1
|
Hamad KH, Abdallah H, Aly ST, Abobeah R, Amin SK. Fabrication and assessment of performance of clay based ceramic membranes impregnated with CNTs in dye removal. Sci Rep 2024; 14:26728. [PMID: 39496693 PMCID: PMC11535517 DOI: 10.1038/s41598-024-77015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
In this research, flat disk clay-based ceramic membranes were fabricated and optimized for use in the treatment of wastewater contaminated with dye. The properties of the fabricated membranes were assessed to optimize the fabrication conditions, namely, the firing temperature (1150 °C, 1200 °C, and 1250 °C), soaking time (30 min and 60 min) and zeolite percentage (0%, 10%, and 20%). On the other hand, the rejection of methylene blue dye (MB) and acid fuchsin dye (AF) was studied. The surface of the optimal membrane support was modified using functionalized COOH-carbon nanotubes to increase the dye removal percentage. The fabricated membranes were characterized using FTIR, XRD, and XRF. The optimum membrane support was fabricated at 1150 °C, after 30 min of soaking and with 0% zeolite. The most suitable membrane support was found to be AF, as its rejection percentages reached 42% and 95% without and after surface modification, respectively. The surface of the membrane was examined via SEM, which revealed normally distributed pores. The average pore size of the final membrane was found to be 0.076 micrometers using a mercury porosimeter; thus, the produced membranes can be used in ultrafiltration applications. Finally, the fouling properties showed that the total fouling reached 72.8%, of which only 2.1% was irreversible.
Collapse
Affiliation(s)
- Kareem H Hamad
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt.
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Sohair T Aly
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - R Abobeah
- Department of Chemical Engineering, Faculty of Engineering, El-Minia University, El-Minia, Egypt
| | - Sh K Amin
- Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre (NRC), Dokki, Giza, Egypt
| |
Collapse
|
2
|
Li J, Ding Y, Qin J, Zhu C, Gong L. Molecular Dynamics Simulation of Membrane Distillation for Different Salt Solutions in Nanopores. Molecules 2024; 29:4581. [PMID: 39407511 PMCID: PMC11477737 DOI: 10.3390/molecules29194581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Nanoporous membranes offer significant advantages in direct contact membrane distillation applications due to their high flux and strong resistance to wetting. This study employs molecular dynamics simulations to explore the performance of membrane distillation in a single nanopore, mainly focusing on wetting behavior, liquid entry pressure, and membrane flux variations across different concentrations and types of salt solutions. The findings indicate that increasing the NaCl concentration enhances the wetting of membrane pores, thereby decreasing the entry pressure of the solution. However, at the same salt concentration, the differences in wetting and liquid entry pressure among various salts, including CaCl2, KCl, NaCl, and LiCl, are minimal. The presence of hydrated ions significantly reduces membrane flux. As the concentration of NaCl solutions increases, the number of hydrated ions rises, thereby lowering the membrane flux of the salt solution. Furthermore, the type of salt has a pronounced effect on the structure of hydrated ions. Solutions with Ca2+ and Li+ exhibit the smallest first-layer radius of hydrated ions. Under the same salt concentration, KCl solutions demonstrate the highest membrane distillation flux, while CaCl2 solutions show the lowest flux.
Collapse
Affiliation(s)
| | | | | | - Chuanyong Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (J.L.); (Y.D.); (J.Q.)
| | - Liang Gong
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (J.L.); (Y.D.); (J.Q.)
| |
Collapse
|
3
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Paul S, Bhoumick MC, Mitra S. Fouling Reduction and Thermal Efficiency Enhancement in Membrane Distillation Using a Bilayer-Fluorinated Alkyl Silane-Carbon Nanotube Membrane. MEMBRANES 2024; 14:152. [PMID: 39057660 PMCID: PMC11279159 DOI: 10.3390/membranes14070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined the drop-casting of nanotubes flowed by a dip coating of the FAS layer. The membranes were tested for porosity, surface morphology, thermal stability, contact angle, and flux. The static contact angle of the FAS-CNIM was 153 ± 1°, and the modified membrane showed enhancement in water flux by 18% compared to the base PTFE membrane. The flux was tested at different operating conditions and the fouling behavior was investigated under extreme conditions using a CaCO3 as well as a mixture of CaCO3 and CaSO4 solution. The FAS-CNIM showed significantly lower fouling than plain PTFE or the CNIM; the relative flux reduction was 34.4% and 37.6% lower than the control for the CaCO3 and CaCO3/CaSO4 mixed salt solution. The FAS-CNIM exhibited a notable decrease in specific energy consumption (SEC). Specifically, the SEC for the FAS-CNIM measured 311 kwh/m3 compared to 330.5 kwh/m3 for the CNIM and 354 kwh/m3 for PTFE using a mixture of CaCO3/CaSO4. This investigation underscores the significant contribution of the carbon nanotubes' (CNTs) intermediate layer in creating a durable superhydrophobic membrane, highlighting the potential of utilizing carbon nanotubes for tailored interface engineering to tackle fouling for salt mixtures. The innovative design of a superhydrophobic membrane has the potential to alleviate wetting issues resulting from low surface energy contaminants present in the feed of membrane distillation processes.
