generation. We report that the TRN played an important role in CSD-induced hyperalgesia in mice, through its projections to the ventroposterior region of the thalamus. Metabolomics revealed that the level of N-arachidonoyl dopamine (NADA), an endocannabinoid, was decreased in the TRN after CSD. Using a recently developed CB1 receptor (cannabinoid receptor 1) activity sensor with spatiotemporal resolution, CB1 receptor activity in the TRN was found to be decreased after CSD. Moreover, CSD-induced hyperalgesia was attenuated by local NADA administration to the TRN. Taken together, these results suggest that TRN NADA signaling is critical for CSD-induced hyperalgesia.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleanor Shi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bowon Kim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Low
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Hu
- Department of Pathology, Tuft University School of Medicine, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ping Chen
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Wei Ding
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - David Borsook
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Luo
- Summer Intern Program of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, currently at Brandeis University, Boston, MA, USA
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Changning Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 PMCID: PMC11409963 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
10
|
Gustin SM, Bolding M, Willoughby W, Anam M, Shum C, Rumble D, Mark VW, Mitchell L, Cowan RE, Richardson E, Richards S, Trost Z. Cortical Mechanisms Underlying Immersive Interactive Virtual Walking Treatment for Amelioration of Neuropathic Pain after Spinal Cord Injury: Findings from a Preliminary Investigation of Thalamic Inhibitory Function. J Clin Med 2023; 12:5743. [PMID: 37685810 PMCID: PMC10488675 DOI: 10.3390/jcm12175743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neuropathic pain following spinal cord injury (SCI) affects approximately 60% of individuals with SCI. Effective pharmacological and non-pharmacological treatments remain elusive. We recently demonstrated that our immersive virtual reality walking intervention (VRWalk) may be effective for SCI NP. Additionally, we found that SCI NP may result from a decrease in thalamic γ-aminobutyric-acid (GABA), which disturbs central sensorimotor processing. OBJECTIVE While we identified GABAergic changes associated with SCI NP, a critical outstanding question is whether a decrease in SCI NP generated by our VRWalk intervention causes GABA content to rise. METHOD A subset of participants (n = 7) of our VRWalk trial underwent magnetic resonance spectroscopy pre- and post-VRWalk intervention to determine if the decrease in SCI NP is associated with an increase in thalamic GABA. RESULTS The findings revealed a significant increase in thalamic GABA content from pre- to post-VRWalk treatment. CONCLUSION While the current findings are preliminary and should be interpreted with caution, pre- to post-VRWalk reductions in SCI NP may be mediated by pre- to post-treatment increases in thalamic GABA by targeting and normalizing maladaptive sensorimotor cortex reorganization. Understanding the underlying mechanisms of pain recovery can serve to validate the efficacy of home-based VR walking treatment as a means of managing pain following SCI. Neuromodulatory interventions aimed at increasing thalamic inhibitory function may provide more effective pain relief than currently available treatments.
Collapse
Affiliation(s)
- Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney 2052, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney 2031, Australia
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Monima Anam
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Corey Shum
- Immersive Experience Laboratories LLC, Birmingham, AL 35203, USA
| | - Deanna Rumble
- Department of Psychology and Counseling, University of Central Arkansas, Conway, AR 72035, USA
| | - Victor W. Mark
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lucie Mitchell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Rachel E. Cowan
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth Richardson
- Department of Behavioral & Social Sciences, University of Montevallo, Montevallo, AL 35115, USA
| | - Scott Richards
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zina Trost
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Rychlik N, Hundehege P, Budde T. Influence of inflammatory processes on thalamocortical activity. Biol Chem 2023; 404:303-310. [PMID: 36453998 DOI: 10.1515/hsz-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.
