1
|
Yin H, Sun X, Yang K, Lan Y, Lu Z. Regulation of dentate gyrus pattern separation by hilus ectopic granule cells. Cogn Neurodyn 2025; 19:10. [PMID: 39801911 PMCID: PMC11718051 DOI: 10.1007/s11571-024-10204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 01/16/2025] Open
Abstract
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear. Therefore, in this paper, we will construct the DG neuronal circuit and focus on discussing effects of HEGCs on pattern separation numerically. The obtained results showed that HEGCs impaired pattern separation efficiency since the sparse firing of granule cells (GCs) was destroyed. We provided new insights into the underlining mechanisms of HEGCs impairing pattern separation through analyzing two excitatory circuits: GC-HEGC-GC and GC-Mossy cell (MC)-GC, both of which involve the participation of HEGCs within the DG. It is revealed that the recurrent excitatory circuit GC-HEGC-GC formed by HEGCs mossy fiber sprouting significantly enhanced GCs activity, consequently disrupted pattern separation. However, another excitatory circuit had negligible effects on pattern separation due to the direct and indirect influences of MCs on GCs, which in turn led to the GCs sparse firing. Thus, HEGCs impair DG pattern separation mainly through the GC-HEGC-GC circuit and therefore ablating HEGCs may be one of the effective ways to improve pattern separation in patients with epilepsy.
Collapse
Affiliation(s)
- Haibin Yin
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Kai Yang
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Zeying Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| |
Collapse
|
2
|
Adam CD, Schellinger ED, White A, Joksimovic SM, Takano H, Coulter DA. Chemogenetic Breakdown of the Dentate Gate Causes Seizures and Spatial Memory Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623184. [PMID: 39605633 PMCID: PMC11601345 DOI: 10.1101/2024.11.12.623184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The dentate gyrus has often been posited to act as a gate that dampens highly active afferent input into the hippocampus. Effective gating is thought to prevent seizure initiation and propagation in the hippocampus and support learning and memory processes. Pathological changes to DG circuitry that occur in temporal lobe epilepsy (TLE) can increase DG excitability and impair its gating ability which can contribute to seizures and cognitive deficits. There is evidence that TLE pathologies and seizures may independently contribute to learning and memory deficits in TLE through distinct mechanisms. These two factors are difficult to untangle since TLE pathologies can drive seizures, and seizures can worsen TLE pathologies. Here we assessed whether chemogenetically increasing dentate granule cell (DGC) excitability was enough to break down the dentate gate in the absence of TLE pathologies. We found that increasing excitability specifically in DGCs caused seizures in non-epileptic mice. Importantly, due to the modulatory nature of DREADD effects, seizures were driven by intrinsic circuit activity rather than direct activation of DGCs. These seizures resulted in a spatial memory deficit when induced after training in the spatial object recognition task and showed stereotypical patterns of activity in miniscope calcium recordings. Our results provide direct support for the dentate gate hypothesis since seizures could be induced in non-epileptic animals by artificially degrading the dentate gate with chemogenetics in the absence of epilepsy pathologies.
Collapse
Affiliation(s)
- Christopher D Adam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily D Schellinger
- The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Alicia White
- The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Srdjan M Joksimovic
- The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hajime Takano
- The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas A Coulter
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
3
|
Takano H, Hsu FC, Coulter DA. Prolonged Hyperactivity Elicits Massive and Persistent Chloride Ion Redistribution in Subsets of Cultured Hippocampal Dentate Granule Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618704. [PMID: 39464011 PMCID: PMC11507851 DOI: 10.1101/2024.10.16.618704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chloride ions play a critical role in neuronal inhibition through the activity of chloride-permeable GABAA receptor channels. Ion transporters, chloride channels, and immobile ion species tightly regulate intracellular chloride concentrations. Several studies related to epilepsy suggest that chloride extrusion function may decrease in an activity-dependent manner. Consequently, it is crucial to investigate whether intense neuronal activity, as observed during status epilepticus, could lead to sustained increases in intracellular chloride levels in neurons, which in turn could contribute to epilepsy-associated hyperexcitability. This study utilized the chloride sensitive indicator (6-Methoxyquinolinio) acetic acid ethyl ester bromide (MQAE) combined with fluorescence lifetime imaging (FLIM) to examine whether application of the convulsant, pilocarpine, a muscarinic acetylcholine receptor agonist, could induce synchronous epileptiform activity and elevate intracellular chloride concentrations in hippocampal slice cultures. Using a Gaussian mixture model, we identified a multimodal distribution of intracellular chloride levels among neurons, with a significant subset of these cells exhibiting massive and prolonged (days) chloride accumulation. The combination of multicellular imaging and statistical analysis served as a powerful tool for studying the emergence of multiple, distinct populations of neurons in pathological conditions, in contrast to homogeneous populations evident under control conditions.
