1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Pelecanou M, Yannakopoulou K. Amphiphilic Chlorin-β-cyclodextrin Conjugates in Photo-Triggered Drug Delivery: The Role of Aggregation. Chempluschem 2024; 89:e202300743. [PMID: 38345604 DOI: 10.1002/cplu.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Conjugates of chlorins with β-cyclodextrin connected either directly or via a flexible linker were prepared. In aqueous medium these amphiphilic conjugates were photostable, produced singlet oxygen at a rate similar to clinically used temoporfin and formed irregular nanoparticles via aggregation. Successful loading with the chemotherapeutic drug tamoxifen was evidenced in solution by the UV-Vis spectral changes and dynamic light scattering profiles. Incubation of MCF-7 cells with the conjugates revealed intense spotted intracellular fluorescence suggestive of accumulation in endosome/lysosome compartments, and no dark toxicity. Incubation with the tamoxifen-loaded conjugates revealed also practically no dark toxicity. Irradiation of cells incubated with empty conjugates at 640 nm and 4.18 J/cm2 light fluence caused >50 % cell viability reduction. Irradiation following incubation with tamoxifen-loaded conjugates resulted in even higher toxicity (74 %) indicating that the produced reactive oxygen species had triggered tamoxifen release in a photochemical internalization (PCI) mechanism. The chlorin-β-cyclodextrin conjugates displayed less-lasting effects with time, compared to the corresponding porphyrin-β-cyclodextrin conjugates, possibly due to lower tamoxifen loading of their aggregates and/or their less effective lodging in the cell compartments' membranes. The results suggest that further to favorable photophysical properties, other parameters are important for the in vitro effectiveness of the photodynamic systems.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
- current address: Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635, Athens, Greece
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| |
Collapse
|
3
|
Goggin FL, Fischer HD. Singlet oxygen signalling and its potential roles in plant biotic interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1957-1970. [PMID: 38372069 DOI: 10.1111/pce.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (SO) is among the most potent reactive oxygen species, and readily oxidizes proteins, lipids and DNA. It can be generated at the plant surface by phototoxins in the epidermis, acting as a direct defense against pathogens and herbivores (including humans). SO can also accumulate within mitochondria, peroxisomes, cytosol and the nucleus through multiple enzymatic and nonenzymatic processes. However, the majority of research on intracellular SO generation in plants has focused on transfer of light energy to triplet oxygen by photopigments from the chloroplast. SO accumulates in response to diverse stresses that perturb chloroplast metabolism, and while its high reactivity limits diffusion distances, it participates in retrograde signalling through the EXECUTER1 sensor, generation of carotenoid metabolites and possibly other unknown pathways. SO thereby reprogrammes nuclear gene expression and modulates hormone signalling and programmed cell death. While SO signalling has long been known to regulate plant responses to high-light stress, recent literature also suggests a role in plant interactions with insects, bacteria and fungi. The goals of this review are to provide a brief overview of SO, summarize evidence for its involvement in biotic stress responses and discuss future directions for the study of SO in defense signalling.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Hillary D Fischer
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
5
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Gonçalves AR, Bugnicourt-Moreira L, Regagnon T, Boukos N, Charalambidis G, Coutsolelos AG, Grigalavicius M, Theodossiou TA, Berg K, Ladavière C, Pelecanou M, Yannakopoulou K. Small anticancer drug release by light: Photochemical internalization of porphyrin-β-cyclodextrin nanoparticles. Carbohydr Polym 2023; 306:120579. [PMID: 36746578 DOI: 10.1016/j.carbpol.2023.120579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 01/15/2023]
Abstract
Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of β-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Antonio Ricardo Gonçalves
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Loïc Bugnicourt-Moreira
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Theo Regagnon
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - George Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanasios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Mantas Grigalavicius
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Theodossis A Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Catherine Ladavière
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
6
|
