1
|
Poquérusse J, Whitford W, Taylor J, Gregersen N, Love DR, Tsang B, Drake KM, Snell RG, Lehnert K, Jacobsen JC. Germline mosaicism in TCF20-associated neurodevelopmental disorders: a case study and literature review. J Hum Genet 2025; 70:215-222. [PMID: 40011607 PMCID: PMC11882450 DOI: 10.1038/s10038-025-01323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025]
Abstract
Autosomal dominant variants in transcription factor 20 (TCF20) can result in TCF20-associated neurodevelopmental disorder (TAND), a condition characterized by developmental delay and intellectual disability, autism, dysmorphisms, dystonia, and variable other neurological features. To date, a total of 91 individuals with TAND have been reported; ~67% of cases arose de novo, while ~10% were inherited, and, intriguingly, ~8% were either confirmed or suspected to have arisen via germline mosaicism. Here, we describe two siblings with a developmental condition characterized by intellectual disability, autism, a circadian rhythm sleep disorder, and attention deficit hyperactivity disorder (ADHD) caused by a novel heterozygous single nucleotide deletion in the TCF20 gene, NM_001378418.1:c.4737del; NP_001365347.1:p.Lys1579Asnfs*36 (GRCh38/hg38). The variant was not detected in DNA extracted from peripheral blood in either parent by Sanger sequencing of PCR-generated amplicons, or by deep sequencing of PCR amplicons using MiSeq and MinION. However, droplet digital PCR (ddPCR) of DNA derived from early morning urine detected the variation in 3.2% of the father's urothelial cells, confirming germline mosaicism. This report is only the second to confirm with physical evidence TCF20 germline mosaicism and discusses germline mosaicism as a likely under-detected mode of inheritance in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Jessie Poquérusse
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Nerine Gregersen
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
- Genetic Pathology, Sidra Medicine, Doha, Qatar
| | - Bobby Tsang
- Pediatrics and Newborn Services, Waitakere Hospital, Auckland, New Zealand
| | - Kylie M Drake
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Sapan V, Simsek SZ, Filoğlu G, Bulbul O. Forensic DNA phenotyping using Oxford Nanopore Sequencing system. Electrophoresis 2025; 46:198-211. [PMID: 38794987 PMCID: PMC11865696 DOI: 10.1002/elps.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
In forensic science, the demand for precision, consistency, and cost-effectiveness has driven the exploration of next-generation sequencing technologies. This study investigates the potential of Oxford Nanopore Sequencing (ONT) Technology for analyzing the HIrisPlex-S panel, a set of 41 single nucleotide polymorphism (SNP) markers used to predict eye, hair, and skin color. Using ONT sequencing, we assessed the accuracy and reliability of ONT-generated data by comparing it with conventional capillary electrophoresis (CE) in 18 samples. The Guppy v6.1 was used as a basecaller, and sample profiles were obtained using Burrows-Wheeler Aligner, Samtools, BCFtools, and Python. Comparing accuracy with CE, we found that 62% of SNPs in ONT-unligated samples were correctly genotyped, with 36% showing allele dropout, and 2% being incorrectly genotyped. In the ONT-ligated samples, 85% of SNPs were correctly genotyped, with 10% showing allele dropout, and 5% being incorrectly genotyped. Our findings indicate that ONT, particularly when combined with ligation, enhances genotyping accuracy and coverage, thereby reducing allele dropouts. However, challenges associated with the technology's error rates and the impact on genotyping accuracy are recognized. Phenotype predictions based on ONT data demonstrate varying degrees of success, with the technology showing high accuracy in several cases. Although ONT technology holds promise in forensic genetics, further optimization and quality control measures are essential to harness its full potential. This study contributes to the ongoing efforts to refine sequence read tuning and improve correction tools in the context of ONT technology's application in forensic genetics.
Collapse
Affiliation(s)
- Veysel Sapan
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Sumeyye Zulal Simsek
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Gonul Filoğlu
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ozlem Bulbul
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
3
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2025; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
4
|
Hu X, Liu J, Xu T, Qin K, Feng Y, Jia Z, Zhao X. Research progress and application of the third-generation sequencing technologies in forensic medicine. Leg Med (Tokyo) 2024; 71:102532. [PMID: 39504855 DOI: 10.1016/j.legalmed.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/08/2024]
Abstract
Third-generation sequencing technologies, exemplified by single-molecule real-time sequencing and nanopore sequencing, provide a constellation of advantages, including long read lengths, high throughput, real-time sequencing capabilities, and remarkable portability. These cutting-edge methodologies have provided new tools for genomic analysis in forensic medicine. To gain a comprehensive understanding of the current applications and cutting-edge trends of third-generation sequencing technologies in forensic medicine, this study retrieved relevant literature from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WOS) database. Using bibliometric software CiteSpace 6.1.R6, the study visualized publication volume, countries, and keywords related to the application of third-generation sequencing technologies in forensic medicine from 2014 to 2023. The review then summarized the foundational principles, characteristics, and promising prospects of third-generation sequencing technologies in forensic medicine. Notably, it highlights their remarkable contributions in forensic individual identification, body fluid identification, forensic epigenetic analysis, microbial analysis and forensic species identification.
Collapse
Affiliation(s)
- Xiaoxin Hu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jinjie Liu
- Criminal Investigation Corps of Beijing Public Security Bureau, Beijing 100054, China
| | - Tingyu Xu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Kaiyue Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Yunpeng Feng
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
5
|
Fedele E, Wetton JH, Jobling MA. Sequencing the orthologs of human autosomal forensic short tandem repeats provides individual- and species-level identification in African great apes. BMC Ecol Evol 2024; 24:134. [PMID: 39482599 PMCID: PMC11526555 DOI: 10.1186/s12862-024-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Great apes are a global conservation concern, with anthropogenic pressures threatening their survival. Genetic analysis can be used to assess the effects of reduced population sizes and the effectiveness of conservation measures. In humans, autosomal short tandem repeats (aSTRs) are widely used in population genetics and for forensic individual identification and kinship testing. Traditionally, genotyping is length-based via capillary electrophoresis (CE), but there is an increasing move to direct analysis by massively parallel sequencing (MPS). An example is the ForenSeq DNA Signature Prep Kit, which amplifies multiple loci including 27 aSTRs, prior to sequencing via Illumina technology. Here we assess the applicability of this human-based kit in African great apes. We ask whether cross-species genotyping of the orthologs of these loci can provide both individual and (sub)species identification. RESULTS The ForenSeq kit was used to amplify and sequence aSTRs in 52 individuals (14 chimpanzees; 4 bonobos; 16 western lowland, 6 eastern lowland, and 12 mountain gorillas). The orthologs of 24/27 human aSTRs amplified across species, and a core set of thirteen loci could be genotyped in all individuals. Genotypes were individually and (sub)species identifying. Both allelic diversity and the power to discriminate (sub)species were greater when considering STR sequences rather than allele lengths. Comparing human and African great-ape STR sequences with an orangutan outgroup showed general conservation of repeat types and allele size ranges. Variation in repeat array structures and a weak relationship with the known phylogeny suggests stochastic origins of mutations giving rise to diverse imperfect repeat arrays. Interruptions within long repeat arrays in African great apes do not appear to reduce allelic diversity. CONCLUSIONS Orthologs of most human aSTRs in the ForenSeq DNA Signature Prep Kit can be analysed in African great apes. Primer redesign would reduce observed variability in amplification across some loci. MPS of the orthologs of human loci provides better resolution for both individual and (sub)species identification in great apes than standard CE-based approaches, and has the further advantage that there is no need to limit the number and size ranges of analysed loci.