Collapse
Affiliation(s)
- Hajime Takano
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Fu-Chun Hsu
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Douglas A. Coulter
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
4
|
Ruiz-Reig N, Chehade G, Yerna X, Durá I, Gailly P, Tissir F. Aberrant generation of dentate gyrus granule cells is associated with epileptic susceptibility in p53 conditional knockout mice. Front Neurosci 2024; 18:1418973. [PMID: 39206115 PMCID: PMC11349535 DOI: 10.3389/fnins.2024.1418973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal apoptosis is a mechanism used to clear the cells of oxidative stress or DNA damage and refine the final number of neurons for a functional neuronal circuit. The tumor suppressor protein p53 is a key regulator of the cell cycle and serves as a checkpoint for eliminating neurons with high DNA damage, hyperproliferative signals or cellular stress. During development, p53 is largely expressed in progenitor cells. In the adult brain, p53 expression is restricted to the neurogenic niches where it regulates cell proliferation and self-renewal. To investigate the functional consequences of p53 deletion in the cortex and hippocampus, we generated a conditional mutant mouse (p53-cKO) in which p53 is deleted from pallial progenitors and their derivatives. Surprisingly, we did not find any significant change in the number of neurons in the mutant cortex or CA region of the hippocampus compared with control mice. However, p53-cKO mice exhibit more proliferative cells in the subgranular zone of the dentate gyrus and more granule cells in the granular cell layer. Glutamatergic synapses in the CA3 region are more numerous in p53-cKO mice compared with control littermates, which correlates with overexcitability and higher epileptic susceptibility in the mutant mice.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Georges Chehade
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Irene Durá
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fadel Tissir
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Shu WC, Jackson MB. Intrinsic and Synaptic Contributions to Repetitive Spiking in Dentate Granule Cells. J Neurosci 2024; 44:e0716232024. [PMID: 38503495 PMCID: PMC11063872 DOI: 10.1523/jneurosci.0716-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Repetitive firing of granule cells (GCs) in the dentate gyrus (DG) facilitates synaptic transmission to the CA3 region. This facilitation can gate and amplify the flow of information through the hippocampus. High-frequency bursts in the DG are linked to behavior and plasticity, but GCs do not readily burst. Under normal conditions, a single shock to the perforant path in a hippocampal slice typically drives a GC to fire a single spike, and only occasionally more than one spike is seen. Repetitive spiking in GCs is not robust, and the mechanisms are poorly understood. Here, we used a hybrid genetically encoded voltage sensor to image voltage changes evoked by cortical inputs in many mature GCs simultaneously in hippocampal slices from male and female mice. This enabled us to study relatively infrequent double and triple spikes. We found GCs are relatively homogeneous and their double spiking behavior is cell autonomous. Blockade of GABA type A receptors increased multiple spikes and prolonged the interspike interval, indicating inhibitory interneurons limit repetitive spiking and set the time window for successive spikes. Inhibiting synaptic glutamate release showed that recurrent excitation mediated by hilar mossy cells contributes to, but is not necessary for, multiple spiking. Blockade of T-type Ca2+ channels did not reduce multiple spiking but prolonged interspike intervals. Imaging voltage changes in different GC compartments revealed that second spikes can be initiated in either dendrites or somata. Thus, pharmacological and biophysical experiments reveal roles for both synaptic circuitry and intrinsic excitability in GC repetitive spiking.