Collapse
Affiliation(s)
| | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (S.P.); (M.C.B.)
| |
Collapse
|
5
|
Talukder ME, Talukder MR, Pervez MN, Song H, Naddeo V. Bead-Containing Superhydrophobic Nanofiber Membrane for Membrane Distillation. MEMBRANES 2024; 14:120. [PMID: 38921487 PMCID: PMC11206126 DOI: 10.3390/membranes14060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
This study introduces an innovative approach to enhancing membrane distillation (MD) performance by developing bead-containing superhydrophobic sulfonated polyethersulfone (SPES) nanofibers with S-MWCNTs. By leveraging SPES's inherent hydrophobicity and thermal stability, combined with a nanostructured fibrous configuration, we engineered beads designed to optimize the MD process for water purification applications. Here, oxidized hydrophobic S-MWCNTs were dispersed in a SPES solution at concentrations of 0.5% and 1.0% by weight. These bead membranes are fabricated using a novel electrospinning technique, followed by a post-treatment with the hydrophobic polyfluorinated grafting agent to augment nanofiber membrane surface properties, thereby achieving superhydrophobicity with a water contact angle (WCA) of 145 ± 2° and a higher surface roughness of 512 nm. The enhanced membrane demonstrated a water flux of 87.3 Lm-2 h-1 and achieved nearly 99% salt rejection efficiency at room temperature, using a 3 wt% sodium chloride (NaCl) solution as the feed. The results highlight the potential of superhydrophobic SPES nanofiber beads in revolutionizing MD technology, offering a scalable, efficient, and robust membrane for salt rejection.
Collapse
Affiliation(s)
- Md Eman Talukder
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Md. Romon Talukder
- Department of Chemistry, Government Saadat College, Tangail, Dhaka 1903, Bangladesh;
| | - Md. Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| | - Hongchen Song
- Guangdong Key Lab of Membrane Material and Membrane Separation, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; (M.N.P.); (V.N.)
| |
Collapse
|
6
|
Wang T, Chen Z, Gong W, Xu F, Song X, He X, Fan M. Electrospun Carbon Nanofibers and Their Applications in Several Areas. ACS OMEGA 2023; 8:22316-22330. [PMID: 37396209 PMCID: PMC10308409 DOI: 10.1021/acsomega.3c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023]
Abstract
Carbon nanofibers (CNFs) have a broad spectrum of applications, including sensor manufacturing, electrochemical catalysis, and energy storage. Among different manufacturing methods, electrospinning, due to its simplicity and efficiency, has emerged as one of the most powerful commercial large-scale production techniques. Numerous researchers have been attracted to improving the performance of CNFs and exploring new potential applications. This paper first discusses the working theory of manufacturing electrospun CNFs. Next, the current efforts in upgrading the properties of CNFs, such as pore architecture, anisotropy, electrochemistry, and hydrophilicity, are discussed. The corresponding applications due to the superior performances of CNFs are subsequently elaborated. Finally, the future development of CNFs is discussed.
Collapse
Affiliation(s)
- Tongtong Wang
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Zhe Chen
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Weibo Gong
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Fei Xu
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Xin Song
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Xin He
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College
of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan Province, 610059 People’s Republic
of China
| | - Maohong Fan
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College of
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Ioannou D, Hou Y, Shah P, Ellinas K, Kappl M, Sapalidis A, Constantoudis V, Butt HJ, Gogolides E. Plasma-Induced Superhydrophobicity as a Green Technology for Enhanced Air Gap Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18493-18504. [PMID: 36989435 DOI: 10.1021/acsami.3c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro- and nanotexturing followed by plasma deposition as a novel, dry, and green method for superhydrophobic membrane fabrication. Using plasma micro- and nanotexturing, commercial membranes, both hydrophobic and hydrophilic, are transformed to superhydrophobic featuring water static contact angles (WSCA) greater than 150° and contact angle hysteresis lower than 10°. To this direction, hydrophobic polytetrafluoroethylene (PTFE) and hydrophilic cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when low surface tension solutions containing sodium dodecyl sulfate (SDS) and NaCl (down to 35 mN/m) were used, showcasing their antiwetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro- and nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD due to their hydrophilic nature (WSCA ≈ 40°), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 h, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.