Collapse
Affiliation(s)
- Ettore Fedele
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Current address: Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jon H Wetton
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Mark A Jobling
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
6
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review. Genes (Basel) 2024; 15:438. [PMID: 38674373 PMCID: PMC11049589 DOI: 10.3390/genes15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.
Collapse
Affiliation(s)
- Caitlin McDonald
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| | - Duncan Taylor
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
- Forensic Science SA, GPO Box 2790, Adelaide, SA 5001, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| |
Collapse
|
8
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
9
|
Liu J, Li S, Su Y, Wen Y, Qin L, Zhao M, Hui M, Jiang L, Chen X, Hou Y, Wang Z. A proof-of-principle study: The potential application of MiniHap biomarkers in ancestry inference based on the QNome nanopore sequencing. Forensic Sci Int Genet 2024; 68:102947. [PMID: 37862770 DOI: 10.1016/j.fsigen.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Haplotyped SNPs convey forensic-related information, and microhaplotypes (MHs), as the most representative of this kind of marker, have proved the potential value for human forensics. In recent years, nanopore sequencing technology has developed rapidly, with its outstanding ability to sequence long continuous DNA fragments and obtain phase information, making the detection of longer haplotype marker possible. In this proof-of-principle study, we proposed a new type of forensic marker, MiniHap, based on five or more SNPs within a molecular distance less than 800 bp, and investigated the haplotype data of 56 selected MiniHaps in five Chinese populations using the QNome nanopore sequencing. The sequencing performance, allele (haplotype) frequencies, forensic parameters, effective number of alleles (Ae), and informativeness (In) were subsequently calculated. In addition, we performed principal component analysis (PCA), phylogenetic tree, and structure analysis to investigate the population genetic relationships and ancestry components among the five investigated populations and 26 worldwide populations. MiniHap-04 exhibited remarkable forensic efficacy, with 148 haplotypes reported and the Ae was 66.9268. In addition, the power of discrimination (PD) was 0.9934, the probability of exclusion (PE) was 0.9898, and the In value was 0.7893. Of the 56 loci, 85.71% had PD values above 0.85, 66.07% had PE values above 0.54, 67.86% had Ae values over 7.0%, and 55.36% were with In values above 0.2 across all samples, indicating that most of the MiniHaps are suitable for individual identification, paternity testing, mixture deconvolution, and ancestry inference. Moreover, the results of PCA, phylogenetic tree and structure analysis demonstrated that this MiniHap panel had the competency in continental population ancestry inference, but the differentiation within intracontinental/linguistically restricted subpopulations was not ideal. Such findings suggested that the QNome device for MiniHap detection was feasible and this novel marker has the potential in ancestry inference. Yet, the establishment of a more comprehensive database with sufficient reference population data remains necessary to screen more suitable MiniHaps.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu 610041, China
| | - Yufeng Wen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liu Qin
- Qitan Technology Ltd., Chengdu 610044, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Minxiao Hui
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Casanova-Adán L, Mosquera-Miguel A, González-Bao J, Ambroa-Conde A, Ruiz-Ramírez J, Cabrejas-Olalla A, González-Martín E, Freire-Aradas A, Rodríguez-López A, Phillips C, Lareu MV, de la Puente M. Adapting an established Ampliseq microhaplotype panel to nanopore sequencing through direct PCR. Forensic Sci Int Genet 2023; 67:102937. [PMID: 37812882 DOI: 10.1016/j.fsigen.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
We have adapted an established Ampliseq microhaplotype panel for nanopore sequencing with the Oxford Nanopore Technologies (ONT) system, as a cost-effective and highly scalable solution for forensic genetics applications. For this purpose, we designed a protocol combining direct PCR amplification from unextracted DNA with ONT library construction and sequencing using the MinION device and workflow. The analysis of reference samples at input amounts of 5-10 ng of DNA demonstrates stable coverage patterns, allele balance, and strand bias, reaching profile completeness and concordance rates of ∼95%. Similar levels were achieved when using direct-PCR from blood, buccal and semen swabs. Dilution series results indicate sensitivity is maintained down to 250 pg of input DNA, and informative profiles are produced down to 62.5 pg. Finally, we demonstrated the forensic utility of the nanopore workflow by analyzing two third degree pedigrees that showed low likelihood ratio values after the analysis of an extended panel of 38 STRs, achieving likelihood ratios 2-3 orders of magnitude higher when testing with the MinION-based haplotype data.
Collapse
Affiliation(s)
- L Casanova-Adán
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J González-Bao
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Cabrejas-Olalla
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - E González-Martín
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Rodríguez-López
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Elkins KM, Garloff AT, Zeller CB. Additional predictions for forensic DNA phenotyping of externally visible characteristics using the ForenSeq and Imagen kits. J Forensic Sci 2023; 68:608-613. [PMID: 36762775 DOI: 10.1111/1556-4029.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Multiplex DNA typing methods using massively parallel sequencing can be used to predict externally visible characteristics (EVCs) in forensic DNA phenotyping through the analysis of single-nucleotide polymorphisms. The focus of EVC determination has focused on hair color, eye color, and skin tone as well as visible biogeographical ancestry features. In this study, we researched off-label applications beyond what is currently marketed by the manufacturer of the Verogen ForenSeq kit primer set B and Imagen primer set E SNP loci. We investigated additional EVC predictions by examining published genome wide sequencing studies and reported allele-specific gene expression and predictive values. We have identified 15 SNPs included in the ForenSeq kit panel and Imagen kits that have additional EVC prediction capabilities beyond what is published in the Verogen manuals. The additional EVCs that can be predicted include hair graying, ephelides hyperpigmented spots, dermatoheliosis, facial pigmented spots, standing height, pattern balding, helix-rolling ear morphology, hair shape, hair thickness, facial morphology, eyebrow thickness, sarcoidosis, obesity, vitiligo, and tanning propensity. The loci can be used to augment and refine phenotype predictions with software such as MetaHuman for missing persons, cold case, and historic case investigations.
