1
|
Yang JG, Chen HY, Guardado JH, Gardner M, Foronda MS. Two stages of substrate discrimination dictate selectivity in the E. coli MetNI-Q ABC transporter system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633972. [PMID: 39896590 PMCID: PMC11785062 DOI: 10.1101/2025.01.20.633972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The Escherichia coli MetNI-Q importer, an ATP-binding cassette (ABC) transporter, mediates the uptake of both L- and D- enantiomers of methionine. Original in vivo uptake studies show a strong preference for L-Met over D-Met, but the molecular basis of this selectivity is unclear. In this work, we systematically examine substrate discrimination by the MetNI transporter and MetQ substrate binding protein using an array of biophysical and biochemical techniques. Based on the kinetic and thermodynamic parameters of individual intermediates in the transport cycle, we uncover multiple steps in the transport cycle that confer substrate specificity. As in many other ABC importer systems, selectivity is applied at the level of binding to the substrate binding protein: MetQ dictates a 1,000-fold preference for L-Met over D-Met. However, beyond this initial level of selectivity, MetQ displays distinct binding preferences for the MetNI transporter depending on the substrate. We propose that the differences in binding affinities reflect the more favored release of L-Met into the permeation pathway when compared to D-Met. In support of this model, under saturating conditions, MetNI transports L-Met across the lipid bilayer at a faster rate than D-Met. Interestingly, the ATPase activity of the MetNI-Q complex is not modulated by the presence of substrate. Our studies reveal that the MetNI-Q system incorporates two separate steps in tuning methionine uptake to substrate chirality and availability. This method of discrimination ensures the import of the most biologically preferred substrate while also allowing for adaptability to more limiting nutrient conditions.
Collapse
Affiliation(s)
- Janet G. Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | | | | | - Maile Gardner
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Matthew S. Foronda
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| |
Collapse
|
2
|
Zhao N, Liu F, Dong W, Yu J, Halverson LJ, Xie B. Quantitative proteomics insights into Chlamydomonas reinhardtii thermal tolerance enhancement by a mutualistic interaction with Sinorhizobium meliloti. Microbiol Spectr 2024; 12:e0021924. [PMID: 39012118 DOI: 10.1128/spectrum.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of Chlamydomonas reinhardtii can be enhanced through a mutualistic interaction with vitamin B12 (cobalamin)-producing Sinorhizobium meliloti. Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of Sinorhizobium requires carbon provided by Chlamydomonas for growth in co-cultures, and survival of Chlamydomonas under high temperatures relies on cobalamin and possibly other metabolites produced by Sinorhizobium. Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by Sinorhizobium increased in the presence of Chlamydomonas under elevated temperatures, whereas in Chlamydomonas, there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature. IMPORTANCE Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B12, an enzyme cofactor used for a variety of metabolic functions. The alga Chlamydomonas reinhardtii benefits from vitamin B12 produced by Sinorhizobium meliloti by producing the amino acid methionine under high temperatures which are required for Chlamydomonas thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by Chlamydomonas and Sinorhizobium that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.
Collapse
Affiliation(s)
- Na Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Fei Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wenxiu Dong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jie Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Larry J Halverson
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, Dlugosch L, Azam F, Simon M. Ligand cross-feeding resolves bacterial vitamin B 12 auxotrophies. Nature 2024; 629:886-892. [PMID: 38720071 DOI: 10.1038/s41586-024-07396-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.
Collapse
Affiliation(s)
- Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.
| |
Collapse
|
4
|
Nijland M, Lefebvre SN, Thangaratnarajah C, Slotboom DJ. Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC transporter BacA. Nat Commun 2024; 15:2626. [PMID: 38521790 PMCID: PMC10960864 DOI: 10.1038/s41467-024-46917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BacA is a mycobacterial ATP-binding cassette (ABC) transporter involved in the translocation of water-soluble compounds across the lipid bilayer. Whole-cell-based assays have shown that BacA imports cobalamin as well as unrelated hydrophilic compounds such as the antibiotic bleomycin and the antimicrobial peptide Bac7 into the cytoplasm. Surprisingly, there are indications that BacA also mediates the export of different antibacterial compounds, which is difficult to reconcile with the notion that ABC transporters generally operate in a strictly unidirectional manner. Here we resolve this conundrum by developing a fluorescence-based transport assay to monitor the transport of cobalamin across liposomal membranes. We find that BacA transports cobalamin in both the import and export direction. This highly unusual bidirectionality suggests that BacA is mechanistically distinct from other ABC transporters and facilitates ATP-driven diffusion, a function that may be important for the evolvability of specific transporters, and may bring competitive advantages to microbial communities.