Collapse
Affiliation(s)
- Dimosthenis Ioannou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, 15780 Attica, Greece
| | - Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kosmas Ellinas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- Department of food science and nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, 81400 Myrina, Lemnos, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Andreas Sapalidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Vassilios Constantoudis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| |
Collapse
|
8
|
Khatri M, Francis L, Hilal N. Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. MEMBRANES 2023; 13:338. [PMID: 36984725 PMCID: PMC10059126 DOI: 10.3390/membranes13030338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Obtaining fresh drinking water is a challenge directly related to the change in agricultural, industrial, and societal demands and pressure. Therefore, the sustainable treatment of saline water to get clean water is a major requirement for human survival. In this review, we have detailed the use of electrospun nanofiber-based membranes (ENMs) for water reclamation improvements with respect to physical and chemical modifications. Although membrane distillation (MD) has been considered a low-cost water reclamation process, especially with the availability of low-grade waste heat sources, significant improvements are still required in terms of preparing efficient membranes with enhanced water flux, anti-fouling, and anti-scaling characteristics. In particular, different types of nanomaterials have been explored as guest molecules for electrospinning with different polymers. Nanomaterials such as metallic organic frameworks (MOFs), zeolites, dioxides, carbon nanotubes (CNTs), etc., have opened unprecedented perspectives for the implementation of the MD process. The integration of nanofillers gives appropriate characteristics to the MD membranes by changing their chemical and physical properties, which significantly enhances energy efficiency without impacting the economic costs. Here, we provide a comprehensive overview of the state-of-the-art status, the opportunities, open challenges, and pitfalls of the emerging field of modified ENMs using different nanomaterials for desalination applications.
Collapse
|
9
|
Jeong S, Gu B, Choi S, Ahn SK, Lee J, Lee J, Jeong S. Engineered multi-scale roughness of carbon nanofiller-embedded 3D printed spacers for membrane distillation. WATER RESEARCH 2023; 231:119649. [PMID: 36702024 DOI: 10.1016/j.watres.2023.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane distillation (MD) transfers heat and mass simultaneously through a hydrophobic membrane. Hence, it is sensitive to both concentration and temperature polarisation (CP and TP) effects. In this study, we fabricated feed spacers to improve MD efficiency by alleviating the polarisation effects. First, a 3D printed spacer design was optimised to show superior performance amongst the others tested. Then, to further enhance spacer performance, we incorporated highly thermally stable carbon nanofillers, including carbon nanotubes (CNT) and graphene, in the fabrication of filaments for 3D printing. All the fabricated spacers had a degree of engineered multi-scale roughness, which was relatively high compared to that of the polylactic acid (PLA) spacer (control). The use of nanomaterial-incorporated spacers increased the mean permeate flux significantly compared to the PLA spacer (27.1 L/m2h (LMH)): a 43% and 75% increase when using the 1% graphene-incorporated spacer (38.9 LMH) and 2% CNT incorporated spacer (47.5 LMH), respectively. This could be attributed to the locally enhanced turbulence owing to the multi-scale roughness formed on the spacer, which further increased the vaporisation rate through the membrane. Interestingly, only the CNT-embedded spacer markedly reduced the ion permeation through the membrane, which may be due to the effective reduction of CP. This further decreased with increasing CNT concentration, confirming that the CNT spacer can simultaneously reduce the CP and TP effects in the MD process. Finally, we successfully proved that the multi-scale roughness of the spacer surface induces micromixing near the membrane walls, which can improve the MD performance via computational fluid dynamics.
Collapse
Affiliation(s)
- Seongeom Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Scaffaro R, Gammino M, Maio A. Hierarchically Structured Hybrid Membranes for Continuous Wastewater Treatment via the Integration of Adsorption and Membrane Ultrafiltration Mechanisms. Polymers (Basel) 2022; 15:polym15010156. [PMID: 36616508 PMCID: PMC9824439 DOI: 10.3390/polym15010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Growing environmental concerns are stimulating researchers to develop more and more efficient materials for environmental remediation. Among them, polymer-based hierarchical structures, attained by properly combining certain starting components and processing techniques, represent an emerging trend in materials science and technology. In this work, graphene oxide (GO) and/or carbon nanotubes (CNTs) were integrated at different loading levels into poly (vinyl fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and then electrospun to construct mats capable of treating water that is contaminated by methylene blue (MB). The materials, fully characterized from a morphological, physicochemical, and mechanical point of view, were proved to serve as membranes for vacuum-assisted dead-end membrane processes, relying on the synergy of two mechanisms, namely, pore sieving and adsorption. In particular, the nanocomposites containing 2 wt % of GO and CNTs gave the best performance, showing high flux (800 L × m-2 h-1) and excellent rejection (99%) and flux recovery ratios (93.3%), along with antifouling properties (irreversible and reversible fouling below 6% and 25%, respectively), and reusability. These outstanding outcomes were ascribed to the particular microstructure employed, which endowed polymeric membranes with high roughness, wettability, and mechanical robustness, these capabilities being imparted by the peculiar self-assembled network of GO and CNTs.