Ibrahim SRM, Bagalagel AA, Diri RM, Noor AO, Bakhsh HT, Muhammad YA, Mohamed GA, Omar AM. Exploring the Activity of Fungal Phenalenone Derivatives as Potential CK2 Inhibitors Using Computational Methods. J Fungi (Basel) 2022; 8:jof8050443. [PMID: 35628699 PMCID: PMC9143076 DOI: 10.3390/jof8050443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer represents one of the most prevalent causes of global death. CK2 (casein kinase 2) activation boosted cancer proliferation and progression. Therefore, CK2 inhibition can have a crucial role in prohibiting cancer progression and enhancing apoptosis. Fungi have gained vast interest as a wealthy pool of anticancer metabolites that could particularly target various cancer progression-linked signaling pathways. Phenalenones are a unique class of secondary metabolites that possess diverse bioactivities. In the current work, the CK2 inhibitory capacity of 33 fungal phenalenones was explored using computational studies. After evaluating the usefulness of the compounds as enzyme inhibitors by ADMET prediction, the compounds were prepared for molecular docking in the CK2-α1 crystal structure (PDB: 7BU4). Molecular dynamic simulation was performed on the top two scoring compounds to evaluate their binding affinity and protein stability through a simulated physiological environment. Compound 19 had a superior binding affinity to the co-crystallized ligand (Y49). The improved affinity can be attributed to the fact that the aliphatic chain makes additional contact with Asp120 in a pocket distant from the active site.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
7
|
Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5112-5121. [PMID: 35048696 DOI: 10.1021/acsami.1c23797] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type-I photodynamic therapy (PDT) with less oxygen consumption shows great potential for overcoming the vicious hypoxia typically observed in solid tumors. However, the development of type-I PDT is hindered by insufficient radical generation and the ambiguous design strategy of type-I photosensitizers (PSs). Therefore, developing highly efficient type-I PSs and unveiling their structure-function relationship are still urgent and challenging. Herein, we develop two phenanthro[9,10-d]imidazole derivatives (AQPO and AQPI) with aggregation-induced emission (AIE) characteristics and boost their reactive oxygen species (ROS) generation efficiency by reducing singlet-triplet splitting (ΔEST). Both AQPO and AQPI show ultrasmall ΔEST values of 0.09 and 0.12 eV, respectively. By incorporating electron-rich anisole, the categories of generated ROS by AIE PSs are changed from type-II (singlet oxygen, 1O2) to type-I (superoxide anion radical, O2•- and hydroxyl radical, •OH). We demonstrate that the assembled AQPO nanoparticles (NPs) achieve a 3.2- and 2.9-fold increase in the O2•- and •OH generation efficiencies, respectively, compared to those of AQPI NPs (without anisole) in water, whereas the 1O2 generation efficiency of AQPO NPs is lower (0.4-fold) than that of AQPI NPs. The small ΔEST and anisole group endow AQPO with an excellent capacity for type-I ROS generation. In vitro and in vivo experiments show that AQPO NPs achieve an excellent hypoxia-overcoming PDT effect by efficiently eliminating tumor cells upon white light irradiation with good biosafety.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhong Guan Cun, Beijing 100190, China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Zhen Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| |
Collapse
|
8
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Paravatou-Petsotas M, Pelecanou M, Mavridis IM, Yannakopoulou K. Unsymmetrical, monocarboxyalkyl meso-arylporphyrins in the photokilling of breast cancer cells using permethyl-β-cyclodextrin as sequestrant and cell uptake modulator. Carbohydr Polym 2022; 275:118666. [PMID: 34742406 DOI: 10.1016/j.carbpol.2021.118666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-β-cyclodextrin (pMβCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMβCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
9
|
Ferreira JRM, Sierra-Garcia IN, Guieu S, Silva AMS, da Silva RN, Cunha Â. Photodynamic control of citrus crop diseases. World J Microbiol Biotechnol 2021; 37:199. [PMID: 34664127 DOI: 10.1007/s11274-021-03171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Citrus are economically important fruit crops to which infectious diseases like citrus canker caused by Xanthomonas citri subs. citri, citrus variegated chlorosis caused by Xylella fastidiosa, "huanglongbing" associated with the presence of Candidatus liberibacter species, anthracnose caused by Colletotrichum gloeosporioides and citrus black spot caused by Phyllosticta citricarpa, impose significant losses. Control measures involve chemical treatment of orchards but often, eradication of infected plants is unavoidable. To circumvent the environmental impacts of pesticides and the socio-economic impacts of eradication, innovative antimicrobial approaches like photodynamic inactivation are being tested. There is evidence of the susceptibility of Xanthomonas citri subs. citri and C. gloeosporioides to photodynamic damage. However, the realistic assessment of perspectives for widespread application of photodynamic inactivation in the control of citrus diseases, necessarily implies that other microorganisms are also considered. This review intends to provide a critical summary of the current state of research on photodynamic inactivation of citrus pathogens and to identify some of the current limitations to the widespread use of photodynamic treatments in citrus crops.