Collapse
Affiliation(s)
- Kelly M Elkins
- TU Human Remains Identification Laboratory (THRIL), Chemistry Department, Forensic Science Program, Towson University, Towson, Maryland, USA
| | - Alexis T Garloff
- TU Human Remains Identification Laboratory (THRIL), Chemistry Department, Forensic Science Program, Towson University, Towson, Maryland, USA
| | - Cynthia B Zeller
- TU Human Remains Identification Laboratory (THRIL), Chemistry Department, Forensic Science Program, Towson University, Towson, Maryland, USA
| |
Collapse
|
12
|
Whitford W, Hawkins V, Moodley KS, Grant MJ, Lehnert K, Snell RG, Jacobsen JC. Proof of concept for multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer. Sci Rep 2022; 12:8572. [PMID: 35595858 PMCID: PMC9122479 DOI: 10.1038/s41598-022-12613-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Rapid, cost-effective identification of genetic variants in small candidate genomic regions remains a challenge, particularly for less well equipped or lower throughput laboratories. The application of Oxford Nanopore Technologies’ MinION sequencer has the potential to fulfil this requirement. We demonstrate a proof of concept for a multiplexing assay that pools PCR amplicons for MinION sequencing to enable sequencing of multiple templates from multiple individuals, which could be applied to gene-targeted diagnostics. A combined strategy of barcoding and sample pooling was developed for simultaneous multiplex MinION sequencing of 100 PCR amplicons. The amplicons are family-specific, spanning a total of 30 loci in DNA isolated from 82 human neurodevelopmental cases and family members. The target regions were chosen for further interrogation because a potentially disease-causative variant had been identified in affected individuals following Illumina exome sequencing. The pooled MinION sequences were deconvoluted by aligning to custom references using the minimap2 aligner software. Our multiplexing approach produced an interpretable and expected sequence from 29 of the 30 targeted genetic loci. The sequence variant which was not correctly resolved in the MinION sequence was adjacent to a five nucleotide homopolymer. It is already known that homopolymers present a resolution problem with the MinION approach. Interestingly despite equimolar quantities of PCR amplicon pooled for sequencing, significant variation in the depth of coverage (127×–19,626×; mean = 8321×, std err = 452.99) was observed. We observed independent relationships between depth of coverage and target length, and depth of coverage and GC content. These relationships demonstrate biases of the MinION sequencer for longer templates and those with lower GC content. We demonstrate an efficient approach for variant discovery or confirmation from short DNA templates using the MinION sequencing device. With less than 130 × depth of coverage required for accurate genotyping, the methodology described here allows for rapid highly multiplexed targeted sequencing of large numbers of samples in a minimally equipped laboratory with a potential cost as much 200 × less than that from Sanger sequencing.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - Victoria Hawkins
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Kriebashne S Moodley
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Matthew J Grant
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nat Protoc 2022; 17:1415-1443. [DOI: 10.1038/s41596-022-00682-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
|
14
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
15
|
Deeg CM, Sutherland BJG, Ming TJ, Wallace C, Jonsen K, Flynn KL, Rondeau EB, Beacham TD, Miller KM. In-field genetic stock identification of overwintering coho salmon in the Gulf of Alaska: Evaluation of Nanopore sequencing for remote real-time deployment. Mol Ecol Resour 2022; 22:1824-1835. [PMID: 35212146 PMCID: PMC9303916 DOI: 10.1111/1755-0998.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
Genetic stock identification (GSI) from genotyping‐by‐sequencing of single nucleotide polymorphism (SNP) loci has become the gold standard for stock of origin identification in Pacific salmon. The sequencing platforms currently applied require large batch sizes and multiday processing in specialized facilities to perform genotyping by the thousands. However, recent advances in third‐generation single‐molecule sequencing platforms, such as the Oxford Nanopore minION, provide base calling on portable, pocket‐sized sequencers and promise real‐time, in‐field stock identification of variable batch sizes. Here we evaluate utility and comparability to established GSI platforms of at‐sea stock identification of coho salmon (Oncorhynchus kisutch) using targeted SNP amplicon sequencing on the minION platform during a high‐sea winter expedition to the Gulf of Alaska. As long read sequencers are not optimized for short amplicons, we concatenate amplicons to increase coverage and throughput. Nanopore sequencing at‐sea yielded data sufficient for stock assignment for 50 out of 80 individuals. Nanopore‐based SNP calls agreed with Ion Torrent‐based genotypes in 83.25%, but assignment of individuals to stock of origin only agreed in 61.5% of individuals, highlighting inherent challenges of Nanopore sequencing, such as resolution of homopolymer tracts and indels. However, poor representation of assayed salmon in the queried baseline data set contributed to poor assignment confidence on both platforms. Future improvements will focus on lowering turnaround time and cost, increasing accuracy and throughput, as well as augmentation of the existing baselines. If successfully implemented, Nanopore sequencing will provide an alternative method to the large‐scale laboratory approach by providing mobile small batch genotyping to diverse stakeholders.
Collapse
Affiliation(s)
- Christoph M Deeg
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Ben J G Sutherland
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Tobi J Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Colin Wallace
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kim Jonsen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kelsey L Flynn
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Eric B Rondeau
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| |
Collapse
|
16
|
Nakanishi H, Yoneyama K, Hara M, Takada A, Sakai K, Saito K. Estimating individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. Int J Legal Med 2022; 136:423-432. [PMID: 35001166 DOI: 10.1007/s00414-021-02763-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
We tried to estimate individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. The BAM files produced by MiSeq were viewed using Integrative Genomics Viewer (IGV) to verify mixed bases. By sorting the reads according to base type for each mixed base, partial haplotypes were determined. Then, the BAM files produced by MinKNOW were viewed using IGV. To determine haplotypes with IGV, only mixed bases determined by MiSeq were used as target bases. By sorting the reads according to base type for each target base, each contributor's haplotype was estimated. In mixed samples from two contributors, even a haplotype with a minor contribution of 5% could be distinguished from the haplotype of the major contributor. In mixed samples of three contributors (mixture ratios of 1:1:1 and 4:2:1), each haplotype could also be distinguished. Sequences of C-stretches were determined very inaccurately in the MinION analysis. Although the analysis method was simple, each haplotype was correctly detected in all mixed samples with two or three contributors in various mixture ratios by combining MinION and MiSeq. This should be useful for identifying contributors to mixed samples.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Katsumi Yoneyama
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Kentaro Sakai
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo, 112-0012, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
17
|