Collapse
Affiliation(s)
- Mark Nijland
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Solène N Lefebvre
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Chancievan Thangaratnarajah
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Nijland M, Martínez Felices JM, Slotboom DJ, Thangaratnarajah C. Membrane transport of cobalamin. VITAMINS AND HORMONES 2022; 119:121-148. [PMID: 35337617 DOI: 10.1016/bs.vh.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A wide variety of organisms encode cobalamin-dependent enzymes catalyzing essential metabolic reactions, but the cofactor cobalamin (vitamin B12) is only synthesized by a subset of bacteria and archaea. The biosynthesis of cobalamin is complex and energetically costly, making cobalamin variants and precursors metabolically valuable. Auxotrophs for these molecules have evolved uptake mechanisms to compensate for the lack of a synthesis pathway. Bacterial transport of cobalamin involves the passage over one or two lipidic membranes in Gram-positive and -negative bacteria, respectively. In higher eukaryotes, a complex system of carriers, receptors and transporters facilitates the delivery of the essential molecule to the tissues. Biochemical and genetic approaches have identified different transporter families involved in cobalamin transport. The majority of the characterized cobalamin transporters are active transport systems that belong to the ATP-binding cassette (ABC) superfamily of transporters. In this chapter, we describe the different cobalamin transport systems characterized to date that are present in bacteria and humans, as well as yet-to-be-identified transporters.
Collapse
Affiliation(s)
- Mark Nijland
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Jose M Martínez Felices
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Dirk J Slotboom
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands.
| | - Chancievan Thangaratnarajah
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| |
Collapse
|
6
|
Mandal SK, Kanaujia SP. Structural and thermodynamic insights into a novel Mg 2+-citrate-binding protein from the ABC transporter superfamily. Acta Crystallogr D Struct Biol 2021; 77:1516-1534. [PMID: 34866608 DOI: 10.1107/s2059798321010457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022] Open
Abstract
More than one third of proteins require metal ions to accomplish their functions, making them obligatory for the growth and survival of microorganisms in varying environmental niches. In prokaryotes, besides their involvement in various cellular and physiological processes, metal ions stimulate the uptake of citrate molecules. Citrate is a source of carbon and energy and is reported to be transported by secondary transporters. In Gram-positive bacteria, citrate molecules are transported in complex with divalent metal ions, whereas in Gram-negative bacteria they are translocated by Na+/citrate symporters. In this study, the presence of a novel divalent-metal-ion-complexed citrate-uptake system that belongs to the primary active ABC transporter superfamily is reported. For uptake, the metal-ion-complexed citrate molecules are sequestered by substrate-binding proteins (SBPs) and transferred to transmembrane domains for their transport. This study reports crystal structures of an Mg2+-citrate-binding protein (MctA) from the Gram-negative thermophilic bacterium Thermus thermophilus HB8 in both apo and holo forms in the resolution range 1.63-2.50 Å. Despite binding various divalent metal ions, MctA possesses the coordination geometry to bind its physiological metal ion, Mg2+. The results also suggest an extended subclassification of cluster D SBPs, which are known to bind and transport divalent-metal-ion-complexed citrate molecules. Comparative assessment of the open and closed conformations of the wild-type and mutant MctA proteins suggests a gating mechanism of ligand entry following an `asymmetric domain movement' of the N-terminal domain for substrate binding.
Collapse
Affiliation(s)
- Suraj Kumar Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| |
Collapse
|
7
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Flexible Cobamide Metabolism in Clostridioides ( Clostridium) difficile 630 Δ erm. J Bacteriol 2020; 202:JB.00584-19. [PMID: 31685533 DOI: 10.1128/jb.00584-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino acid metabolism have been investigated, but its cobamide (vitamin B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent pathways encoded in its genome in addition to a nearly complete cobamide biosynthesis pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant derivatives under cobamide-dependent conditions in vitro Our results show that C. difficile can use a surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis and can use alternative metabolites or enzymes, respectively, to bypass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micromolar or lower concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in the btuFCD loci of different C. difficile strains, which may result in differences in the ability to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile is versatile.IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has been underexplored, although it has seven metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of cobamides and has alternative functions that can bypass some of its cobamide requirements. Furthermore, C. difficile does not synthesize cobamides de novo but produces them when given cobamide precursors. A better understanding of C. difficile cobamide metabolism may lead to new strategies to treat and prevent C. difficile-associated disease.