Collapse
Affiliation(s)
- Joana R M Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel N Sierra-Garcia
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CICECO Aveiro-Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Raquel Nunes da Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,IBiMED, Department of Medical Sciences, University of Aveiro, Campus do Crasto, 3810-193, Aveiro, Portugal
| | - Ângela Cunha
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Xu Q, Feng H, Shao X. Light-induced activities of novel naphtho[1,8-ef]isoindole-7,8,10(9H)-trione and oxoisoaporphine derivatives towards mosquito larvae. Bioorg Med Chem Lett 2021; 48:128225. [PMID: 34174399 DOI: 10.1016/j.bmcl.2021.128225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Infected mosquitoes are significant vectors of dengue, yellow fever, chikungunya, zika and other pathogens. In the view of increasing resistance in mosquito larvae control, photoactivated insecticides is a promising approach by utilizing highly toxic singlet oxygen produced by photosensitizer through irradiation. However, the choice of photosensitizer for mosquito control is limited. Here, we report a novel series of naphtho[1,8-ef]isoindole-7,8,10(9H)-trione and oxoisoaporphines derivatives as excellent type II photosensitizers. Meanwhile, the light-dependent activities against permethrin-susceptible and permethrin-resistant strain of Aedes aegypti mosquito larvae of these compounds were evaluated. Among them, compound 7b was proved to be potential photodynamic insecticide due to its excellent phototoxicity, the LC50 value was 0.19 μg mL-1 under visible light irradiation. The irradiation-generated enhancement in the activity was more than 520-fold. This compound could be the potential candidate in the search for new photoactivated insecticide leads. Importantly, 7b has good fluorescence quantum yield (ϕF = 0.70), it can be used as a fluorescence indicator in mosquito larvae to observe uptake and morphology change.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Kaye EG, Kailass K, Sadovski O, Beharry AA. A Green-Absorbing, Red-Fluorescent Phenalenone-Based Photosensitizer as a Theranostic Agent for Photodynamic Therapy. ACS Med Chem Lett 2021; 12:1295-1301. [PMID: 34413959 DOI: 10.1021/acsmedchemlett.1c00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Phenalenone is a synthetically accessible, highly efficient photosensitizer with a near-unity singlet oxygen quantum yield. Unfortunately, its UV absorption and lack of fluorescence has made it unsuitable for fluorescence-guided photodynamic therapy against cancer. In this work, we synthesized a series of phenalenone derivatives containing electron-donating groups to red-shift the absorption spectrum and bromine(s) to permit good singlet oxygen production via the heavy-atom effect. Of the derivatives synthesized, the phenalenone containing an amine at the 6-position with bromines at the 2- and 5-positions (OE19) exhibited the longest absorption wavelength (i.e., green) and produced both singlet oxygen and red fluorescence efficiently. OE19 induced photocytotoxicity with nanomolar potency in 2D cultured PANC-1 cancer cells as well as light-induced destruction of PANC-1 spheroids with minimal dark toxicity. Overall, OE19 opens up the possibility of employing phenalenone-based photosensitizers as theranostic agents for photodynamic cancer therapy.
Collapse
Affiliation(s)
- Esther G. Kaye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Andrew A. Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
12
|
Castaño LM, Gómez AF, Gil J, Durango D. Perinaphthenone and derivatives as control agents of phytopathogenic fungi: fungitoxicity and metabolism. Heliyon 2021; 7:e06354. [PMID: 33748457 PMCID: PMC7969902 DOI: 10.1016/j.heliyon.2021.e06354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Metabolism and in vitro fungitoxicity of perinaphthenone against three economically important fungi of the citrus, Botryodiplodia spp., Botrytis spp. and Fusarium spp. were investigated. Perinaphthenone exhibited significant antifungal activity at 62.5 μM and above. Even, the inhibitory effect against Fusarium spp. was significantly enhanced by exposure to direct light. In addition, the metabolism of perinaphthenone by the three fungi was studied. Results show that perinaphthenone was transformed almost completely during the first 24 h; two major products, whose concentration increased progressively during the twelve days of the test, were isolated and identified as 2,3-dihydro-1H-phenalen-1-ol and 2,3-dihydro-phenalen-1-one. Although both metabolic products displayed a considerable fungistatic effect, their slightly lower activities in comparison to perinaphthenone indicate that the transformation was a detoxification process. Studies on the relationship between the effect of some substituents in the perinaphthenone core and the mycelial growth inhibition of Botryodiplodia spp. were also carried out. Results show that the α, β-unsaturated carbonyl system is an important structural requirement but not the only to be necessary for the strong antifungal activity of perinaphthenone. In general, the antifungal properties of perinaphthenone may be modulated through the incorporation of substituents in the naphthalene core or in the α, β-unsaturated carbonyl system. It is concluded that perinaphthenone could be used as an antifungal agent or as a structural template for the development of new fungicide compounds.