Wang Z, Qin L, Liu J, Jiang L, Zou X, Chen X, Song F, Dai H, Hou Y. Forensic nanopore sequencing of microhaplotype markers using QitanTech's QNome. Forensic Sci Int Genet 2021; 57:102657. [PMID: 34973558 DOI: 10.1016/j.fsigen.2021.102657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
In recent years, extraordinary progress has been made in genome sequencing technologies, which has led to a decrease in cost and an increase in the diversity of sequenced genomes. Nanopore sequencing is one of the latest genome sequencing technologies. It aims to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions, and provides a new approach for forensic genetics to detect longer markers in real time. To date, multiple studies have been conducted to sequence forensic markers using MinION from Oxford Nanopore Technologies (ONT), and the results indicate that nanopore sequencing holds promise for forensic applications. Qitan Technology (QitanTech) recently launched its first commercial nanopore genome sequencer, QNome. It could achieve a read length of more than 150 kbp, and could generate approximately 500 Mb of data in 8 h. In this pilot study, we explored and validated this alternative nanopore sequencing device for microhaplotype (MH) profiling using a custom set of 15 MH loci. Seventy single-contributor samples were divided into 7 batches, each of which included 10 samples and control DNA 9947A and was sequenced by QNome. MH genotypes generated from QNome were compared to those from Ion Torrent sequencing (Ion S5XL system) to evaluate the accuracy and stability. Twelve samples randomly selected from the last three batches and Control DNA 9947A were also subjected to ONT MinION sequencing (with R9.4 flow cell) for parallel comparison. Based on MHtyper, a bioinformatics workflow developed for automated MH designation, all MH loci can be genotyped and reliably phased using the QNome data, with an overall accuracy of 99.83% (4 errors among 2310 genotypes). Three occurred near or in the region of homopolymer sequences, and one existed within 50 bp of the start of the sequencing reaction. In the last 15 samples (12 individual samples and 3 replicates of control DNA 9947A), two SNPs located at 4-mer homopolymers failed to obtain reliable genotypes on the MinION data. This study shows the potential of state-of-the-art nanopore sequencing methods to analyze forensic MH markers. Given the rapid pace of change, sporadic and nonrepetitive errors presented in this study are expected to be resolved by further developments of nanopore technologies and analysis tools.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liu Qin
- Qitan Technology Ltd., Chengdu 610044, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Tyazhelova TV, Kuznetsova IL, Andreeva TV, Kunizheva SS, Rogaev EI. Application of Massive Parallel Sequencing Technology in Forensics: Comparative Analysis of Sequencing Platforms. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Tytgat O, Škevin S, Deforce D, Van Nieuwerburgh F. Nanopore sequencing of a forensic combined STR and SNP multiplex. Forensic Sci Int Genet 2021; 56:102621. [PMID: 34742095 DOI: 10.1016/j.fsigen.2021.102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022]
Abstract
Nanopore sequencing for forensic purposes has gained attention, as it yields added discriminatory power compared to capillary electrophoresis (CE), without the need for a high up-front capital investment. Besides enabling the detection of iso-alleles, Massively Parallel Sequencing (MPS) facilitates the analysis of Short Tandem Repeats (STRs) and Single Nucleotide Polymorphisms (SNPs) in parallel. In this research, six single-contributor samples were amplified by such a combined multiplex of 58 STR and 94 SNP loci, followed by nanopore sequencing using an R10.3 flowcell. Basecalling was performed using two state-of-the-art basecallers, Guppy and Bonito. An advanced alignment-based analysis method was developed, which lowered the noise after alignment of the STR reads to a reference library. Although STR genotyping by nanopore sequencing is more challenging, correct genotyping was obtained for all autosomal and all but two non-autosomal STR loci. Moreover, genotyping of iso-alleles proved to be very accurate. SNP genotyping yielded an accuracy of 99% for both basecallers. The use of novel basecallers, in combination with the newly developed alignment-based analysis method, yields results with a pronouncedly higher STR genotyping accuracy compared to previous studies.
Collapse
Affiliation(s)
- Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; Imec, Kapeldreef 75, Leuven 3001, Belgium
| | - Sonja Škevin
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium
| | | |
Collapse
|
20
|
Li X, Song G, Dou L, Yan S, Zhang M, Yuan W, Lai S, Jiang X, Li K, Sun K, Zhao C, Geng J. The structure and unzipping behavior of dumbbell and hairpin DNA revealed by real-time nanopore sensing. NANOSCALE 2021; 13:11827-11835. [PMID: 34152351 DOI: 10.1039/d0nr08729g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hairpin structures play an essential role in DNA replication, transcription, and recombination. Single-molecule studies enable the real-time measurement and observation of the energetics and dynamics of hairpin structures, including folding and DNA-protein interactions. Nanopore sensing is emerging as a powerful tool for DNA sensing and sequencing, and previous research into hairpins using an α-hemolysin (α-HL) nanopore suggested that hairpin DNA enters from its stem side. In this work, the translocation and interaction of hairpin and dumbbell DNA samples with varying stems, loops, and toeholds were investigated systematically using a Mycobacterium smegmatis porin A (MspA) nanopore. It was found that these DNA constructs could translocate through the pore under a bias voltage above +80 mV, and blockage events with two conductance states could be observed. The events of the lower blockage were correlated with the loop size of the hairpin or dumbbell DNA (7 nt to 25 nt), which could be attributed to non-specific collisions with the pore, whereas the dwell time of events with the higher blockage were correlated with the stem length, thus indicating effective translocation. Furthermore, dumbbell DNA with and without a stem opening generated different dwell times when driven through the MspA nanopore. Finally, a new strategy based on the dwell time difference was developed to detect single nucleotide polymorphisms (SNPs). These results demonstrated that the unzipping behaviors and DNA-protein interactions of hairpin and dumbbell DNA could be revealed using nanopore technology, and this could be further developed to create sensors for the secondary structures of nucleic acids.
Collapse
Affiliation(s)
- Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nanopore sequencing in non-human forensic genetics. Emerg Top Life Sci 2021; 5:465-473. [PMID: 34002773 PMCID: PMC8457772 DOI: 10.1042/etls20200287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022]
Abstract
The past decade has seen a rapid expansion of non-human forensic genetics coinciding with the development of 2nd and 3rd generation DNA sequencing technologies. Nanopore sequencing is one such technology that offers massively parallel sequencing at a fraction of the capital cost of other sequencing platforms. The application of nanopore sequencing to species identification has already been widely demonstrated in biomonitoring studies and has significant potential for non-human forensic casework, particularly in the area of wildlife forensics. This review examines nanopore sequencing technology and assesses its potential applications, advantages and drawbacks for use in non-human forensics, alongside other next-generation sequencing platforms and as a possible replacement to Sanger sequencing. We assess the specific challenges of sequence error rate and the standardisation of consensus sequence production, before discussing recent progress in the validation of nanopore sequencing for use in forensic casework. We conclude that nanopore sequencing may be able to play a considerable role in the future of non-human forensic genetics, especially for applications to wildlife law enforcement within emerging forensic laboratories.