Collapse
|
9
|
Fiorentino F, Bolla JR, Mehmood S, Robinson CV. The Different Effects of Substrates and Nucleotides on the Complex Formation of ABC Transporters. Structure 2019; 27:651-659.e3. [PMID: 30799075 PMCID: PMC6453779 DOI: 10.1016/j.str.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/17/2018] [Accepted: 01/18/2019] [Indexed: 11/27/2022]
Abstract
The molybdate importer (ModBC-A of Archaeoglobus fulgidus) and the vitamin B12 importer (BtuCD-F of Escherichia coli) are members of the type I and type II ABC importer families. Here we study the influence of substrate and nucleotide binding on complex formation and stability. Using native mass spectrometry we show that the interaction between the periplasmic substrate-binding protein (SBP) ModA and the transporter ModBC is dependent upon binding of molybdate. By contrast, vitamin B12 disrupts interactions between the transporter BtuCD and the SBP BtuF. Moreover, while ATP binds cooperatively to BtuCD-F, and acts synergistically with vitamin B12 to destabilize the BtuCD-F complex, no effect is observed for ATP binding on the stability of ModBC-A. These observations not only highlight the ability of mass spectrometry to capture these importer-SBP complexes but allow us to add molecular detail to proposed transport mechanisms.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
10
|
Wang D, Weng J, Wang W. An unconventional ligand‐binding mechanism of substrate‐binding proteins: MD simulation and Markov state model analysis of BtuF. J Comput Chem 2019; 40:1440-1448. [DOI: 10.1002/jcc.25798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| | - Jingwei Weng
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| | - Wenning Wang
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
11
|
Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Mechanistic basis of vitamin B12 and cobinamide salvaging by the Vibrio species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140-151. [DOI: 10.1016/j.bbapap.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
|
12
|
Wierzba AJ, Maximova K, Wincenciuk A, Równicki M, Wojciechowska M, Nexø E, Trylska J, Gryko D. Does a Conjugation Site Affect Transport of Vitamin B 12 -Peptide Nucleic Acid Conjugates into Bacterial Cells? Chemistry 2018; 24:18772-18778. [PMID: 30286265 DOI: 10.1002/chem.201804304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Gram-negative bacteria develop specific systems for the uptake of scarce nutrients, including vitamin B12 . These uptake pathways may be utilized for the delivery of biologically relevant molecules into cells. Indeed, it was recently reported that vitamin B12 transported an antisense peptide nucleic acid (PNA) into Escherichia coli and Salmonella Typhimurium cells. The present studies indicate that the conjugation site of PNA to vitamin B12 has an impact on PNA transport into bacterial cells. Toward this end, a specifically designed PNA oligomer has been tethered at various positions of vitamin B12 (central Co, R5' -OH, c and e amide chains, meso position, and at the hydroxy group of cobinamide) by using known or newly developed methodologies and tested for the uptake of the synthesized conjugates by E. coli. Compounds in which the PNA oligonucleotide was anchored at the R5' -OH position were transported more efficiently than that of other compounds tethered at the peripheral positions around the corrin ring. Of importance is the fact that, contrary to mammalian organisms, E. coli also takes up cobinamide, which is an incomplete corrinoid. This selectivity opens up ways to fight bacterial infections.
Collapse
Affiliation(s)
- Aleksandra J Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ksenia Maximova
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Aleksandra Wincenciuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics, and Natural Sciences, Banacha 2c, 02-097, Warsaw, Poland
| | - Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Ebba Nexø
- Department of Clinical Biochemistry, Aarhus University Hospital, PalleJuul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
13
|
Santos JA, Rempel S, Mous ST, Pereira CT, Ter Beek J, de Gier JW, Guskov A, Slotboom DJ. Functional and structural characterization of an ECF-type ABC transporter for vitamin B12. eLife 2018; 7:35828. [PMID: 29809140 PMCID: PMC5997447 DOI: 10.7554/elife.35828] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/26/2018] [Indexed: 01/01/2023] Open
Abstract
Vitamin B12 (cobalamin) is the most complex B-type vitamin and is synthetized exclusively in a limited number of prokaryotes. Its biologically active variants contain rare organometallic bonds, which are used by enzymes in a variety of central metabolic pathways such as L-methionine synthesis and ribonucleotide reduction. Although its biosynthesis and role as co-factor are well understood, knowledge about uptake of cobalamin by prokaryotic auxotrophs is scarce. Here, we characterize a cobalamin-specific ECF-type ABC transporter from Lactobacillus delbrueckii, ECF-CbrT, and demonstrate that it mediates the specific, ATP-dependent uptake of cobalamin. We solved the crystal structure of ECF-CbrT in an apo conformation to 3.4 Å resolution. Comparison with the ECF transporter for folate (ECF-FolT2) from the same organism, reveals how the identical ECF module adjusts to interact with the different substrate binding proteins FolT2 and CbrT. ECF-CbrT is unrelated to the well-characterized B12 transporter BtuCDF, but their biochemical features indicate functional convergence.
Collapse
Affiliation(s)
- Joana A Santos
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Stephan Rempel
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sandra Tm Mous
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Josy Ter Beek
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Albert Guskov
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Ghazi Z, Jahanshahi S, Li Y. RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing. PLoS One 2017; 12:e0188399. [PMID: 29211762 PMCID: PMC5718407 DOI: 10.1371/journal.pone.0188399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis.