Collapse
|
11
|
Xiao M, Shang Y, Ji L, Yan M, Chen F, He Q, Yan S. Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes. MEMBRANES 2022; 12:1164. [PMID: 36422156 PMCID: PMC9694202 DOI: 10.3390/membranes12111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Conventional hydrophobic membrane-based membrane distillation (MD) has been applied for ammonia recovery from an anaerobic digestion (AD) effluent. However, the typical hydrophobic membranes do not have selectivity for ammonia and water vapor, which results in high energy consumption from the water evaporation. To enhance the selectivity during the ammonia recovery process, the functionalized carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) nanofiber membranes were fabricated by electrospinning, and the effects of different CNTs and their contents on the performance of nanofiber membranes were investigated. The results indicate that CNTs can be successfully incorporated into nanofibers by electrospinning. The contact angles of the composite membrane are all higher than those of commercial membrane, and the highest value 138° can be obtained. Most importantly, under the condition of no pH adjustment, the ammonia nitrogen transfer coefficient reaches the maximum value of 3.41 × 10-6 m/s, which is about twice higher than that of commercial membranes. The ammonia separation factor of the carboxylated CNT (C-CNT) composite membrane is higher than that of the hydroxylated CNT(H-CNT) composite membrane. Compared with the application of the novel C-CNT composite membrane, the ammonia separation factor is 47% and 25% higher than that of commercial and neat PVDF membranes. This work gives a novel approach for enhancing ammonia and water selectivity during AD effluent treatment.
Collapse
Affiliation(s)
- Man Xiao
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yu Shang
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Long Ji
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Mingwei Yan
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Feng Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Qingyao He
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuiping Yan
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
12
|
Gontarek-Castro E, Di Luca G, Lieder M, Gugliuzza A. Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance. MEMBRANES 2022; 12:511. [PMID: 35629837 PMCID: PMC9147767 DOI: 10.3390/membranes12050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023]
Abstract
Graphene-coated membranes for membrane distillation have been fabricated by using a wet-filtration approach. Graphene nanoplatelets have been deposited onto PVDF membrane surfaces. Morphology and physicochemical properties have been explored to evaluate the changes in the surface topography and related effects on the membrane performance in water desalination. The membranes have been tested in membrane distillation plants by using mixtures of sodium chloride and humic acid. The multi-scale rough structure of the surface has been envisaged to amplify the wetting and fouling resistance of the graphene-coated membranes so that a better flux and full salt rejection have been achieved in comparison with pristine PVDF. Total salt rejection and an increase of 77% in flux have been observed for coated membrane with optimized graphene content when worked with NaCl 0.6 M (DCMD, ΔT ≈ 24 °C) over a test period of 6 h. The experimental findings suggest these novel graphene-coated membranes as promising materials to develop functional membranes for high-performing water desalination.
Collapse
Affiliation(s)
- Emilia Gontarek-Castro
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland;
| | - Giuseppe Di Luca
- Research Institute on Membrane Technology, CNR-ITM, Via Pietro Bucci 17/C, 87036 Rende, Italy;
| | - Marek Lieder
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland;
| | - Annarosa Gugliuzza
- Research Institute on Membrane Technology, CNR-ITM, Via Pietro Bucci 17/C, 87036 Rende, Italy;
| |
Collapse
|
13
|
Papadopoulou E, Megaridis CM, Walther JH, Koumoutsakos P. Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes. J Phys Chem B 2022; 126:660-669. [DOI: 10.1021/acs.jpcb.1c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ermioni Papadopoulou
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
| | - Constantine M. Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jens H. Walther
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich CH-8092, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Opálková Šišková A, Pleva P, Hrůza J, Frajová J, Sedlaříková J, Peer P, Kleinová A, Janalíková M. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:50. [PMID: 35010000 PMCID: PMC8746662 DOI: 10.3390/nano12010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Wasted synthetic fabrics are a type of textile waste source; the reuse of them brings environmental protection and turns waste into a valuable material. In this work, the used nylon (polyamide) stockings were transmuted into a fine fibrous membrane via an electrospinning process. In addition, the safety antibacterial agent, monoacylglycerol (MAG), was incorporated into a recycled fibrous membrane. The results revealed that the neat, recycled polyamide (rPA) fibers with a hydrophobic surface could be converted into hydrophilic fibers by blending various amounts of MAG with rPA solution prior to electrospinning. The filtration efficiency and air/water vapor permeability of the two types of produced membranes, neat rPA, and rPA/MAG, were tested. Their filtration efficiency (E100) was more than 92% and 96%, respectively. The membranes were classified according to Standard EN1822, and therefore, the membranes rPA and rPA/MAG were assigned to the classes E10 and E11, respectively. The air permeability was not affected by the addition of MAG, and water vapor permeability was slightly enhanced. Based on the obtained data, prepared rPA/MAG fibrous membranes can be evaluated as antifouling against both tested bacterial strains and antimicrobial against S. aureus.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic; (P.P.); (M.J.)
| | - Jakub Hrůza
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jaroslava Frajová
- Faculty of Arts and Architecture, Technical University of Liberec, Studentská 1402/2, 460 01 Liberec, Czech Republic;
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic;
| | - Petra Peer
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic; (P.P.); (M.J.)
| | - Angela Kleinová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic; (P.P.); (M.J.)