Collapse
Affiliation(s)
- Luisa M. Castaño
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59A-110, Medellín, Colombia
| | - Andrés F. Gómez
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59A-110, Medellín, Colombia
| | - Jesús Gil
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Carrera 65, 59A-110, Medellín, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59A-110, Medellín, Colombia
- Corresponding author.
| |
Collapse
|
13
|
Xu Q, Ji Y, Chen M, Shao X. 4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer. Photochem Photobiol Sci 2021; 20:501-512. [PMID: 33743176 DOI: 10.1007/s43630-021-00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. .,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Kuo C, Rao NS, Patil PB, Chiang T, Kavala V, Yao C. Synthesis of Perinaphthenones
via
BF
3
.
Et
2
O Mediated One‐Pot Cascade 4,5‐Annulation Reactions of 1‐Naphthols and Ynones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chun‐Wei Kuo
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| | - Naidu Sambasiva Rao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| | - Ting‐Ta Chiang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei 116, R.O.C. Taiwan
| |
Collapse
|
15
|
Gao F, Shao T, Yu Y, Xiong Y, Yang L. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat Commun 2021; 12:745. [PMID: 33531505 PMCID: PMC7854635 DOI: 10.1038/s41467-021-20965-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022] Open
Abstract
Acting by producing reactive oxygen species (ROS) in situ, nanozymes are promising as antimicrobials. ROS' intrinsic inability to distinguish bacteria from mammalian cells, however, deprives nanozymes of the selectivity necessary for an ideal antimicrobial. Here we report that nanozymes that generate surface-bound ROS selectively kill bacteria over mammalian cells. This result is robust across three distinct nanozymes that universally generate surface-bound ROS, with an oxidase-like silver-palladium bimetallic alloy nanocage, AgPd0.38, being the lead model. The selectivity is attributable to both the surface-bound nature of ROS these nanozymes generate and an unexpected antidote role of endocytosis. Though surface-bound, the ROS on AgPd0.38 efficiently eliminated antibiotic-resistant bacteria and effectively delayed the onset of bacterial resistance emergence. When used as coating additives, AgPd0.38 enabled an inert substrate to inhibit biofilm formation and suppress infection-related immune responses in mouse models. This work opens an avenue toward biocompatible nanozymes and may have implication in our fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Feng Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Tianyi Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunpeng Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lihua Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
16
|
Godard J, Brégier F, Arnoux P, Myrzakhmetov B, Champavier Y, Frochot C, Sol V. New Phenalenone Derivatives: Synthesis and Evaluation of Their Singlet Oxygen Quantum Yield. ACS OMEGA 2020; 5:28264-28272. [PMID: 33163810 PMCID: PMC7643266 DOI: 10.1021/acsomega.0c04172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 05/29/2023]
Abstract
1H-Phenalen-1-one is a very efficient and easy-to-synthesize photosensitizer. Many substitutions have been previously described, but most of them significantly reduce the singlet oxygen quantum yield. The chloromethyl derivative described elsewhere is a good starting point for the synthesis of many useful derivatives because of the methylene bridge that saves its unique photosensitizing properties. Eighteen new phenalenone derivatives have been synthesized, bearing amine, carboxylic acid, alcohol, azide, and other major functional groups in organic chemistry. These reactions were carried out in good-to-excellent yields, and most of these new compounds retained the singlet oxygen quantum yield of the parent molecule. These new derivatives are very promising precursors for a number of applications such as the development of photosensitive antimicrobial agents or materials.