Collapse
Affiliation(s)
- Nicole Rychlik
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| |
Collapse
|
12
|
Zhou M, Zhang Q, Huo M, Song H, Chang H, Cao J, Fang Y, Zhang D. The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed Pharmacother 2023; 161:114516. [PMID: 36921535 DOI: 10.1016/j.biopha.2023.114516] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nociceptive signaling responses to painful stimuli are transmitted to the central nervous system (CNS) from the afferent nerves of the periphery through a series of neurotransmitters and associated signaling mechanisms. Electroacupuncture (EA) is a pain management strategy that is widely used, with clinical evidence suggesting that a frequency of 2-10 Hz is better able to suppress neuropathic pain in comparison to higher frequencies such as 100 Hz. While EA is widely recognized as a viable approach to alleviating neuralgia, the mechanistic basis underlying such analgesic activity remains poorly understood. The present review offers an overview of current research pertaining to the mechanisms whereby EA can alleviate neuropathic pain in the CNS, with a particular focus on the serotonin/norepinephrine, endogenous opioid, endogenous cannabinoid, amino acid neurotransmitter, and purinergic pathways. Moreover, the corresponding neurotransmitters, neuromodulatory compounds, neuropeptides, and associated receptors that shape these responses are discussed. Together, this review seeks to provide a robust foundation for further studies of the EA-mediated alleviation of neuropathic pain.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
13
|
Wu FL, Chen SH, Li JN, Zhao LJ, Wu XM, Hong J, Zhu KH, Sun HX, Shi SJ, Mao E, Zang WD, Cao J, Kou ZZ, Li YQ. Projections from the Rostral Zona Incerta to the Thalamic Paraventricular Nucleus Mediate Nociceptive Neurotransmission in Mice. Metabolites 2023; 13:metabo13020226. [PMID: 36837844 PMCID: PMC9966812 DOI: 10.3390/metabo13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Zona incerta (ZI) is an integrative subthalamic region in nociceptive neurotransmission. Previous studies demonstrated that the rostral ZI (ZIR) is an important gamma-aminobutyric acid-ergic (GABAergic) source to the thalamic paraventricular nucleus (PVT), but whether the ZIR-PVT pathway participates in nociceptive modulation is still unclear. Therefore, our investigation utilized anatomical tracing, fiber photometry, chemogenetic, optogenetic and local pharmacological approaches to investigate the roles of the ZIRGABA+-PVT pathway in nociceptive neurotransmission in mice. We found that projections from the GABAergic neurons in ZIR to PVT were involved in nociceptive neurotransmission. Furthermore, chemogenetic and optogenetic activation of the ZIRGABA+-PVT pathway alleviates pain, whereas inhibiting the activities of the ZIRGABA+-PVT circuit induces mechanical hypersensitivity and partial heat hyperalgesia. Importantly, in vivo pharmacology combined with optogenetics revealed that the GABA-A receptor (GABAAR) is crucial for GABAergic inhibition from ZIR to PVT. Our data suggest that the ZIRGABA+-PVT pathway acts through GABAAR-expressing glutamatergic neurons in PVT mediates nociceptive neurotransmission.
Collapse
Affiliation(s)
- Feng-Ling Wu
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Si-Hai Chen
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Liu-Jie Zhao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Su-Juan Shi
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - E Mao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei-Dong Zang
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| | - Yun-Qing Li
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali 671000, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| |
Collapse
|
14
|
Liu J, Chen DH, Li XS, Xu CY, Hu T. Activating PV-positive neurons in ventral thalamic reticular nucleus reduces pain sensitivity in mice. Brain Res 2023; 1799:148174. [PMID: 36427592 DOI: 10.1016/j.brainres.2022.148174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have demonstrated that thalamic reticular nucleus (TRN) and the sub-nuclei play important roles in pain sensation. Our previous findings showed that activating parvalbumin-positive (PV+) neurons in dorsal sector of TRN (dTRN) could reduce the pain threshold and consequently increase the pain sensitivity of mice. Recent studies have shown that activation of GABAergic projection of TRN to ventrobasal thalamus (VB) alleviated pathological pain. GABAergic neurons in TRN are mainly PV+ neurons. However, the exact roles of ventral TRN (vTRN) PV+ neurons in pain sensation remain unclear. In this study, the designer receptors exclusively activated by designer drugs (DREADD) method was used to activate the PV+ neurons in vTRN of PV-Cre transgenic mice, and the mechanical threshold and thermal latency were measured to investigate the regulatory effects of vTRN on pain sensitivity in mice. Thereafter, PV-Cre transgenic mice, conditional anterograde axonal tract tracing, and immunohistochemistry were used to investigate the distribution of PV+ neurons fibers in vTRN. The results showed that the activation of PV+ neurons in vTRN increased the mechanical threshold and thermal latency, which indicated reduction of pain sensitivity. The fibers of these neurons mainly projected to ventral posterolateral thalamic nucleus (VPL), ventral posteromedial thalamic nucleus (VPM), ventrolateral thalamic nucleus (VL), centrolateral thalamic nucleus (CL) and various other brain regions. These findings indicated that activation of PV+ neurons in the vTRN decreased pain sensitivity in mice, which provided additional evidence on the mechanisms of PV+ neurons of TRN in regulating neuralgia.