| |
Collapse
|
15
|
Abstract
In the past few decades, the role of nanotechnology has expanded into environmental remediation applications. In this regard, nanofibers have been reported for various applications in water treatment and air filtration. Nanofibers are fibers of polymeric origin with diameters in the nanometer to submicron range. Electrospinning has been the most widely used method to synthesize nanofibers with tunable properties such as high specific surface area, uniform pore size, and controlled hydrophobicity. These properties of nanofibers make them highly sought after as adsorbents, photocatalysts, electrode materials, and membranes. In this review article, a basic description of the electrospinning process is presented. Subsequently, the role of different operating parameters in the electrospinning process and precursor polymeric solution is reviewed with respect to their influence on nanofiber properties. Three key areas of nanofiber application for water treatment (desalination, heavy-metal removal, and contaminant of emerging concern (CEC) remediation) are explored. The latest research in these areas is critically reviewed. Nanofibers have shown promising results in the case of membrane distillation, reverse osmosis, and forward osmosis applications. For heavy-metal removal, nanofibers have been able to remove trace heavy metals due to the convenient incorporation of specific functional groups that show a high affinity for the target heavy metals. In the case of CECs, nanofibers have been utilized not only as adsorbents but also as materials to localize and immobilize the trace contaminants, making further degradation by photocatalytic and electrochemical processes more efficient. The key issues with nanofiber application in water treatment include the lack of studies that explore the role of the background water matrix in impacting the contaminant removal performance, regeneration, and recyclability of nanofibers. Furthermore, the end-of-life disposal of nanofibers needs to be explored. The availability of more such studies will facilitate the adoption of nanofibers for water treatment applications.
Collapse
|
16
|
Frappa M, Castillo AEDR, Macedonio F, Luca GD, Drioli E, Gugliuzza A. Exfoliated Bi 2Te 3-enabled membranes for new concept water desalination: Freshwater production meets new routes. WATER RESEARCH 2021; 203:117503. [PMID: 34388495 DOI: 10.1016/j.watres.2021.117503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Water scarcity forces the science to find the most environmentally friendly propulsion technology for supplying plentiful freshwater at low energy costs. Membrane Distillation well meets criteria of eco-friendly management of natural resources, but it is not yet competitive on scale. Herein, we use a dichalchogenide compound (Bi2Te3) as a conceivable source to accelerate the redesign of advanced membranes technologies such as thermally driven membrane distillation. A procedure based on assisted dispersant liquid phase exfoliation is used to fill PVDF membranes. Key insights are gained in the crucial role of this topological material confined in hydrophobic membranes dedicated to recovery of freshwater from synthetic seawater. Intensified water flux together with reduced energy consumption is obtained into one pot, thereby gathering ultrafast production and thermal efficiency in a single device. Bi2Te3-enabled membranes show ability to reduce the resistance to mass transfer while high resistance to heat loss is opposite. Permeate flux is kept stable and salt rejection is higher than 99.99% during 23 h-MD test. Our results confirm the effectiveness of chalcogenides as frontier materials for new-concept water desalination through breakthrough thermally-driven membrane distillation, which is regarded as a new low-energy and sustainable solution to address the growing demand for access to freshwater.
Collapse
Affiliation(s)
- M Frappa
- Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende CS 87036, Italy
| | - A E Del Rio Castillo
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Genova, Via Morego 3016163, Italy
| | - F Macedonio
- Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende CS 87036, Italy
| | - G Di Luca
- Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende CS 87036, Italy
| | - E Drioli
- Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende CS 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via Pietro Bucci, Rende, CS 87036, Italy
| | - A Gugliuzza
- Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende CS 87036, Italy.
| |
Collapse
|
17
|
Shahzad A, Oh JM, Azam M, Iqbal J, Hussain S, Miran W, Rasool K. Advances in the Synthesis and Application of Anti-Fouling Membranes Using Two-Dimensional Nanomaterials. MEMBRANES 2021; 11:605. [PMID: 34436368 PMCID: PMC8402026 DOI: 10.3390/membranes11080605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
This article provides a comprehensive review of the recent progress in the application of advanced two-dimensional nanomaterials (2DNMs) in membranes fabrication and application for water purification. The membranes fouling, its types, and anti-fouling mechanisms of different 2DNMs containing membrane systems are also discussed. The developments in membrane synthesis and modification using 2DNMs, especially graphene and graphene family materials, carbon nanotubes (CNTs), MXenes, and others are critically reviewed. Further, the application potential of next-generation 2DNMs-based membranes in water/wastewater treatment systems is surveyed. Finally, the current problems and future opportunities of applying 2DNMs for anti-fouling membranes are also debated.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (A.S.); (J.-M.O.)
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (A.S.); (J.-M.O.)
| | - Mudassar Azam
- Institute of Chemical Engineering & Technology, University of Punjab, Lahore 54590, Pakistan;
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan;
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5824, Qatar
| |
Collapse
|
18
|
Electrospun Nanostructured Membrane Engineering Using Reverse Osmosis Recycled Modules: Membrane Distillation Application. NANOMATERIALS 2021; 11:nano11061601. [PMID: 34207075 PMCID: PMC8235693 DOI: 10.3390/nano11061601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.