Collapse
Affiliation(s)
- Jérémy Godard
- Université
de Limoges, Laboratoire PEIRENE EA 7500, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Frédérique Brégier
- Université
de Limoges, Laboratoire PEIRENE EA 7500, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
- GDR CNRS 2067, “MAPYRO” Paris, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génies
des Procédés, UMR 7274 CNRS, ENSIC, 1 Rue Grandville, 54001 Nancy Cedex, France
- GDR CNRS 2067, “MAPYRO” Paris, France
| | - Bauyrzhan Myrzakhmetov
- Université de Lorraine, Laboratoire Réactions et Génies
des Procédés, UMR 7274 CNRS, ENSIC, 1 Rue Grandville, 54001 Nancy Cedex, France
| | - Yves Champavier
- BISCEm, FR3503 GEIST, Centre de Biologie et de Recherche en Santé
(CBRS), 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génies
des Procédés, UMR 7274 CNRS, ENSIC, 1 Rue Grandville, 54001 Nancy Cedex, France
- GDR CNRS 2067, “MAPYRO” Paris, France
| | - Vincent Sol
- Université
de Limoges, Laboratoire PEIRENE EA 7500, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
- GDR CNRS 2067, “MAPYRO” Paris, France
| |
Collapse
|
17
|
Digby EM, Sadovski O, Beharry AA. An Activatable Photosensitizer Targeting Human NAD(P)H: Quinone Oxidoreductase 1. Chemistry 2020; 26:2713-2718. [PMID: 31814180 DOI: 10.1002/chem.201904607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Human NAD(P)H: Quinone Oxidoreductase 1 (hNQO1) is an attractive enzyme for cancer therapeutics due to its significant overexpression in tumors compared to healthy tissues. Its unique catalytic mechanism involving the two-electron reduction of quinone-based compounds has made it a useful target to exploit in the design of hNQO1 fluorescent chemosensors and hNQO1-activatable-prodrugs. In this work, hNQO1 is exploited for an optical therapeutic. The probe uses the photosensitizer, phenalenone, which is initially quenched via photo-induced electron transfer by the attached quinone. Native phenalenone is liberated in the presence of hNQO1 resulting in the production of cytotoxic singlet oxygen upon irradiation. hNQO1-mediated activation in A549 lung cancer cells containing high levels of hNQO1 induces a dose-dependent photo-cytotoxic response after irradiation. In contrast, no photo-cytotoxicity was observed in the normal lung cell line, MRC9. By targeting hNQO1, this scaffold can be used to enhance the cancer selectivity of photodynamic therapy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
18
|
Preuß A, Pfitzner M, Röder B. Mosquito larvae control by photodynamic inactivation of their intestinal flora - a proof of principal study on Chaoborus sp. Photochem Photobiol Sci 2019; 18:2374-2380. [PMID: 31380867 DOI: 10.1039/c9pp00156e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mosquitoes are carriers of dangerous infectious disease pathogens all over the world. Owing to travelling and global warming, tropical disease-carrying species such as Aedes, Anopheles and Culex spread beyond tropical and subtropical zones, even to Europe. The aim of this study is to investigate the potential of photodynamic agents to combat mosquito larvae. Three different photosensitizers were tested on Chaoborus sp. larvae: TMPyP and TPPS as antimicrobial photosensitizers, and mTHPC as a PDT drug against eukaryotic animal and human cells. Chaoborus sp. is a commercially available harmless species developing translucent larvae similar to the larvae of Aedes, Anopheles and Culex. The uptake of photosensitizers by the larvae was tested by fluorescence microscopy. All tested photosensitizers were observed in the intestinal tract of the living larvae, and none of the photosensitizers was found in the larval tissues. In phototoxicity tests, mTHPC and TPPS did not have any effect on the larvae, while TMPyP killed the larvae efficiently. TPPS is an antimicrobial photosensitizer, mainly phototoxic to Gram-positive bacteria. TMPyP is well known as an efficient photosensitizer against Gram-negative bacteria like most species of the intestinal flora. From this result, we conclude that the photodynamic inactivation of the intestinal flora leads to the death of mosquito larvae. The feasibility of mosquito larvae control by photodynamic inactivation of their intestinal flora instead of the direct killing of the larvae is a promising alternative to other highly toxic insecticides. Compared to insecticides and other biochemical toxins, photosensitizers are not dark toxic. No resistance against photosensitizers is known so far. Thus, the dilution of the active substances by being distributed in the environment, which promotes the development of resistance in biocides of all kinds, does not pose danger. Thus, it reduces the potential side effects on environment and human health.