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Dan-Hua Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiao-Shuang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chuan-Ying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Tao Hu
- Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
15
|
Dudarenko MV, Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Pozdnyakova NG, Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv. Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
Collapse
|
16
|
Yu JM, Hu R, Mao Y, Tai Y, Qun S, Zhang Z, Chen D, Jin Y. Up-regulation of HCN2 channels in a thalamocortical circuit mediates allodynia in mice. Natl Sci Rev 2022; 10:nwac275. [PMID: 36846300 PMCID: PMC9945406 DOI: 10.1093/nsr/nwac275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic pain is a significant problem that afflicts individuals and society, and for which the current clinical treatment is inadequate. In addition, the neural circuit and molecular mechanisms subserving chronic pain remain largely uncharacterized. Herein we identified enhanced activity of a glutamatergic neuronal circuit that encompasses projections from the ventral posterolateral nucleus (VPLGlu) to the glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu), driving allodynia in mouse models of chronic pain. Optogenetic inhibition of this VPLGlu→S1HLGlu circuit reversed allodynia, whereas the enhancement of its activity provoked hyperalgesia in control mice. In addition, we found that the expression and function of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) were increased in VPLGlu neurons under conditions of chronic pain. Using in vivo calcium imaging, we demonstrated that downregulation of HCN2 channels in the VPLGlu neurons abrogated the rise in S1HLGlu neuronal activity while alleviating allodynia in mice with chronic pain. With these data, we propose that dysfunction in HCN2 channels in the VPLGlu→S1HLGlu thalamocortical circuit and their upregulation occupy essential roles in the development of chronic pain.
Collapse
Affiliation(s)
| | | | | | - Yingju Tai
- Department of Biophysics and Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | | | | | - Yan Jin
- Corresponding author. E-mail:
| |
Collapse
|
17
|
Zhang Y, Sun X, Dou C, Li X, Zhang L, Qin C. Distinct neuronal excitability alterations of medial prefrontal cortex in early-life neglect model of rats. Animal Model Exp Med 2022; 5:274-280. [PMID: 35748035 PMCID: PMC9240726 DOI: 10.1002/ame2.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECT Early-life neglect has irreversible emotional effects on the central nervous system. In this work, we aimed to elucidate distinct functional neural changes in medial prefrontal cortex (mPFC) of model rats. METHODS Maternal separation with early weaning was used as a rat model of early-life neglect. The excitation of glutamatergic and GABAergic neurons in rat mPFC was recorded and analyzed by whole-cell patch clamp. RESULTS Glutamatergic and GABAergic neurons of mPFC were distinguished by typical electrophysiological properties. The excitation of mPFC glutamatergic neurons was significantly increased in male groups, while the excitation of mPFC GABAergic neurons was significant in both female and male groups, but mainly in terms of rest membrane potential and amplitude, respectively. CONCLUSIONS Glutamatergic and GABAergic neurons in medial prefrontal cortex showed different excitability changes in a rat model of early-life neglect, which can contribute to distinct mechanisms for emotional and cognitive manifestations.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xiuping Sun
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Changsong Dou
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| |
Collapse
|
18
|