Collapse
|
19
|
Xie B, Xu G, Jia Y, Gu L, Wang Q, Mushtaq N, Cheng B, Hu Y. Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118978] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Wen M, Chen M, Chen K, Li PL, Lv C, Zhang X, Yao Y, Yang W, Huang G, Ren GK, Deng SJ, Liu YK, Zheng Z, Xu CG, Luo DL. Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Al-Gharabli S, Kujawa J. Molecular activation of fluoropolymer membranes via base piranha treatment to enhance transport and mitigate fouling – new materials for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Janus membranes for membrane distillation: Recent advances and challenges. Adv Colloid Interface Sci 2021; 289:102362. [PMID: 33607551 DOI: 10.1016/j.cis.2021.102362] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.
Collapse
|
23
|
T M S, Arshad AB, Lin PT, Widakdo J, H K M, Austria HFM, Hu CC, Lai JY, Hung WS. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 2021; 11:9638-9663. [PMID: 35423415 PMCID: PMC8695389 DOI: 10.1039/d1ra00060h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
With rapid advancement in water filtration materials, several efforts have been made to fabricate electrospun nanofiber membranes (ENMs). ENMs play a crucial role in different areas of water treatment due to their several advantageous properties such as high specific surface area, high interconnected porosity, controllable thickness, mechanical robustness, and wettability. In the broad field of water purification, ENMs have shown tremendous potential in terms of permeability, rejection, energy efficiency, resistance to fouling, reusability and mechanical robustness as compared to the traditional phase inversion membranes. Upon various chemical and physical modifications of ENMs, they have exhibited great potential for emerging applications in environment, energy and health sectors. This review firstly presents an overview of the limiting factors influencing the morphology of electrospun nanofibers. Secondly, it presents recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electrospinning but also to produce nanofibers of different morphology and orientation with an increased rate of production. Thirdly, it presents a brief discussion about the recent progress of the ENMs for removal of various pollutants from aqueous system through major areas of membrane separation. Finally, this review concludes with the challenges and future directions in this vast and fast growing area.
Collapse
Affiliation(s)
- Subrahmanya T M
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Ahmad Bin Arshad
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Po Ting Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Januar Widakdo
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Makari H K
- Department of Biotechnology, IDSG Government College Chikkamagaluru Karnataka 577102 India
| | - Hannah Faye M Austria
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Chien-Chieh Hu
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Juin-Yih Lai
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Wei-Song Hung
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| |
Collapse
|
24
|
Elrasheedy A, Rabie M, El-Shazly A, Bassyouni M, Abdel-Hamid S, El Kady MF. Numerical Investigation of Fabricated MWCNTs/Polystyrene Nanofibrous Membrane for DCMD. Polymers (Basel) 2021; 13:polym13010160. [PMID: 33406737 PMCID: PMC7795322 DOI: 10.3390/polym13010160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of compositing multiwalled carbon nanotubes (MWCNTs) with polystyrene (PS) to fabricate nanofibrous membrane by electrospinning technique and comparing the direct contact membrane distillation (DCMD) performance of the blank and composite membranes is evaluated numerically. Surface morphology of both the pristine and the composite membrane was studied by SEM imaging while the average fiber diameter and average pore size were measured using ImageJ software. Static water contact angle and porosities were also determined for both membranes. Results showed significant enhancement in both the hydrophobicity and porosity of the composite membrane by increasing the static water contact angle from 145.4° for the pristine PS membrane to 155° for the PS/MWCNTs composite membrane while the porosity was increased by 28%. Simulation results showed that at any given feed inlet temperature, the PS/MWCNTs membrane have higher permeate flux and better overall system performance.
Collapse
Affiliation(s)
- Asmaa Elrasheedy
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - Mohammed Rabie
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Mechanical Power Engineering, Mansoura University, El-Mansoura 35516, Egypt
| | - Ahmed El-Shazly
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Chemical Engineering Department, Faculty of Engineering Department, Alexandria University, Alexandria 21544, Egypt
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, Zewail University of Science and Technology, City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - S.M.S. Abdel-Hamid
- Department of Chemical Engineering, the Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam City 3056, Egypt;
| | - Marwa F. El Kady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Polymeric Materials Research Department, City of Scientific Research and Technological Applications (SRTA-City), Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
25
|
Frappa M, Del Rio Castillo AE, Macedonio F, Politano A, Drioli E, Bonaccorso F, Pellegrini V, Gugliuzza A. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. NANOSCALE ADVANCES 2020; 2:4728-4739. [PMID: 36132930 PMCID: PMC9417500 DOI: 10.1039/d0na00403k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/15/2020] [Indexed: 05/12/2023]
Abstract
Membrane distillation is envisaged to be a promising best practice to recover freshwater from seawater with the prospect of building low energy-consuming devices powered by natural and renewable energy sources in remote and less accessible areas. Moreover, there is an additional benefit of integrating this green technology with other well-established operations dedicated to desalination. Today, the development of membrane distillation depends on the productivity-efficiency ratio on a large scale. Despite hydrophobic commercial membranes being widely used, no membrane with suitable morphological and chemical feature is readily available in the market. Thus, there is a real need to identify best practices for developing new efficient membranes for more productive and eco-sustainable membrane distillation devices. Here, we propose engineered few-layer graphene membranes, showing enhanced trans-membrane fluxes and total barrier action against NaCl ions. The obtained performances are linked with filling polymeric membranes with few-layer graphene of 490 nm in lateral size, produced by the wet-jet milling technology. The experimental evidence, together with comparative analyses, confirmed that the use of more largely sized few-layer graphene leads to superior productivity related efficiency trade-off for the membrane distillation process. Herein, it was demonstrated that the quality of exfoliation is a crucial factor for addressing the few-layer graphene supporting the separation capability of the host membranes designed for water desalination.