Collapse
|
22
|
Ren ZL, Zhang JR, Zhang XM, Liu X, Lin YF, Bai H, Wang MC, Cheng F, Liu JD, Li P, Kong L, Bo XC, Wang SQ, Ni M, Yan JW. Forensic nanopore sequencing of STRs and SNPs using Verogen's ForenSeq DNA Signature Prep Kit and MinION. Int J Legal Med 2021; 135:1685-1693. [PMID: 33950286 PMCID: PMC8098014 DOI: 10.1007/s00414-021-02604-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
The MinION nanopore sequencing device (Oxford Nanopore Technologies, Oxford, UK) is the smallest commercially available sequencer and can be used outside of conventional laboratories. The use of the MinION for forensic applications, however, is hindered by the high error rate of nanopore sequencing. One approach to solving this problem is to identify forensic genetic markers that can consistently be typed correctly based on nanopore sequencing. In this pilot study, we explored the use of nanopore sequencing for single nucleotide polymorphism (SNP) and short tandem repeat (STR) profiling using Verogen’s (San Diego, CA, USA) ForenSeq DNA Signature Prep Kit. Thirty single-contributor samples and DNA standard material 2800 M were genotyped using the Illumina (San Diego, CA, USA) MiSeq FGx and MinION (with R9.4.1 flow cells) devices. With an optimized cutoff for allelic imbalance, all 94 identity-informative SNP loci could be genotyped reliably using the MinION device, with an overall accuracy of 99.958% (1 error among 2926 genotypes). STR typing was notably error prone, and its accuracy was locus dependent. We developed a custom-made bioinformatics workflow, and finally selected 13 autosomal STRs, 14 Y-STRs, and 4 X-STRs showing high consistency between nanopore and Illumina sequencing among the tested samples. These SNP and STR loci could be candidates for panel design for forensic analysis based on nanopore sequencing.
Collapse
Affiliation(s)
- Zi-Lin Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jia-Rong Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiao-Meng Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yan-Feng Lin
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Bai
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Meng-Chun Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jin-Ding Liu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Peng Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiao-Chen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Jiang-Wei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
23
|
Eaton KM, Bernal MA, Backenstose NJC, Yule DL, Krabbenhoft TJ. Nanopore Amplicon Sequencing Reveals Molecular Convergence and Local Adaptation of Rhodopsin in Great Lakes Salmonids. Genome Biol Evol 2021; 13:evaa237. [PMID: 33247716 PMCID: PMC7874997 DOI: 10.1093/gbe/evaa237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Local adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle and MinION. We sequenced five visual opsin genes for individuals of Coregonus artedi, Coregonus hoyi, Coregonus kiyi, and Coregonus zenithicus. Comparisons revealed species-specific differences in a key spectral tuning amino acid in rhodopsin (Tyr261Phe substitution), suggesting local adaptation of C. kiyi to the blue-shifted depths of Lake Superior. Ancestral state reconstruction demonstrates that parallel evolution and "toggling" at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.
Collapse
Affiliation(s)
- Katherine M Eaton
- Department of Biological Sciences, University at Buffalo, New York, USA
| | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, New York, USA
| | | | - Daniel L Yule
- U.S. Geological Survey, Great Lakes Science Center – Lake Superior Biological Station, Ashland, Wisconsin, USA
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, New York, USA
- RENEW Institute, University at Buffalo, New York, USA
| |
Collapse
|
24
|
Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, Kryukov K, Fukuda A, Morimoto Y, Naito Y, Okada H, Bono H, Nakagawa S, Hirota K. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol 2021; 21:35. [PMID: 33499799 PMCID: PMC7836573 DOI: 10.1186/s12866-021-02094-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Species-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples. Results We modified our existing protocol for full-length 16S rRNA gene amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S rRNA gene amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition. Conclusions Our present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02094-5.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Shinnosuke Komiya
- HORAC Grand Front Osaka Clinic, Osaka, Japan.,Obstetrics and Gynecology, Kansai Medical University Graduate School of Medicine, Hirakata, Japan
| | - Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Faculty of Medicine, Osaka University, Osaka, Japan
| | - Yuki Yasuoka
- Faculty of Medicine, Osaka University, Osaka, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kirill Kryukov
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.,Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | | | | | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidetaka Okada
- Obstetrics and Gynecology, Kansai Medical University Graduate School of Medicine, Hirakata, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems, Mishima, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
25
|
Liu Y, Jin X, Mei S, Lan Q, Fang Y, Liu C, Zhu B. A set of novel multi‐allelic SNPs for forensic application developed through massively parallel sequencing and its examples of population genetic studies. Electrophoresis 2020; 41:2036-2046. [DOI: 10.1002/elps.202000128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanfang Liu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Shaanxi P. R. China
| | - Shuyan Mei
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Qiong Lan
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Yating Fang
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Chao Liu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
| | - Bofeng Zhu
- Multi‐Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics School of Forensic Medicine Southern Medical University Guangzhou P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases College of Stomatology Xi'an Jiaotong University Shaanxi P. R. China
| |
Collapse
|
26
|
Identification of sequence polymorphisms at 58 STRs and 94 iiSNPs in a Tibetan population using massively parallel sequencing. Sci Rep 2020; 10:12225. [PMID: 32699278 PMCID: PMC7376188 DOI: 10.1038/s41598-020-69137-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
Massively parallel sequencing (MPS) has rapidly become a promising method for forensic DNA typing, due to its ability to detect a large number of markers and samples simultaneously in a single reaction, and sequence information can be obtained directly. In the present study, two kinds of forensic genetic markers, short tandem repeat (STR) and identity-informative single nucleotide polymorphism (iiSNP) were analyzed simultaneously using ForenSeq DNA Signature Prep Kit, a commercially available kit on MPS platform. A total of 152 DNA markers, including 27 autosomal STR (A-STR) loci, 24 Y chromosomal STR (Y-STR) loci, 7 X chromosomal STR (X-STR) loci and 94 iiSNP loci were genotyped for 107 Tibetan individuals (53 males and 54 females). Compared with length-based STR typing methods, 112 more A-STR alleles, 41 more Y-STR alleles, and 24 more X-STR alleles were observed at 17 A-STRs, 9 Y-STRs, and 5 X-STRs using sequence-based approaches. Thirty-nine novel sequence variations were observed at 20 STR loci. When the flanking regions were also analyzed in addition to target SNPs at the 94 iiSNPs, 38 more alleles were identified. Our study provided an adequate genotype and frequencies data of the two types of genetic markers for forensic practice. Moreover, we also proved that this panel is highly polymorphic and informative in Tibetan population, and should be efficient in forensic kinship testing and personal identification cases.
Collapse
|
27
|
Ballard D, Winkler-Galicki J, Wesoły J. Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. Int J Legal Med 2020; 134:1291-1303. [PMID: 32451905 PMCID: PMC7295846 DOI: 10.1007/s00414-020-02294-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
In the last decade, next-generation sequencing (NGS) technology, alternatively massive parallel sequencing (MPS), was applied to all fields of biological research. Its introduction to the field of forensics was slower, mainly due to lack of accredited sequencers, kits, and relatively higher sequencing error rates as compared with standardized Sanger sequencing. Currently, a majority of the problematic issues have been solved, which is proven by the body of reports in the literature. Here, we discuss the utility of NGS sequencing in forensics, emphasizing the advantages, issues, the technical aspects of the experiments, commercial solutions, and the potentially interesting applications of MPS.