Collapse
Affiliation(s)
- Wen-Chi Shu
- Department of Neuroscience and Biophysics Program, University of Wisconsin-Madison, Wisconsin 53705
| | - Meyer B Jackson
- Department of Neuroscience and Biophysics Program, University of Wisconsin-Madison, Wisconsin 53705
| |
Collapse
|
6
|
Kurki SN, Srinivasan R, Laine J, Virtanen MA, Ala-Kurikka T, Voipio J, Kaila K. Acute neuroinflammation leads to disruption of neuronal chloride regulation and consequent hyperexcitability in the dentate gyrus. Cell Rep 2023; 42:113379. [PMID: 37922309 DOI: 10.1016/j.celrep.2023.113379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/15/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023] Open
Abstract
Neuroinflammation is a salient part of diverse neurological and psychiatric pathologies that associate with neuronal hyperexcitability, but the underlying molecular and cellular mechanisms remain to be identified. Here, we show that peripheral injection of lipopolysaccharide (LPS) renders the dentate gyrus (DG) hyperexcitable to perforant pathway stimulation in vivo and increases the internal spiking propensity of dentate granule cells (DGCs) in vitro 24 h post-injection (hpi). In parallel, LPS leads to a prominent downregulation of chloride extrusion via KCC2 and to the emergence of NKCC1-mediated chloride uptake in DGCs under experimental conditions optimized to detect specific changes in transporter efficacy. These data show that acute neuroinflammation leads to disruption of neuronal chloride regulation, which unequivocally results in a loss of GABAergic inhibition in the DGCs, collapsing the gating function of the DG. The present work provides a mechanistic explanation for neuroinflammation-driven hyperexcitability and consequent cognitive disturbance.
Collapse
Affiliation(s)
- Samu N Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Rakenduvadhana Srinivasan
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jens Laine
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mari A Virtanen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Feng Y, Shuman T. Blame it on the Inputs: Overexcited Entorhinal Inputs Drive Dentate Gyrus Hyperexcitability in a Mouse Model of Dravet Syndrome. Epilepsy Curr 2022; 22:372-374. [PMID: 36426186 PMCID: PMC9661622 DOI: 10.1177/15357597221112801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Corticohippocampal Circuit Dysfunction in a Mouse Model of Dravet Syndrome Mattis J, Somarowthu A, Goff KM, et al. ELife . 2022;11:e69293. doi:10.7554/eLife.69293 . Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS (Scn1a ± ) mice. We performed two-photon calcium imaging in brain slice to uncover a profound dysfunction of filtering of perforant path input by DG in young adult Scn1a ± mice. This was not due to dysfunction of DG parvalbumin inhibitory interneurons (PV-INs), which were only mildly impaired at this timepoint; however, we identified enhanced excitatory input to granule cells, suggesting that circuit dysfunction is due to excessive excitation rather than impaired inhibition. We confirmed that both optogenetic stimulation of entorhinal cortex and selective chemogenetic inhibition of DG PV-INs lowered seizure threshold in vivo in young adult Scn1a ± mice. Optogenetic activation of PV-INs, on the other hand, normalized evoked responses in granule cells in vitro. These results establish the corticohippocampal circuit as a key locus of pathology in Scn1a ± mice and suggest that PV-INs retain powerful inhibitory function and may be harnessed as a potential therapeutic approach toward seizure modulation.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
9
|
Mattis J, Somarowthu A, Goff KM, Jiang E, Yom J, Sotuyo N, Mcgarry LM, Feng H, Kaneko K, Goldberg EM. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. eLife 2022; 11:e69293. [PMID: 35212623 PMCID: PMC8920506 DOI: 10.7554/elife.69293] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS (Scn1a+/-) mice. We performed two-photon calcium imaging in brain slice to uncover a profound dysfunction of filtering of perforant path input by DG in young adult Scn1a+/- mice. This was not due to dysfunction of DG parvalbumin inhibitory interneurons (PV-INs), which were only mildly impaired at this timepoint; however, we identified enhanced excitatory input to granule cells, suggesting that circuit dysfunction is due to excessive excitation rather than impaired inhibition. We confirmed that both optogenetic stimulation of entorhinal cortex and selective chemogenetic inhibition of DG PV-INs lowered seizure threshold in vivo in young adult Scn1a+/- mice. Optogenetic activation of PV-INs, on the other hand, normalized evoked responses in granule cells in vitro. These results establish the corticohippocampal circuit as a key locus of pathology in Scn1a+/- mice and suggest that PV-INs retain powerful inhibitory function and may be harnessed as a potential therapeutic approach toward seizure modulation.