Collapse
Affiliation(s)
- Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
| | | | | |
Collapse
|
19
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
20
|
Jing Y, Xu Q, Chen M, Shao X. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorg Med Chem 2019; 27:2201-2208. [DOI: 10.1016/j.bmc.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
|
21
|
Zhang J, Ahmad S, Wang LY, Han Q, Zhang JC, Luo YP. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of Aedes aegypti larvae. Free Radic Biol Med 2019; 137:87-98. [PMID: 31022448 DOI: 10.1016/j.freeradbiomed.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
α-Terthienyl (α-T) is a photosensitizer that produces many reactive oxygen species (ROS) under ultraviolet light. Here, we aimed to evaluate the oxidation mechanism of the 25%, 50%, and 75% lethal concentrations in Aedes aegypti larvae; the lethal concentration of α-T was used as the test value. The effects on mitochondria, oxidative stress, and cell death patterns caused by ROS were evaluated. The results showed that α-T mainly produced large amounts of ROS in the midgut of larvae. Moreover, mitochondrial ROS were increased in midgut cells, and the production of ROS sites, such as complex enzymes, was inhibited, resulting in enhanced production of ROS. Ultrastructural analysis of mitochondria revealed significant vacuolation, decreased activity of tricarboxylic acid cycle enzymes, and reduced ATP content and mitochondrial membrane potential in the high concentration group compared with those in the control group. Additionally, mitochondrial biosynthesis was blocked in the high concentration group. Thus, exposure to α-T disrupted mitochondrial function, although the mitochondrial DNA content may have increased because of mitochondrial self-protection mechanisms against oxidative stress. Furthermore, high concentrations of α-T aggravated oxidative stress and increased the number of intracellular oxidative damage products. Reverse transcription polymerase chain reaction and fluorescence staining showed that ROS induced by low α-T concentrations upregulated apoptotic genes, including Dronc (P < 0.05), thereby promoting apoptosis. Moderate concentrations of α-T promoted autophagy through induction of ROS, inhibited apoptosis, and induced necrosis. In contrast, high α-T concentrations induced high levels of ROS, which caused mitochondrial dysfunction and increased cytoplasmic Ca2+ concentration, directly inducing cell necrosis. We also found that α-T may disrupt the permeability of the peritrophic membrane, leading to intestinal barrier dysfunction. These results provided insights into the mode of action of α-T in Aedes aegypti.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Shakil Ahmad
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Qian Han
- The Laboratory of Tropical Animal Medicine and Vector Biology, Hainan University, Haikou, Hainan 570228, PR China
| | - Jian-Chun Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, Hainan 570228, PR China.
| |
Collapse
|
22
|
Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broad-spectrum photodynamic insecticides. PLoS One 2019; 14:e0217355. [PMID: 31141567 PMCID: PMC6541276 DOI: 10.1371/journal.pone.0217355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are significant vectors, responsible for transmitting serious infectious diseases, including the recent epidemics of global significance caused by, for example, Zika, Dengue and Chikungunya viruses. The chemical insecticides in use for mosquito control are toxic and ineffective due to the development of resistance to them. The new approach to reduce mosquito population by releasing genetically modified males to cause female infertility is still under environmental safety evaluation. Photodynamic insecticides (PDI) have long been known as a safe and effective alternative by using dyes as the photosensitizers (PS) for activation with light to generate insecticidal singlet oxygen and reactive oxygen species. This approach warrants re-examination with advances in the chemical synthesis of novel PS, e.g. phthalocyanines (PC). Nine PC were compared with five porphyrin derivatives and two classic PS of halogenated fluoresceins, i.e. cyanosine and rose bengal experimentally for photodynamic treatment (PDT) of the larvae of laboratory-reared Aedes mosquitoes and their cell lines. Groups of 2nd instar larvae were first exposed overnight to graded concentrations of each PS in the dark followed by their exposure to dim light for up to 7 hours. Larvae of both experimental and control groups were examined hourly for viability based on their motility. Monolayers of mosquito cells were similarly PS-sensitized and exposed briefly to light at the PS-specific excitation wavelengths. Cell viability was assessed by MTT reduction assays. Of the 16 PS examined for photodynamic inactivation of the mosquito larvae, effective are three novel PC, i.e. amino-Si-PC1 and -PC2, anilinium Zn-PC3.4, pyridyloxy Si-PC14 and two porphyrin derivatives, i.e. TPPS2 and TMAP. Their EC50 values were determined, all falling in the nanomolar range lower than those of rose bengal and cyanosine. All PS effective in vivo were also found to dose-dependently inactivate mosquito cells photodynamically in vitro, providing cellular basis for their larvicidal activities. The present findings of novel PC with effective photodynamic larvicidal activities provide fresh impetus to the development of PDI with their established advantages in safety and efficacy. Toward that end, the insect cell lines are of value for rapid screening of new PC. The optimal excitability of PC with insect-invisible red light is inferred to have the potential to broaden the range of targetable insect pests.