Collapse
Affiliation(s)
- David Ballard
- King's Forensic Genetics, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, UK
| | - Jakub Winkler-Galicki
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz, University Poznan, 6 Uniwersytetu Poznanskiego Street, Poznan, Poland
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz, University Poznan, 6 Uniwersytetu Poznanskiego Street, Poznan, Poland.
| |
Collapse
|
28
|
Lei J, Huang Y, Zhong W, Xiao D, Zhou C. Early Monitoring Drug Resistant Mutation T790M with a Two-Dimensional Simultaneous Discrimination Nanopore Strategy. Anal Chem 2020; 92:8867-8873. [PMID: 32452671 DOI: 10.1021/acs.analchem.0c00575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the aim of detecting low frequency of drug resistant mutation T790M against wild-type sequences, we reported a two-dimensional signal analysis strategy by combining a three locked nucleic acids (LNAs)-modified probe (LP15-3t) and an α-HL nanopore. The specific hybridization of the LP15-3t probe with the T790M generated unique long two-level signals, including characteristic blocking current and characteristic dwell time. Due to the significant dwell time difference (114.2-fold) and the blocking current difference ranging from 81% to 96%, this two-dimensional signal analysis strategy can simultaneously distinguish T790M sequences with a sensitivity of 0.0001% against wild-type sequences. The LOD of T790M was 0.1 pM. This high discrimination capability would have great potential in the detection of rare mutation sequences and the early monitoring of clinical outcome of NSCLC patients with TKI drug resistance.
Collapse
Affiliation(s)
- Jing Lei
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqin Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wenjun Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
29
|
Tytgat O, Gansemans Y, Weymaere J, Rubben K, Deforce D, Van Nieuwerburgh F. Nanopore Sequencing of a Forensic STR Multiplex Reveals Loci Suitable for Single-Contributor STR Profiling. Genes (Basel) 2020; 11:genes11040381. [PMID: 32244632 PMCID: PMC7230633 DOI: 10.3390/genes11040381] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Nanopore sequencing for forensic short tandem repeats (STR) genotyping comes with the advantages associated with massively parallel sequencing (MPS) without the need for a high up-front device cost, but genotyping is inaccurate, partially due to the occurrence of homopolymers in STR loci. The goal of this study was to apply the latest progress in nanopore sequencing by Oxford Nanopore Technologies in the field of STR genotyping. The experiments were performed using the state of the art R9.4 flow cell and the most recent R10 flow cell, which was specifically designed to improve consensus accuracy of homopolymers. Two single-contributor samples and one mixture sample were genotyped using Illumina sequencing, Nanopore R9.4 sequencing, and Nanopore R10 sequencing. The accuracy of genotyping was comparable for both types of flow cells, although the R10 flow cell provided improved data quality for loci characterized by the presence of homopolymers. We identify locus-dependent characteristics hindering accurate STR genotyping, providing insights for the design of a panel of STR loci suited for nanopore sequencing. Repeat number, the number of different reference alleles for the locus, repeat pattern complexity, flanking region complexity, and the presence of homopolymers are identified as unfavorable locus characteristics. For single-contributor samples and for a limited set of the commonly used STR loci, nanopore sequencing could be applied. However, the technology is not mature enough yet for implementation in routine forensic workflows.
Collapse
Affiliation(s)
- Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
- Department of Life Science Technologies, Imec, 3001 Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Jana Weymaere
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; (O.T.); (Y.G.); (J.W.); (K.R.); (D.D.)
- Correspondence: ; Tel.: +32-9264-8048
| |
Collapse
|
30
|
Tian K, Chen X, Luan B, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4492-4495. [PMID: 30441349 DOI: 10.1109/embc.2018.8513177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rapid and accurate detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for broad fields from food safety monitoring to disease diagnostics and prognosis. Here, we developed a nanopore single-molecule sensor, coupled with the locked nucleic acid (LNA) technique, to accurately discriminate SNPs for detection of Shiga toxin producing Escherichia coli (STEC) O157:H7 pathogen serotype, and cancer-derived driver mutations EGFR L858R and KRAS G12D. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, can be applied in food science and medical detection that need rapid and accurate determination of genetic variations.
Collapse
|
31
|
Liao YC, Cheng HW, Wu HC, Kuo SC, Lauderdale TLY, Chen FJ. Completing Circular Bacterial Genomes With Assembly Complexity by Using a Sampling Strategy From a Single MinION Run With Barcoding. Front Microbiol 2019; 10:2068. [PMID: 31551994 PMCID: PMC6737777 DOI: 10.3389/fmicb.2019.02068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
The Oxford Nanopore MinION is an affordable and portable DNA sequencer that can produce very long reads (tens of kilobase pairs), which enable de novo bacterial genome assembly. Although many algorithms and tools have been developed for base calling, read mapping, de novo assembly, and polishing, an automated pipeline is not available for one-stop analysis for circular bacterial genome reconstruction. In this paper, we present the pipeline CCBGpipe for completing circular bacterial genomes. Raw current signals are demultiplexed and base called to generate sequencing data. Sequencing reads are de novo assembled several times by using a sampling strategy to produce circular contigs that have a sequence in common between their start and end. The circular contigs are polished by using raw signals and sequencing reads; then, duplicated sequences are removed to form a linear representation of circular sequences. The circularized contigs are finally rearranged to start at the start position of dnaA/repA or a replication origin based on the GC skew. CCBGpipe implemented in Python is available at https://github.com/jade-nhri/CCBGpipe. Using sequencing data produced from a single MinION run, we obtained 48 circular sequences, comprising 12 chromosomes and 36 plasmids of 12 bacteria, including Acinetobacter nosocomialis, Acinetobacter pittii, and Staphylococcus aureus. With adequate quantities of sequencing reads (80×), CCBGpipe can provide a complete and automated assembly of circular bacterial genomes.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Wei Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Ling Yang Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
32
|
Edwards HS, Krishnakumar R, Sinha A, Bird SW, Patel KD, Bartsch MS. Real-Time Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed Criteria. Sci Rep 2019; 9:11475. [PMID: 31391493 PMCID: PMC6685950 DOI: 10.1038/s41598-019-47857-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-molecule real-time selective sequencing or “Read Until”. As DNA transits a MinION nanopore, real-time pore current data can be accessed and analyzed to provide active feedback to that pore. Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the strand, providing a novel means of background depletion and/or target enrichment. In contrast to the previously published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide the basis for sequence/reject decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating real-time selection performance as a function of sample composition and computing configuration.