Collapse
Affiliation(s)
- M Frappa
- Institute on Membrane Technology-National Research Council (CNR-ITM) Via Pietro Bucci 17C Rende (CS) 87036 Italy
| | - A E Del Rio Castillo
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia Via Morego 3016163 Genova Italy
| | - F Macedonio
- Institute on Membrane Technology-National Research Council (CNR-ITM) Via Pietro Bucci 17C Rende (CS) 87036 Italy
| | - A Politano
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia Via Morego 3016163 Genova Italy
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio 67100 L'Aquila AQ Italy
| | - E Drioli
- Institute on Membrane Technology-National Research Council (CNR-ITM) Via Pietro Bucci 17C Rende (CS) 87036 Italy
- Department of Environmental and Chemical Engineering, University of Calabria Via P. Bucci 87036 Rende CS Italy
| | - F Bonaccorso
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia Via Morego 3016163 Genova Italy
- Bedimensional s.p.a Via Albisola 121 16163 Genova Italy
| | - V Pellegrini
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia Via Morego 3016163 Genova Italy
- Bedimensional s.p.a Via Albisola 121 16163 Genova Italy
| | - A Gugliuzza
- Institute on Membrane Technology-National Research Council (CNR-ITM) Via Pietro Bucci 17C Rende (CS) 87036 Italy
| |
Collapse
|
26
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
27
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|
28
|
Wang Y, Han M, Liu L, Yao J, Han L. Beneficial CNT Intermediate Layer for Membrane Fluorination toward Robust Superhydrophobicity and Wetting Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20942-20954. [PMID: 32275384 DOI: 10.1021/acsami.0c03577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Robust membrane hydrophobicity is crucial in membrane distillation (MD) to produce clean water, yet challenged by wetting phenomenon. We herein proposed a robust superhydrophobization process, by making use of a carbon nanotube (CNT) intermediate layer over commercial hydrophobic membrane, indirectly grafting the low-surface-energy material 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS), with the achieved membrane denoted as PVDF-CNT-FAS, in systematic comparison with direct grafting FAS on alkalinized PVDF denoted as PVDF-OH-FAS. Superhydrophobicity with water contact angle of 180° was easily achieved from initial hydrophilic interface for both two resultant membranes. Interestingly, the existence of a CNT intermediate layer significantly maintained the stable hydrophobicity in various harsh conditions and improved mechanical properties, at an expense of ca. 20% smaller pore size and extended membrane thickness than PVDF-OH-FAS. In the MD experiment, the PVDF-CNT-FAS exhibited no vapor flux sacrifice, giving constant flux with the control and doubled that for PVDF-OH-FAS. A mass-heat transfer modeling suggested no significant heat loss but facilitated vapor flux with the CNT layer, unlike the impeded transfer for the counterpart membrane. A superior wetting resistance against 0.4 mM SDS further confirmed the benefit of constructing the CNT intermediate layer, presumably because of its excellent slippery property. This study demonstrates the important role of the CNT intermediate layer toward robust superhydrophobic membrane, suggesting the interest of applying the functional nanomaterial for controllable interface design.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lang Liu
- Key Laboratory of low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
29
|
Floros IN, Kouvelos EP, Pilatos GI, Hadjigeorgiou EP, Gotzias AD, Favvas EP, Sapalidis AA. Enhancement of Flux Performance in PTFE Membranes for Direct Contact Membrane Distillation. Polymers (Basel) 2020; 12:E345. [PMID: 32033433 PMCID: PMC7077436 DOI: 10.3390/polym12020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m-2·h-1 [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.