Collapse
Affiliation(s)
- Joanna Mattis
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kevin M Goff
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Evan Jiang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Jina Yom
- College of Arts and Sciences, The University of PennsylvaniaPhiladelphiaUnited States
| | - Nathaniel Sotuyo
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Laura M Mcgarry
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ethan M Goldberg
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Neuroscience, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
11
|
Osuntokun OS, Olayiwola G, Adekomi DA, Oyeyipo IP, Ayoka AO. Proanthocyanidin from Vitis vinifera attenuates memory impairment due to convulsive status epilepticus. Epilepsy Behav 2021; 124:108333. [PMID: 34619539 DOI: 10.1016/j.yebeh.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of proanthocyanidin-rich fraction (PRF) of Vitis vinifera seed extract on the markers of hippocampal-dependent memory in convulsive status epilepticus (CSE) rat model. One hundred juvenile Wistar rats were randomized into 6 groups. Group 1 (n = 10) received propylene glycol (PG 0.1 ml/100 g) intraperitoneally (i.p), while convulsion was induced in groups 2-6 (n = 18 each) using lithium (127 mg/kg i.p) and pilocarpine hydrochloride (40 mg/kg i.p). The established CSE rats in groups 2-6 received a daily treatment of PG (0.1 ml i.p), PRF (30 mg/kg i.p), PRF (20 mg/kg BW i.p), PRF (10 mg/kg BW i.p) or diazepam (5 mg/kg BW i.p) for seven days. Thereafter, they were kept untreated but with access to feed and water for 21 days. The control and CSE-treated rats were subjected to behavioral tests, while the biochemical and histomorphological evaluations of the hippocampus were done after the sacrifice. The results were presented as mean ± SEM in graphs or tables. The level of significance was considered when p < 0.05. There was significant decrease in the hippocampal-dependent memory, hippocampal weight and an increased malondialdehyde concentration following CSE. The activities of acetylcholinesterase decreased significantly in the PRF-treated CSE rats. The hippocampal glial cells and granule count increased significantly following CSE, with various neurodegenerative features in the CA1 of the hippocampus. These derangements were attenuated significantly following PRF treatment. Memory impairment following CSE may be attenuated with the administration of PRF from V. vinifera seed in rats.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Ibukun Peter Oyeyipo
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
12
|
Lybrand ZR, Goswami S, Zhu J, Jarzabek V, Merlock N, Aktar M, Smith C, Zhang L, Varma P, Cho KO, Ge S, Hsieh J. A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy. Nat Commun 2021; 12:1423. [PMID: 33658509 PMCID: PMC7930276 DOI: 10.1038/s41467-021-21649-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
In the mammalian hippocampus, adult-born granule cells (abGCs) contribute to the function of the dentate gyrus (DG). Disruption of the DG circuitry causes spontaneous recurrent seizures (SRS), which can lead to epilepsy. Although abGCs contribute to local inhibitory feedback circuitry, whether they are involved in epileptogenesis remains elusive. Here, we identify a critical window of activity associated with the aberrant maturation of abGCs characterized by abnormal dendrite morphology, ectopic migration, and SRS. Importantly, in a mouse model of temporal lobe epilepsy, silencing aberrant abGCs during this critical period reduces abnormal dendrite morphology, cell migration, and SRS. Using mono-synaptic tracers, we show silencing aberrant abGCs decreases recurrent CA3 back-projections and restores proper cortical connections to the hippocampus. Furthermore, we show that GABA-mediated amplification of intracellular calcium regulates the early critical period of activity. Our results demonstrate that aberrant neurogenesis rewires hippocampal circuitry aggravating epilepsy in mice.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
- Department of Biology, Texas Woman's University, Denton, TX, USA
| | - Sonal Goswami
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jingfei Zhu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Veronica Jarzabek
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolas Merlock
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Mahafuza Aktar
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Courtney Smith
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ling Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Parul Varma
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Kyung-Ok Cho
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Jenny Hsieh
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
14
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
15
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
16
|