Collapse
|
23
|
Siewert B, Vrabl P, Hammerle F, Bingger I, Stuppner H. A convenient workflow to spot photosensitizers revealed photo-activity in basidiomycetes. RSC Adv 2019; 9:4545-4552. [PMID: 30931108 PMCID: PMC6394893 DOI: 10.1039/c8ra10181g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 02/03/2023] Open
Abstract
Photodynamic therapy (PDT) is an alternative approach for the treatment of neoplastic diseases employing photosensitizers activated by light. In order to discover new natural photosensitizers, a convenient workflow was established. To validate the workflow, fungi were selected, because we hypothesized that fruiting bodies and mycelia are an overlooked source. The results proved the hypothesis, as exorbitant high photo-cytotoxicity values were detected. For example, the acetone extract of Cortinarius croceus was characterized by an EC50, 9.3 J cm-2 of 1 μg mL-1 against cells of a lung cancer cell-line (A549). In sum, a low-cost workflow for the detection and biological evaluation of photosensitizers is presented and discussed. Furthermore, this paper provides the first experimental evidence for phototoxic metabolites in basidiomycetes. This hints towards a new assignable function of fungal pigments, i.e. photochemical defense.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020 Austria
| | - Fabian Hammerle
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Isabella Bingger
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020 Austria
- Management Center Innsbruck, Maximilianstraße 2, Innsbruck, 6020 Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| |
Collapse
|
24
|
Rekha R, Vaseeharan B, Vijayakumar S, Abinaya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN. Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors - Insights on their toxicity and internalization. J Trace Elem Med Biol 2019; 51:191-203. [PMID: 30466931 DOI: 10.1016/j.jtemb.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 μg/ml = 4.0 mm, 75 μg/ml = 7.2 mm) and E. faecalis (50 μg/ml = 3.1 mm, 75 μg/ml = 5.1 mm), over P. aeruginosa (50 μg/ml = 2.1 mm, 75 μg/ml = 4.8 mm), E. coli (50 μg/ml = 1.3 mm, 75 μg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 μg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 μg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India.
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Muthukumar Abinaya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam, 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
25
|
Silva AF, Borges A, Giaouris E, Graton Mikcha JM, Simões M. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit Rev Microbiol 2018; 44:667-684. [PMID: 30318945 DOI: 10.1080/1040841x.2018.1491528] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne microbial diseases are still considered a growing public health problem worldwide despite the global continuous efforts to ensure food safety. The traditional chemical and thermal-based procedures applied for microbial growth control in the food industry can change the food matrix and lead to antimicrobial resistance. Moreover, currently applied disinfectants have limited efficiency against biofilms. Therefore, antimicrobial photodynamic therapy (aPDT) has become a novel alternative for controlling foodborne pathogenic bacteria in both planktonic and sessile states. The use of aPDT in the food sector is attractive as it is less likely to cause antimicrobial resistance and it does not promote undesirable nutritional and sensory changes in the food matrix. In this review, aspects on the antimicrobial photodynamic technology applied against foodborne pathogenic bacteria and studied in recent years are presented. The application of photodynamic inactivation as an antibiofilm strategy is also reviewed.