Modulation of itch and pain signals processing in ventrobasal thalamus by thalamic reticular nucleus. iScience 2022; 25:103625. [PMID: 35106466 PMCID: PMC8786640 DOI: 10.1016/j.isci.2021.103625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Thalamic reticular nucleus (TRN) is known to be crucial for dynamically modulating sensory processing. Recently, the functional role of TRN in itch and pain sensation processing has drawn much attention. We found that ventrobasal thalamus (VB) neurons exhibited scratching behavior-related and nociceptive behavior-related neuronal activity changes, and most of VB neurons responsive to pruritic stimulus were also activated by nociceptive stimulus. Inhibition of VB could relieve itch-induced scratching behaviors and pathological pain without affecting basal nociceptive thresholds, and activation of VB could facilitate scratching behaviors. Tracing and electrophysiology recording results showed that VB mainly received inhibitory inputs from ventral TRN. Furthermore, optogenetic activation of TRN-VB projections suppressed scratching behaviors, and ablation of TRN enhanced scratching behaviors. In addition, activation of TRN-VB projections relieved the pathological pain without affecting basal nociceptive thresholds. Thus, our study indicates that TRN modulates itch and pain signals processing via TRN-VB inhibitory projections. VB is involved in both itch and pain signals processing Manipulation of VB or TRN-VB inhibitory projections modulates both itch and pain Enhancing the inhibitory tone might be a strategy for treating itch and pain
Collapse
|
19
|
Gao Y, Zhan W, Jin Y, Chen X, Cai J, Zhou X, Huang X, Zhao Q, Wang W, Sun J. KCC2 receptor upregulation potentiates antinociceptive effect of GABAAR agonist on remifentanil-induced hyperalgesia. Mol Pain 2022; 18:17448069221082880. [PMID: 35352582 PMCID: PMC8972932 DOI: 10.1177/17448069221082880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GABAergic system disinhibition played an important role in the pathogenesis of remifentanil-induced hyperalgesia (RIH). K+-Cl--cotransporter-2 (KCC2) has the potential to enhance the strength of GABAergic signaling function. However, few reports have focused on the additive analgesic effect of KCC2 enhancer and GABAA receptor agonist on the spinal dorsal horn. Therefore, we evaluated the role of GABA type A receptor (GABAAR) agonist (muscimol), KCC2 enhancer (CLP257) in remifentanil-induced hyperalgesia, as well as GABA and KCC2 receptors responses in the dorsal spinal horn. Remifentanil started to reduce paw withdrawal mechanical thresholds at postoperative 4 h and lasted to 72 h. The RIH associated decreases in spinal GABA release was transient. The amount of spinal GABA transmitter by microdialysis was observed to be decreased at the beginning and reached bottom at 150 min, then returned to the baseline level at 330 min. The synthesis and transportation of GABA transmitter were inhibited, characterized as spinal GAD67 and GAT1 downregulation after the establishment of RIH model. The effect of RIH on GABA receptor downregulation was linked to the reduced expression of spinal KCC2 receptor. This decrease in KCC2 expression has coincided with an early loss of GABA inhibition. KCC2 enhancer, which is reported to lead to a reduction in intracellular Cl−, can enhance GABA-mediated inhibitory function. Both muscimol and CLP257 could dose-dependently inhibit mechanical hypersensitivity caused by remifentanil-induced downregulation of GABAAα2R and KCC2, respectively. Compared with muscimol acting alone, the joint action of CLP257 and muscimol showed a higher pain threshold and less c-fos expression via upregulation of KCC2 and GABAAα2R. Taken together, these findings suggested that the RIH was initiated by decreased GABA release. Downregulation of GABAAα2R and KCC2 receptor contributed to spinally mediated hyperalgesia in RIH. KCC2 enhancer was proved to potentiate antinociceptive effect of GABAAR agonist in RIH.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenqiang Zhan
- Department of Anesthesiology, 159388Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yushi Jin
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodan Chen
- Department of Operating Room Nursing, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, China
| | - Jinxia Cai
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotian Zhou
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Huang
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qimin Zhao
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Wang
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiehao Sun
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Mu D, Sun YG. Circuit Mechanisms of Itch in the Brain. J Invest Dermatol 2021; 142:23-30. [PMID: 34662562 DOI: 10.1016/j.jid.2021.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Itch is an unpleasant somatic sensation with the desire to scratch, and it consists of sensory, affective, and motivational components. Acute itch serves as a critical protective mechanism because an itch-evoked scratching response will help to remove harmful substances invading the skin. Recently, exciting progress has been made in deciphering the mechanisms of itch at both the peripheral nervous system and the CNS levels. Key neuronal subtypes and circuits have been revealed for ascending transmission and the descending modulation of itch. In this review, we mainly summarize the current understanding of the central circuit mechanisms of itch in the brain.