Collapse
Affiliation(s)
- Harrison S Edwards
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Raga Krishnakumar
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA
| | - Anupama Sinha
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA
| | - Sara W Bird
- Biotechnology & Bioengineering Dept., Sandia National Laboratories, Livermore, CA, USA.,uBiome, San Francisco, CA, USA
| | - Kamlesh D Patel
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.,Purdue Partnerships Dept., Sandia National Laboratories, Albuquerque, NM, USA
| | - Michael S Bartsch
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.
| |
Collapse
|
33
|
Abstract
![]()
Nanopore
sequencing offers a portable and affordable alternative
to sequencing-by-synthesis methods but suffers from lower accuracy
and cannot sequence ultrashort DNA. This puts applications such as
molecular diagnostics based on the analysis of cell-free DNA or single-nucleotide
variants (SNVs) out of reach. To overcome these limitations, we report
a nanopore-based sequencing strategy in which short target sequences
are first circularized and then amplified via rolling-circle amplification
to produce long stretches of concatemeric repeats. After sequencing
on the Oxford Nanopore Technologies MinION platform, the resulting
repeat sequences can be aligned to produce a highly accurate consensus
that reduces the high error-rate present in the individual repeats.
Using this approach, we demonstrate for the first time the ability
to obtain unbiased and accurate nanopore data for target DNA sequences
<100 bp. Critically, this approach is sensitive enough to achieve
SNV discrimination in mixtures of sequences and even enables quantitative
detection of specific variants present at ratios of <10%. Our method
is simple, cost-effective, and only requires well-established processes.
It therefore expands the utility of nanopore sequencing for molecular
diagnostics and other applications, especially in resource-limited
settings.
Collapse
Affiliation(s)
- Brandon D Wilson
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Michael Eisenstein
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States.,Department of Radiology , Stanford University , Stanford , California 94305 , United States
| | - H Tom Soh
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States.,Department of Radiology , Stanford University , Stanford , California 94305 , United States.,Chan Zuckerberg Biohub , San Francisco , California 94158 , United States
| |
Collapse
|
34
|
Imai K, Tamura K, Tanigaki T, Takizawa M, Nakayama E, Taniguchi T, Okamoto M, Nishiyama Y, Tarumoto N, Mitsutake K, Murakami T, Maesaki S, Maeda T. Whole Genome Sequencing of Influenza A and B Viruses With the MinION Sequencer in the Clinical Setting: A Pilot Study. Front Microbiol 2018; 9:2748. [PMID: 30483243 PMCID: PMC6243006 DOI: 10.3389/fmicb.2018.02748] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 02/01/2023] Open
Abstract
Introduction: Whole genome sequencing (WGS) of influenza viruses is important for preparing vaccines and coping with newly emerging viruses. However, WGS is difficult to perform using conventional next-generation sequencers in developing countries, where facilities are often inadequate. In this study, we developed a high-throughput WGS method for influenza viruses in clinical specimens with the MinION portable sequencer. Methods: Whole genomes of influenza A and B viruses were amplified by multiplex RT-PCR from 13 clinical specimens collected in Tokyo, Japan. Barcode tags for multiplex MinION sequencing were added with each multiplex RT-PCR amplicon by nested PCR with custom barcoded primers. All barcoded amplicons were mixed and multiplex sequencing using the MinION sequencer with 1D2 sequencing kit. In addition, multiplex RT-PCR amplicons generated from each clinical specimen were sequenced using the Illumina MiSeq platform to validate the performance of MinION sequencer. The accuracy, recall, and precision rates of MinION sequencing were calculated by comparing the results of variant calling in the Illumina MiSeq platform and MinION sequencer. Results: Whole genomes of influenza A and B viruses were successfully amplified by multiplex RT-PCR from 13 clinical samples. We identified 6 samples as influenza type A virus H3N2 subtype and 7 as influenza B virus Yamagata lineage using the Illumina MiSeq platform. The overall accuracy, recall, and precision rates of the MinION sequencer were, respectively 99.95%, 89.41%, and 97.88% from 1D reads and 99.97%, 93.28%, and 99.86% from 1D2 reads. Conclusion: We developed a novel WGS method for influenza A and B viruses. It is necessary to improve read accuracy and analytical tools in order to better utilize the MinION sequencer for real-time monitoring of genetic rearrangements and for evaluation of newly emerging viruses.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Kaku Tamura
- Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Tomomi Tanigaki
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Mari Takizawa
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Eiko Nakayama
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Takahiko Taniguchi
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Misako Okamoto
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Yasumasa Nishiyama
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Kotaro Mitsutake
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Disease and Infection Control, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
35
|
Cornelis S, Gansemans Y, Vander Plaetsen AS, Weymaere J, Willems S, Deforce D, Van Nieuwerburgh F. Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Sci Int Genet 2018; 38:204-210. [PMID: 30448528 DOI: 10.1016/j.fsigen.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
The potential and current state-of-the-art of forensic SNP genotyping using nanopore sequencing was investigated with a panel of 16 tri-allelic single nucleotide polymorphisms (SNPs), multiplexing five samples per sequencing run. The sample set consisted of three single-source human genomic reference control DNA samples and two GEDNAP samples, simulating casework samples. The primers for the multiplex SNP-loci PCR were taken from a study which researched their value in a forensic setting using conventional single-base extension technology. Workflows for multiplexed Oxford Nanopore Technologies' 1D and 1D2 sequencing were developed that provide correct genotyping of most SNP loci. Loci that are problematic for nanopore sequencing were characterized. When such loci are avoided, nanopore sequencing of forensic tri-allelic SNPs is technically feasible.
Collapse
Affiliation(s)
- Senne Cornelis
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium; Department of Life Sciences and Imaging, imec, 3001 Leuven, Belgium.
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium.
| | | | - Jana Weymaere
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium.
| | - Sander Willems
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Gent, Belgium.
| | | |
Collapse
|
36
|
Bruijns B, Tiggelaar R, Gardeniers H. Massively parallel sequencing techniques for forensics: A review. Electrophoresis 2018; 39:2642-2654. [PMID: 30101986 PMCID: PMC6282972 DOI: 10.1002/elps.201800082] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/07/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022]
Abstract
DNA sequencing, starting with Sanger's chain termination method in 1977 and evolving into the next generation sequencing (NGS) techniques of today that employ massively parallel sequencing (MPS), has become essential in application areas such as biotechnology, virology, and medical diagnostics. Reflected by the growing number of articles published over the last 2-3 years, these techniques have also gained attention in the forensic field. This review contains a brief description of first, second, and third generation sequencing techniques, and focuses on the recent developments in human DNA analysis applicable in the forensic field. Relevance to the forensic analysis is that besides generation of standard STR-profiles, DNA repeats can also be sequenced to look for polymorphisms. Furthermore, additional SNPs can be sequenced to acquire information on ancestry, paternity or phenotype. The current MPS systems are also very helpful in cases where only a limited amount of DNA or highly degraded DNA has been secured from a crime scene. If enough autosomal DNA is not present, mitochondrial DNA can be sequenced for maternal lineage analysis. These developments clearly demonstrate that the use of NGS will grow into an indispensable tool for forensic science.