Royero PX, Higa GSV, Kostecki DS, Dos Santos BA, Almeida C, Andrade KA, Kinjo ER, Kihara AH. Ryanodine receptors drive neuronal loss and regulate synaptic proteins during epileptogenesis. Exp Neurol 2020; 327:113213. [PMID: 31987836 DOI: 10.1016/j.expneurol.2020.113213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Status epilepticus (SE) is a clinical emergency that can lead to the development of temporal lobe epilepsy (TLE). The development and maintenance of spontaneous seizures in TLE are linked to calcium (Ca+2)-dependent processes such as neuronal cell loss and pathological synaptic plasticity. It has been shown that SE produces an increase in ryanodine receptor-dependent intracellular Ca+2 levels in hippocampal neurons, which remain elevated during the progression of the disease. However, the participation of ryanodine receptors (RyRs) in the neuronal loss and circuitry rewiring that take place in the hippocampus after SE remains unknown. In this context, we first investigated the functional role of RyRs on the expression of synaptic and plasticity-related proteins during epileptogenesis induced by pilocarpine in Wistar rats. Intrahippocampal injection of dantrolene, a selective pharmacological blocker of RyRs, caused the increase of the presynaptic protein synapsin I (SYN) and synaptophysin (SYP) 48 h after SE induction. Specifically, we observed that SYN and SYP were regulated in hippocampal regions known to receive synaptic inputs, revealing that RyRs could be involved in network changes and/or neuronal protection after SE induction. In order to investigate whether the changes in SYN and SYP were related to neuroplastic changes that could contribute to pathological processes that occur after SE, we evaluated the levels of activity-regulated cytoskeleton-associated protein (ARC) and mossy fiber sprouting in the dentate gyrus (DG). Interestingly, we observed that although SE induced the appearance of intense ARC-positive cells, dantrolene treatment did not change the levels of ARC in both western blot and immunofluorescence analyses. Accordingly, in the same experimental conditions, we were not able to detect changes in the levels of both pre- and post-synaptic plasticity-related proteins, growth associated protein-43 (GAP-43) and postsynaptic density protein-95 (PSD-95), respectively. Additionally, the density of mossy fiber sprouting in the DG was not increased by dantrolene treatment. We next examined the effects of intrahippocampal injection of dantrolene on neurodegeneration. Notably, dantrolene promoted neuroprotective effects by decreasing neuronal cell loss in CA1 and CA3, which explains the increased levels of synaptic proteins, and the apparent lack of positive effect on pathological plasticity. Taken together, our results revealed that RyRs may have a major role in the hippocampal neurodegeneration associated to the development of acquired epilepsy.
Collapse
Affiliation(s)
- Pedro Xavier Royero
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daiane Soares Kostecki
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Bianca Araújo Dos Santos
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Cayo Almeida
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Kézia Accioly Andrade
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Carver CM, Hastings SD, Cook ME, Shapiro MS. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K + channel plasticity. Hippocampus 2019; 30:435-455. [PMID: 31621989 DOI: 10.1002/hipo.23163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mileah E Cook
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
18
|
Kahn JB, Port RG, Yue C, Takano H, Coulter DA. Circuit-based interventions in the dentate gyrus rescue epilepsy-associated cognitive dysfunction. Brain 2019; 142:2705-2721. [PMID: 31363737 PMCID: PMC6736326 DOI: 10.1093/brain/awz209] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy is associated with significant structural pathology in the hippocampus. In the dentate gyrus, the summative effect of these pathologies is massive hyperexcitability in the granule cells, generating both increased seizure susceptibility and cognitive deficits. To date, therapeutic approaches have failed to improve the cognitive symptoms in fully developed, chronic epilepsy. As the dentate's principal signalling population, the granule cells' aggregate excitability has the potential to provide a mechanistically-independent downstream target. We examined whether normalizing epilepsy-associated granule cell hyperexcitability-without correcting the underlying structural circuit disruptions-would constitute an effective therapeutic approach for cognitive dysfunction. In the systemic pilocarpine mouse model of temporal lobe epilepsy, the epileptic dentate gyrus excessively recruits granule cells in behavioural contexts, not just during seizure events, and these mice fail to perform on a dentate-mediated spatial discrimination task. Acutely reducing dorsal granule cell hyperactivity in chronically epileptic mice via either of two distinct inhibitory chemogenetic receptors rescued behavioural performance such that they responded comparably to wild type mice. Furthermore, recreating granule cell hyperexcitability in control mice via excitatory chemogenetic receptors, without altering normal circuit anatomy, recapitulated spatial memory deficits observed in epileptic mice. However, making the granule cells overly quiescent in both epileptic and control mice again disrupted behavioural performance. These bidirectional manipulations reveal that there is a permissive excitability window for granule cells that is necessary to support successful behavioural performance. Chemogenetic effects were specific to the targeted dorsal hippocampus, as hippocampal-independent and ventral hippocampal-dependent behaviours remained unaffected. Fos expression demonstrated that chemogenetics can modulate granule cell recruitment via behaviourally relevant inputs. Rather than driving cell activity deterministically or spontaneously, chemogenetic intervention merely modulates the behaviourally permissive activity window in which the circuit operates. We conclude that restoring appropriate principal cell tuning via circuit-based therapies, irrespective of the mechanisms generating the disease-related hyperactivity, is a promising translational approach.