Collapse
Affiliation(s)
- Alex Fiori Silva
- a Postgraduate Program of Health Sciences , State University of Maringá , Maringá , Paraná , Brazil.,b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Anabela Borges
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Efstathios Giaouris
- c Department of Food Science and Nutrition, Faculty of the Environment , University of the Aegean , Lemnos , Greece
| | | | - Manuel Simões
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| |
Collapse
|
26
|
Lima AR, Silva CM, Caires CSA, Prado ED, Rocha LRP, Cabrini I, Arruda EJ, Oliveira SL, Caires ARL. Evaluation of Eosin-Methylene Blue as a Photosensitizer for Larval Control of Aedes aegypti by a Photodynamic Process. INSECTS 2018; 9:insects9030109. [PMID: 30200177 PMCID: PMC6163889 DOI: 10.3390/insects9030109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 11/21/2022]
Abstract
Aedes aegypti (Ae. aegypti) is a competent vector for transmitting important viral diseases such as yellow fever, dengue, chikungunya, and Zika. Several strategies have been applied to avoid Ae. aegypti proliferation by using environmental management, biological, and chemical approaches. However, the development of new methods for effective control of the insect vector population is still needed. Photodynamic control is an alternative way to control the vector population by using a physical approach based on the larval phototoxicity of a photosensitizer. In this context, the present study evaluated the use of eosin-methylene blue (EMB) as a new photosensitizer for photodynamic control of Ae. aegypti larval populations. The photodynamic assays were performed submitting Ae. aegypti third-instar larvae to different EMB concentrations (0.0, 0.5, 1.0, 5.0, 10.0, 50.0, and 100.0 µg mL−1) in combination of three different light doses (24.3, 48.6, and 97.2 J cm−2) under either white-light radiation from RGB LEDs or sunlight. The results demonstrated that EMB presented a rapid internalization into the larvae and was phototoxic. The photodynamic action induced 100% of larval mortality after about 40 min of sunlight irradiation even using low EMB concentration (0.5 µg mL−1). The findings reveal EMB as an effective photoactive compound to control larval populations of Ae. aegypti by photodynamic process induced by either sunlight or white-light from RGB LEDs.
Collapse
Affiliation(s)
- Alessandra R Lima
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil.
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Cicera M Silva
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil.
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Cynthia S A Caires
- Grupo de Espectroscopia e Bioinformática Aplicados a Biodiversidade e a Saúde, Faculdade de Medicina, CP 549, Campo Grande, MS 79070-900, Brazil.
| | - Esmael D Prado
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Luciana R P Rocha
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Isaias Cabrini
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Eduardo J Arruda
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, Dourados, MS 79804-970, Brazil.
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil.
| | - Anderson R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, MS 79070-900, Brazil.
| |
Collapse
|
27
|
Salmerón ML, Quintana-Aguiar J, De La Rosa JV, López-Blanco F, Castrillo A, Gallardo G, Tabraue C. Phenalenone-photodynamic therapy induces apoptosis on human tumor cells mediated by caspase-8 and p38-MAPK activation. Mol Carcinog 2018; 57:1525-1539. [PMID: 30035337 DOI: 10.1002/mc.22875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/23/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a rising and hopeful treatment for solid tumors and others malignancies. PDT uses harmless visible light to activate a tumor-associated photosensitizer (PS). The excited PS generates cytotoxic reactive oxygen species (ROS) that induce damage and death of tumor cells. It is known that certain phytoalexins and phytoanticipins derived from plants often display a PS-like activity due to a phenalenone (PN) moiety-an efficient singlet oxygen photosensitizer-in its skeleton. The aim of this study is to explore the phototoxic properties of PN on the human cell line tumor-derived HL60 (acute promyelocytic leukemia) and to identify the cell-specific targets of ROS involved in the tumor cell death. Our results reveal that PN acts as an excellent PS, showing a potent antitumor cell activity in presence of light. PN-PDT generates intracellular ROS, via oxidation reaction mechanisms type I and II, resulting in an induction of apoptosis. Moreover, both extrinsic (through direct activation of caspase-3) and intrinsic (through mitochondrial depolarization) pathways of apoptosis are induced by PN-PDT. Using pharmacologic inhibitors, we also find that PN-PDT activates caspase-8/tBid and p38-MAPK, triggering the activation of the apoptotic pathways. Although, survival pathways are also promoted through PI3 K/Akt and JNK activation, the net result of PN-PDT is the tumor cell death. The present work identifies to PN, for the first time, as a potent photosensitizer in human tumor cell lines and proposes a mechanism by which ROS induces apoptosis of tumor cell.
Collapse
Affiliation(s)
- María L Salmerón
- Facultad de Ciencias, Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - José Quintana-Aguiar
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología. Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan V De La Rosa
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Félix López-Blanco
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Germán Gallardo
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Carlos Tabraue
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain.,Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
28
|
Savi DC, Shaaban KA, Gos FMWR, Ponomareva LV, Thorson JS, Glienke C, Rohr J. Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites. Sci Rep 2018; 8:3122. [PMID: 29449610 PMCID: PMC5814415 DOI: 10.1038/s41598-018-21400-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.
Collapse
Affiliation(s)
- Daiani C Savi
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Francielly Maria Wilke Ramos Gos
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil
| | - Larissa V Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.,Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | - Chirlei Glienke
- Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP, 81531-970, Curitiba, PR, Brazil.
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, 40536-0596, USA.
| |
Collapse
|