Collapse
Affiliation(s)
- Di Mu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
21
|
Malaguarnera M, Balzano T, Castro MC, Llansola M, Felipo V. The Dual Role of the GABA A Receptor in Peripheral Inflammation and Neuroinflammation: A Study in Hyperammonemic Rats. Int J Mol Sci 2021; 22:6772. [PMID: 34202516 PMCID: PMC8268725 DOI: 10.3390/ijms22136772] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cognitive and motor impairment in minimal hepatic encephalopathy (MHE) are mediated by neuroinflammation, which is induced by hyperammonemia and peripheral inflammation. GABAergic neurotransmission in the cerebellum is altered in rats with chronic hyperammonemia. The mechanisms by which hyperammonemia induces neuroinflammation remain unknown. We hypothesized that GABAA receptors can modulate cerebellar neuroinflammation. The GABAA antagonist bicuculline was administrated daily (i.p.) for four weeks in control and hyperammonemic rats. Its effects on peripheral inflammation and on neuroinflammation as well as glutamate and GABA neurotransmission in the cerebellum were assessed. In hyperammonemic rats, bicuculline decreases IL-6 and TNFα and increases IL-10 in the plasma, reduces astrocyte activation, induces the microglia M2 phenotype, and reduces IL-1β and TNFα in the cerebellum. However, in control rats, bicuculline increases IL-6 and decreases IL-10 plasma levels and induces microglial activation. Bicuculline restores the membrane expression of some glutamate and GABA transporters restoring the extracellular levels of GABA in hyperammonemic rats. Blocking GABAA receptors improves peripheral inflammation and cerebellar neuroinflammation, restoring neurotransmission in hyperammonemic rats, whereas it induces inflammation and neuroinflammation in controls. This suggests a complex interaction between GABAergic and immune systems. The modulation of GABAA receptors could be a suitable target for improving neuroinflammation in MHE.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.M.); (T.B.); (M.C.C.); (V.F.)
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.M.); (T.B.); (M.C.C.); (V.F.)
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, 28938 Madrid, Spain
| | - Mari Carmen Castro
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.M.); (T.B.); (M.C.C.); (V.F.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.M.); (T.B.); (M.C.C.); (V.F.)
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.M.); (T.B.); (M.C.C.); (V.F.)
| |
Collapse
|
22
|
Liu C, Shi F, Fu B, Luo T, Zhang L, Zhang Y, Zhang Y, Yu S, Yu T. GABA A receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int J Neurosci 2020; 132:802-814. [PMID: 33174773 DOI: 10.1080/00207454.2020.1840375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of the current study was to explore the role of the basal forebrain (BF) in propofol anaesthesia. METHODS In the present study, we observed the neural activities of the BF during propofol anaesthesia using calcium fibre photometry recording. Subsequently, ibotenic acid was injected into the BF to verify the role of the BF in propofol anaesthesia. Finally, to test whether GABAA receptors in the BF were involved in modulating propofol anaesthesia, muscimol (GABAA receptor agonist) and gabazine (GABAA receptor antagonist) were microinjected into the BF. Cortical electroencephalogram (EEG), time to loss of righting reflex (LORR), and recovery of righting reflex (RORR) under propofol anaesthesia were recorded and analysed. RESULTS The activity of BF neurons was inhibited during induction of propofol anaesthesia and activated during emergence from propofol anaesthesia. In addition, non-specifical lesion of BF neurons significantly prolonged the time to RORR and increased delta power in the frontal cortex under propofol anaesthesia. Next, microinjection of muscimol into the BF delayed emergence from propofol anaesthesia, increased delta power of the frontal cortex, and decreased gamma power under propofol anaesthesia. Conversely, infusion of gabazine accelerated emergence times and decreased EEG delta power. CONCLUSIONS The basal forebrain is involved in modulating frontal cortex delta activity and emergence from propofol anaesthesia. Additionally, the GABAA receptors in the basal forebrain are involved in regulating emergence propofol anaesthesia.
Collapse
Affiliation(s)
- Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Fu Shi
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Bao Fu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
23
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Freitag FB, Ahemaiti A, Jakobsson JET, Weman HM, Lagerström MC. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci Rep 2019; 9:16573. [PMID: 31719558 PMCID: PMC6851355 DOI: 10.1038/s41598-019-52642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Collapse
Affiliation(s)
- Fabio B Freitag
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
25
|
A Context-Based Analgesia Model in Rats: Involvement of Prefrontal Cortex. Neurosci Bull 2018; 34:1047-1057. [PMID: 30178433 PMCID: PMC6246847 DOI: 10.1007/s12264-018-0279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023] Open
Abstract
Cognition and pain share common neural substrates and interact reciprocally: chronic pain compromises cognitive performance, whereas cognitive processes modulate pain perception. In the present study, we established a non-drug-dependent rat model of context-based analgesia, where two different contexts (dark and bright) were matched with a high (52°C) or low (48°C) temperature in the hot-plate test during training. Before and after training, we set the temperature to the high level in both contexts. Rats showed longer paw licking latencies in trials with the context originally matched to a low temperature than those to a high temperature, indicating successful establishment of a context-based analgesic effect in rats. This effect was blocked by intraperitoneal injection of naloxone (an opioid receptor antagonist) before the probe. The context-based analgesic effect also disappeared after optogenetic activation or inhibition of the bilateral infralimbic or prelimbic sub-region of the prefrontal cortex. In brief, we established a context-based, non-drug dependent, placebo-like analgesia model in the rat. This model provides a new and useful tool for investigating the cognitive modulation of pain.