Collapse
Affiliation(s)
- Julia B Kahn
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell G Port
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Cuiyong Yue
- The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas A Coulter
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abstract
Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these new neurons can have disease-modifying effects in epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
20
|
Restrained Dendritic Growth of Adult-Born Granule Cells Innervated by Transplanted Fetal GABAergic Interneurons in Mice with Temporal Lobe Epilepsy. eNeuro 2019; 6:ENEURO.0110-18.2019. [PMID: 31043461 PMCID: PMC6497906 DOI: 10.1523/eneuro.0110-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here, we address this question by birth-dating GCs with retrovirus at different times up to 12 weeks after pilocarpine-induced TLE in adult mice. Channelrhodopsin 2 (ChR2)-enhanced yellow fluorescent protein (EYFP)-expressing medial-ganglionic eminence (MGE)-derived GABAergic interneurons from embryonic day (E)13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents (IPSCs) were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of six to eight weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.
Collapse
|
21
|
Johnson SA, Turner SM, Lubke KN, Cooper TL, Fertal KE, Bizon JL, Maurer AP, Burke SN. Experience-Dependent Effects of Muscimol-Induced Hippocampal Excitation on Mnemonic Discrimination. Front Syst Neurosci 2019; 12:72. [PMID: 30687032 PMCID: PMC6335355 DOI: 10.3389/fnsys.2018.00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Memory requires similar episodes with overlapping features to be represented distinctly, a process that is disrupted in many clinical conditions as well as normal aging. Data from humans have linked this ability to activity in hippocampal CA3 and dentate gyrus (DG). While animal models have shown the perirhinal cortex is critical for disambiguating similar stimuli, hippocampal activity has not been causally linked to discrimination abilities. The goal of the current study was to determine how disrupting CA3/DG activity would impact performance on a rodent mnemonic discrimination task. Rats were surgically implanted with bilateral guide cannulae targeting dorsal CA3/DG. In Experiment 1, the effect of intra-hippocampal muscimol on target-lure discrimination was assessed within subjects in randomized blocks. Muscimol initially impaired discrimination across all levels of target-lure similarity, but performance improved on subsequent test blocks irrespective of stimulus similarity and infusion condition. To clarify these results, Experiment 2 examined whether prior experience with objects influenced the effect of muscimol on target-lure discrimination. Rats that received vehicle infusions in a first test block, followed by muscimol in a second block, did not show discrimination impairments for target-lure pairs of any similarity. In contrast, rats that received muscimol infusions in the first test block were impaired across all levels of target-lure similarity. Following discrimination tests, rats from Experiment 2 were trained on a spatial alternation task. Muscimol infusions increased the number of spatial errors made, relative to vehicle infusions, confirming that muscimol remained effective in disrupting behavioral performance. At the conclusion of behavioral experiments, fluorescence in situ hybridization for the immediate-early genes Arc and Homer1a was used to determine the proportion of neurons active following muscimol infusion. Contrary to expectations, muscimol increased neural activity in DG. An additional experiment was carried out to quantify neural activity in naïve rats that received an intra-hippocampal infusion of vehicle or muscimol. Results confirmed that muscimol led to DG excitation, likely through its actions on interneuron populations in hilar and molecular layers of DG and consequent disinhibition of principal cells. Taken together, our results suggest disruption of coordinated neural activity across the hippocampus impairs mnemonic discrimination when lure stimuli are novel.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Katelyn N Lubke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tara L Cooper
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Kaeli E Fertal
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
23
|