Collapse
Affiliation(s)
- Zohaib Ghazi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shahrzad Jahanshahi
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Single-molecule visualization of conformational changes and substrate transport in the vitamin B 12 ABC importer BtuCD-F. Nat Commun 2017; 8:1652. [PMID: 29162829 PMCID: PMC5698293 DOI: 10.1038/s41467-017-01815-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 10/18/2017] [Indexed: 11/15/2022] Open
Abstract
ATP-binding cassette (ABC) transporters form the largest class of active membrane transport proteins. Binding and hydrolysis of ATP by their highly conserved nucleotide-binding domains drive conformational changes of the complex that mediate transport of substrate across the membrane. The vitamin B12 importer BtuCD-F in Escherichia coli is an extensively studied model system. The periplasmic soluble binding protein BtuF binds the ligand; the transmembrane and ATPase domains BtuCD mediate translocation. Here we report the direct observation at the single-molecule level of ATP, vitamin B12 and BtuF-induced events in the transporter complex embedded in liposomes. Single-molecule fluorescence imaging techniques reveal that membrane-embedded BtuCD forms a stable complex with BtuF, regardless of the presence of ATP and vitamin B12. We observe that a vitamin B12 molecule remains bound to the complex for tens of seconds, during which several ATP hydrolysis cycles can take place, before it is being transported across the membrane. The vitamin B12 importer BtuCD-F is a type II ATP-binding cassette transporter. Here the authors use single-molecule fluorescence techniques to analyse ATP hydrolysis and substrate transport in individual BtuCD-F complexes embedded in liposomes, and propose a transport model.
Collapse
|
16
|
Structural basis of nanobody-mediated blocking of BtuF, the cognate substrate-binding protein of the Escherichia coli vitamin B12 transporter BtuCD. Sci Rep 2017; 7:14296. [PMID: 29084999 PMCID: PMC5662663 DOI: 10.1038/s41598-017-14512-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/10/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial ABC importers catalyze the uptake of essential nutrients including transition metals and metal-containing co-factors. Recently, an IgG antibody targeting the external binding protein of the Staphylococcus aureus Mn(II) ABC importer was reported to inhibit transport activity and reduce bacterial cell growth. We here explored the possibility of using alpaca-derived nanobodies to inhibit the vitamin B12 transporter of Escherichia coli, BtuCD-F, as a model system by generating nanobodies against the periplasmic binding protein BtuF. We isolated six nanobodies that competed with B12 for binding to BtuF, with inhibition constants between 10−6 and 10−9 M. Kinetic characterization of the nanobody-BtuF interactions revealed dissociation half-lives between 1.6 and 6 minutes and fast association rates between 104 and 106 M−1s−1. For the tightest-binding nanobody, we observed a reduction of in vitro transport activity of BtuCD-F when an excess of nanobody over B12 was used. The structure of BtuF in complex with the most effective nanobody Nb9 revealed the molecular basis of its inhibitory function. The CDR3 loop of Nb9 reached into the substrate-binding pocket of BtuF, preventing both B12 binding and BtuCD-F complex formation. Our results suggest that nanobodies can mediate ABC importer inhibition, providing an opportunity for novel antibiotic strategies.
Collapse
|
17
|
Structure of the human transcobalamin beta domain in four distinct states. PLoS One 2017; 12:e0184932. [PMID: 28910388 PMCID: PMC5599065 DOI: 10.1371/journal.pone.0184932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/02/2017] [Indexed: 11/19/2022] Open
Abstract
Vitamin B12 (cyanocobalamin, CNCbl) is an essential cofactor-precursor for two biochemical reactions in humans. When ingested, cobalamins (Cbl) are transported via a multistep transport system into the bloodstream, where the soluble protein transcobalamin (TC) binds Cbl and the complex is taken up into the cells via receptor mediated endocytosis. Crystal structures of TC in complex with CNCbl have been solved previously. However, the initial steps of holo-TC assembly have remained elusive. Here, we present four crystal structures of the beta domain of human TC (TC-beta) in different substrate-bound states. These include the apo and CNCbl-bound states, providing insight into the early steps of holo-TC assembly. We found that in vitro assembly of TC-alpha and TC-beta to a complex was Cbl-dependent. We also determined the structure of TC-beta in complex with cobinamide (Cbi), an alternative substrate, shedding light on the specificity of TC. We finally determined the structure of TC-beta in complex with an inhibitory antivitamin B12 (anti-B12). We used this structure to model the binding of anti-B12 into full-length holo-TC and could rule out that the inhibitory function of anti-B12 was based on an inability to form a functional complex with TC.
Collapse
|