Collapse
Affiliation(s)
- Ioannis N. Floros
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos P. Kouvelos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Georgios I. Pilatos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | | | - Anastasios D. Gotzias
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Andreas A. Sapalidis
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| |
Collapse
|
30
|
Behera K, Chang YH, Yadav M, Chiu FC. Enhanced thermal stability, toughness, and electrical conductivity of carbon nanotube-reinforced biodegradable poly(lactic acid)/poly(ethylene oxide) blend-based nanocomposites. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
32
|
Guo J, Lee JG, Tan T, Yeo J, Wong PW, Ghaffour N, An AK. Enhanced ammonia recovery from wastewater by Nafion membrane with highly porous honeycomb nanostructure and its mechanism in membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Zhou R, Rana D, Matsuura T, Lan CQ. Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Selatile MK, Ray SS, Ojijo V, Sadiku R. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv 2018; 8:37915-37938. [PMID: 35558586 PMCID: PMC9090136 DOI: 10.1039/c8ra07489e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Seawater desalination is a promising strategy that offers an abundant and reliable source of clean fresh water. Nanotechnology, in terms of nanoparticles or electrospun nanofibrous membranes, for water-treatment or desalination applications, is a new concept that has rapidly grown in interest as a method for improving performance by enhancing the surface properties of membranes. Here, we report a critical review on recent developments in membrane-fabrication methods for seawater desalination technologies, focusing mainly on the electrospinning technique. High-performance membranes that address ongoing permeability concerns, while maintaining membrane selectivity, need further study and development. Considering that the world today is faced with energy-shortage crises, these membranes also need to be energy efficient. As electrospinning is considered to be a feasible method for the production of desalination membranes, this technique requires appropriate optimization and the structural properties of the membranes produced need to be controlled in order to tailor their properties to those desired for well-known desalination technologies, such as reverse osmosis and membrane distillation. Moreover, there is a need to understand the influence of membrane structure on performance, and the latest trends in their use as high-performance desalination membranes.
Collapse
Affiliation(s)
- Mantsopa Koena Selatile
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research Pretoria 0001 South Africa
- Division of Polymer Technology, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research Pretoria 0001 South Africa
- Department of Applied Chemistry, University of Johannesburg Doornfontein 2028 Johannesburg South Africa
| | - Vincent Ojijo
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Rotimi Sadiku
- Division of Polymer Technology, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology South Africa
| |
Collapse
|
37
|
Tan YZ, Wang H, Han L, Tanis-Kanbur MB, Pranav MV, Chew JW. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Alsaadi AS, Alpatova A, Lee JG, Francis L, Ghaffour N. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Al-Gharabli S, Kujawski W, El-Rub ZA, Hamad EM, Kujawa J. Enhancing membrane performance in removal of hazardous VOCs from water by modified fluorinated PVDF porous material. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. Int J Biol Macromol 2018; 110:294-307. [DOI: 10.1016/j.ijbiomac.2017.10.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
|
41
|
Lee EJ, Deka BJ, Guo J, Woo YC, Shon HK, An AK. Engineering the Re-Entrant Hierarchy and Surface Energy of PDMS-PVDF Membrane for Membrane Distillation Using a Facile and Benign Microsphere Coating. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10117-10126. [PMID: 28753303 DOI: 10.1021/acs.est.7b01108] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To consolidate the position of membrane distillation (MD) as an emerging membrane technology that meets global water challenges, it is crucial to develop membranes with ideal material properties. This study reports a facile approach for a polyvinylidene fluoride (PVDF) membrane surface modification that is achieved through the coating of the surface with poly(dimethylsiloxane) (PDMS) polymeric microspheres to lower the membrane surface energy. The hierarchical surface of the microspheres was built without any assistance of a nano/microcomposite by combining the rapid evaporation of tetrahydrofuran (THF) and the phase separation from condensed water vapor. The fabricated membrane exhibited superhydrophobicity-a high contact angle of 156.9° and a low contact-angle hysteresis of 11.3°-and a high wetting resistance to seawater containing sodium dodecyl sulfate (SDS). Compared with the control PVDF-hexafluoropropylene (HFP) single-layer nanofiber membrane, the proposed fabricated membrane with the polymeric microsphere layer showed a smaller pore size and higher liquid entry pressure (LEP). When it was tested for the direct-contact MD (DCMD) in terms of the desalination of seawater (3.5% of NaCl) containing SDS of a progressively increased concentration, the fabricated membrane showed stable desalination and partial wetting for the 0.1 and 0.2 mM SDS, respectively.
Collapse
Affiliation(s)
- Eui-Jong Lee
- School of Energy and Environment, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong
- Graduate School of Water Resources, Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bhaskar Jyoti Deka
- School of Energy and Environment, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong
| | - Yun Chul Woo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS) , P.O. Box 123, 15 Broadway, NSW 2007, Sydney, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS) , P.O. Box 123, 15 Broadway, NSW 2007, Sydney, Australia
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
42
|
Sianipar M, Kim SH, Khoiruddin K, Iskandar F, Wenten IG. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv 2017. [DOI: 10.1039/c7ra08570b] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various approaches have been investigated to functionalize CNT for achieving a high dispersion of CNT as well as high compatibility between CNT and polymer matrix which lead to improvement of membrane properties and performances.
Collapse
Affiliation(s)
- Merry Sianipar
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
| | - Seung Hyun Kim
- Civil Engineering Department
- Kyungnam University
- Changwon-si
- Republic of Korea
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department
- Institut Teknologi Bandung (ITB)
- Bandung 40132
- Indonesia
| | - Ferry Iskandar
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
- Department of Physics
| | - I Gede Wenten
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
- Chemical Engineering Department
| |
Collapse
|