Collapse
|
26
|
Electroacupuncture at Hua Tuo Jia Ji Acupoints Reduced Neuropathic Pain and Increased GABA A Receptors in Rat Spinal Cord. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8041820. [PMID: 30069227 PMCID: PMC6057337 DOI: 10.1155/2018/8041820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Chronic constriction injury- (CCI-) induced neuropathic pain is the most similar model to hyperalgesia in clinical observation. Neuropathic pain is a neuronal dysfunction in the somatosensory system that may lead to spontaneous pain. In this study, electroacupuncture (EA) was applied at bilateral L4 and L6 of Hua Tuo Jia Ji points (EX-B2) for relieving neuropathic pain in rats. Eighteen Sprague-Dawley rats were randomly assigned to three groups: sham, 2-Hz EA, and 15-Hz EA groups. Following von Frey and cold plate tests, both the 2- and the 15-Hz EA groups had significantly lower mechanical and thermal hyperalgesia than the sham group. Western blot analysis results showed that γ-aminobutyric acid A (GABAA), adenosine A1 receptor (A1R), transient receptor potential cation channel subfamily V member 1 (TRPV1), TRPV4, and metabotropic glutamate receptor 3 (mGluR3) were similar in the dorsal root ganglion of all three groups. Furthermore, levels of GABAA receptors were higher in the spinal cord of rats in the 2- and 15-Hz EA groups compared with the sham control group. This was not observed for A1R, TRPV1, TRPV4, or mGluR3 receptors. In addition, all the aforementioned receptors were unchanged in the somatosensory cortex of the study rats, suggesting a central spinal effect. The study results provide evidence to support the clinical use of EA for specifically alleviating neuropathic pain.
Collapse
|
27
|
Neural pathways in medial septal cholinergic modulation of chronic pain: distinct contribution of the anterior cingulate cortex and ventral hippocampus. Pain 2018; 159:1550-1561. [DOI: 10.1097/j.pain.0000000000001240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Fan XC, Fu S, Liu FY, Cui S, Yi M, Wan Y. Hypersensitivity of Prelimbic Cortex Neurons Contributes to Aggravated Nociceptive Responses in Rats With Experience of Chronic Inflammatory Pain. Front Mol Neurosci 2018; 11:85. [PMID: 29623029 PMCID: PMC5874315 DOI: 10.3389/fnmol.2018.00085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Previous experience of chronic pain causes enhanced responses to upcoming noxious events in both humans and animals, but the underlying mechanisms remain unclear. In the present study, we found that rats with complete Freund's adjuvant (CFA)-induced chronic inflammatory pain experience exhibited aggravated pain responses to later formalin test. Enhanced neuronal activation upon formalin assaults and increased phosphorylated cAMP-response element binding protein (CREB) were observed in the prelimbic cortex (PL) of rats with chronic inflammatory pain experience, and inhibiting PL neuronal activities reversed the aggravated pain. Inflammatory pain experience induced persistent p38 mitogen-activated protein kinase (MAPK; p38) but not extracellular regulated protein kinase (ERK) or c-Jun N-terminal kinase (JNK) hyperphosphorylation in the PL. Inhibiting the p38 phosphorylation in PL reversed the aggravated nociceptive responses to formalin test and down-regulated enhanced phosphorylated CREB in the PL. Chemogenetics identified PL-periaqueductal gray (PAG) but not PL-nucleus accumbens (NAc) as a key pathway in inducing the aggravated formalin pain. Our results demonstrate that persistent hyperphosphorylation of p38 in the PL underlies aggravated nociceptive responses in rats with chronic inflammatory pain experience.
Collapse
Affiliation(s)
- Xiao-Cen Fan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| |
Collapse
|
29
|
Abstract
Over the past three decades the research on GABAB receptor biology and pharmacology in pain processing has been a fascinating experience. Norman Bowery's fundamental discovery of the existence of the GABAB receptor has led the way to the definition of GABAB molecular mechanisms; patterns of receptor expression in the peripheral and central nervous system; GABAB modulatory functions within the pain pathways. We are now harnessing this acquired knowledge to develop innovative approaches to the therapeutic management of chronic pain through allosteric modulation of the GABAB. Norman's legacy would be ultimately fulfilled by the development of novel analgesics that activate the GABAB receptor. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK.
| |
Collapse
|