Collapse
Affiliation(s)
- Brigitte Bruijns
- Mesoscale Chemical Systems, MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
- Life ScienceEngineering & DesignSaxion University of Applied SciencesEnschedeThe Netherlands
| | - Roald Tiggelaar
- Mesoscale Chemical Systems, MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
- NanoLab cleanroom, MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems, MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
37
|
A comprehensive overview of FCGR3A gene variability by full-length gene sequencing including the identification of V158F polymorphism. Sci Rep 2018; 8:15983. [PMID: 30374078 PMCID: PMC6206037 DOI: 10.1038/s41598-018-34258-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
Abstract
The FCGR3A gene encodes for the receptor important for antibody-dependent natural killer cell-mediated cytotoxicity. FCGR3A gene polymorphisms could affect the success of monoclonal antibody therapy. Although polymorphisms, such as the FcγRIIIA-V158F and -48L/R/H, have been studied extensively, an overview of other polymorphisms within this gene is lacking. To provide an overview of FCGR3A polymorphisms, we analysed the 1000 Genomes project database and found a total of 234 polymorphisms within the FCGR3A gene, of which 69%, 16%, and 15% occur in the intron, UTR, and exon regions respectively. Additionally, only 16% of all polymorphisms had a minor allele frequency (MAF) > 0.01. To facilitate (full-length) analysis of FCGR3A gene polymorphism, we developed a FCGR3A gene-specific amplification and sequencing protocol for Sanger sequencing and MinION (Nanopore Technologies). First, we used the Sanger sequencing protocol to study the presence of the V158F polymorphism in 76 individuals resulting in frequencies of 38% homozygous T/T, 7% homozygous G/G and 55% heterozygous. Next, we performed a pilot with both Sanger sequencing and MinION based sequencing of 14 DNA samples which showed a good concordance between Sanger- and MinION sequencing. Additionally, we detected 13 SNPs listed in the 1000 Genome Project, from which 11 had MAF > 0.01, and 10 SNPs were not listed in 1000 Genome Project. In summary, we demonstrated that FCGR3A gene is more polymorphic than previously described. As most novel polymorphisms are located in non-coding regions, their functional relevance needs to be studied in future functional studies.
Collapse
|
38
|
Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37:180-195. [PMID: 30176440 DOI: 10.1016/j.fsigen.2018.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Forensic epigenetics, i.e., investigating epigenetics variation to resolve forensically relevant questions unanswerable with standard forensic DNA profiling has been gaining substantial ground over the last few years. Differential DNA methylation among tissues and individuals has been proposed as useful resource for three forensic applications i) determining the tissue type of a human biological trace, ii) estimating the age of an unknown trace donor, and iii) differentiating between monozygotic twins. Thus far, forensic epigenetic investigations have used a wide range of methods for CpG marker discovery, prediction modelling and targeted DNA methylation analysis, all coming with advantages and disadvantages when it comes to forensic trace analysis. In this review, we summarize the most recent literature on these three main topics of current forensic epigenetic investigations and discuss limitations and practical considerations in experimental design and data interpretation, such as technical and biological biases. Moreover, we provide future perspectives with regard to new research questions, new epigenetic markers and recent technological advances that - as we envision - will move the field towards forensic epigenomics in the near future.
Collapse
|
39
|
Patel A, Belykh E, Miller EJ, George LL, Martirosyan NL, Byvaltsev VA, Preul MC. MinION rapid sequencing: Review of potential applications in neurosurgery. Surg Neurol Int 2018; 9:157. [PMID: 30159201 PMCID: PMC6094492 DOI: 10.4103/sni.sni_55_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/22/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Gene sequencing has played an integral role in the advancement and understanding of disease pathology and treatment. Although historically expensive and time consuming, new sequencing technologies improve our capability to obtain the genetic information in an accurate and timely manner. Within neurosurgery, gene sequencing is routinely used in the diagnosis and treatment of neurosurgical diseases, primarily for brain tumors. This paper reviews nanopore sequencing, an innovation utilized by MinION and outlines its potential use for neurosurgery. METHODS A literature search was conducted for publications containing the keywords of Oxford MinION, nanopore sequencing, brain tumor, glioma, whole genome sequencing (WGS), epigenomics, molecular neuropathology, and next-generation sequencing (NGS). In total, 64 articles were selected and used for this review. RESULTS The Oxford MinION nanopore sequencing technology has had successful applications within clinical microbiology, human genome sequencing, and cancer genotyping across multiple specialties. Technical details, methodology, and current use of MinION sequencing are discussed through the prism of potential applications to solve neurosurgery-related scientific and diagnostic questions. The MinION device has proven to provide rapid and accurate reads with longer read lengths when compared with NGS. For applications within neurosurgery, the MinION device is capable of providing critical diagnostic information for central nervous system (CNS) tumors within a single day. CONCLUSIONS MinION provides rapid and accurate gene sequencing with better affordability and convenience compared with current NGS methods. Widespread success of the MinION nanopore sequencing technology in providing accurate, rapid, and convenient gene sequencing suggests a promising future within research laboratories and to improve care for neurosurgical patients.
Collapse
Affiliation(s)
- Arpan Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J. Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Laeth L. George
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
40
|
Tian K, Chen X, Luan B, Singh P, Yang Z, Gates KS, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS NANO 2018; 12:4194-4205. [PMID: 29664612 PMCID: PMC6157732 DOI: 10.1021/acsnano.8b01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Collapse
Affiliation(s)
- Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaowei Chen
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Prashant Singh
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
41
|
Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol. Sci Rep 2018; 8:5417. [PMID: 29615665 PMCID: PMC5883038 DOI: 10.1038/s41598-018-23641-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
Collapse
|
42
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|
43
|
Bailey SF, Scheible MK, Williams C, Silva DS, Hoggan M, Eichman C, Faith SA. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing. Forensic Sci Int Genet 2017; 31:40-47. [DOI: 10.1016/j.fsigen.2017.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 01/03/2023]
|
44
|
Xia Y, Li AD, Deng Y, Jiang XT, Li LG, Zhang T. MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage. Front Microbiol 2017; 8:2105. [PMID: 29163399 PMCID: PMC5671560 DOI: 10.3389/fmicb.2017.02105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them.
Collapse
Affiliation(s)
- Yu Xia
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| | - An-Dong Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Deng
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Tao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li-Guan Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
45
|
Wang Y, Tian K, Shi R, Gu A, Pennella M, Alberts L, Gates KS, Li G, Fan H, Wang MX, Gu LQ. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sens 2017; 2:975-981. [PMID: 28750524 DOI: 10.1021/acssensors.7b00235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxin Fan
- Department
of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | | | | |
Collapse
|
46
|
Guo Y, Jian F, Kang X. Nanopore sensor for copper ion detection using a polyamine decorated β-cyclodextrin as the recognition element. RSC Adv 2017. [DOI: 10.1039/c7ra00454k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A novel and simple nanopore sensing method has been developed for the detection of CuII ions using polyamine decorated cyclodextrin as the recognition element.
Collapse
Affiliation(s)
- Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Feifei Jian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|