Parrish RR, Codadu NK, Racca C, Trevelyan AJ. Pyramidal cell activity levels affect the polarity of activity-induced gene transcription changes in interneurons. J Neurophysiol 2018; 120:2358-2367. [PMID: 30110232 PMCID: PMC6295532 DOI: 10.1152/jn.00287.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in gene expression are an important mechanism by which activity levels are regulated in the nervous system. It is not known, however, how network activity influences gene expression in interneurons; since they themselves provide negative feedback in the form of synaptic inhibition, there exists a potential conflict between their cellular homeostatic tendencies and those of the network. We present a means of examining this issue, utilizing simple in vitro models showing different patterns of intense network activity. We found that the degree of concurrent pyramidal activation changed the polarity of the induced gene transcription. When pyramidal cells were quiescent, interneuronal activation led to an upregulation of glutamate decarboxylase 1 ( GAD1) and parvalbumin ( Pvalb) gene transcriptions, mediated by activation of the Ras/extracellular signal-related kinase mitogen-activated protein kinase (Ras/ERK MAPK) pathway. In contrast, coactivation of pyramidal cells led to an ionotropic glutamate receptor N-methyl-d-aspartate 2B-dependent decrease in transcription. Our results demonstrate a hitherto unrecognized complexity in how activity-dependent gene expression changes are manifest in cortical networks. NEW & NOTEWORTHY We demonstrate a novel feedback mechanism in cortical networks, by which glutamatergic drive, mediated through the Ras/ERK MAPK pathway, regulates gene transcription in interneurons. Using a unique feature of certain in vitro epilepsy models, we show that without this glutamatergic feedback, intense activation of interneurons causes parvalbumin and glutamate decarboxylase 1 mRNA expression to increase. If, on the other hand, pyramidal cells are coactivated with interneurons, this leads to a downregulation of these genes.
Collapse
Affiliation(s)
- R Ryley Parrish
- Institute of Neuroscience, Medical School , Newcastle University, Newcastle upon Tyne , United Kingdom
| | - Neela K Codadu
- Institute of Neuroscience, Medical School , Newcastle University, Newcastle upon Tyne , United Kingdom
| | - Claudia Racca
- Institute of Neuroscience, Medical School , Newcastle University, Newcastle upon Tyne , United Kingdom
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School , Newcastle University, Newcastle upon Tyne , United Kingdom.,Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University , New York, New York
| |
Collapse
|
24
|
Danzer SC. Contributions of Adult-Generated Granule Cells to Hippocampal Pathology in Temporal Lobe Epilepsy: A Neuronal Bestiary. Brain Plast 2018; 3:169-181. [PMID: 30151341 PMCID: PMC6091048 DOI: 10.3233/bpl-170056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hippocampal neurogenesis continues throughout life in mammals – including humans. During the development of temporal lobe epilepsy, newly-generated hippocampal granule cells integrate abnormally into the brain. Abnormalities include ectopic localization of newborn cells, de novo formation of abnormal basal dendrites, and disruptions of the apical dendritic tree. Changes in granule cell position and dendritic structure fundamentally alter the types of inputs these cells are able to receive, as well as the relative proportions of remaining inputs. Dendritic abnormalities also create new pathways for recurrent excitation in the hippocampus. These abnormalities are hypothesized to contribute to the development of epilepsy, and may underlie cognitive disorders associated with the disease as well. To test this hypothesis, investigators have used pharmacological and genetic strategies in animal models to alter neurogenesis rates, or ablate the newborn cells outright. While findings are mixed and many unanswered questions remain, numerous studies now demonstrate that ablating newborn granule cells can have disease modifying effects in epilepsy. Taken together, findings provide a strong rationale for continued work to elucidate the role of newborn granule cells in epilepsy: both to understand basic mechanisms underlying the disease, and as a potential novel therapy for epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
Yun S, Reynolds RP, Petrof I, White A, Rivera PD, Segev A, Gibson AD, Suarez M, DeSalle MJ, Ito N, Mukherjee S, Richardson DR, Kang CE, Ahrens-Nicklas RC, Soler I, Chetkovich DM, Kourrich S, Coulter DA, Eisch AJ. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive. Nat Med 2018; 24:658-666. [PMID: 29662202 PMCID: PMC5948139 DOI: 10.1038/s41591-018-0002-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 01/26/2018] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) is considered a “circuitopathy”, and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown if stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in lab animals and humans. Here we show molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation - previously well known for the ability to influence learning and memory - for MDD treatment.
Collapse
Affiliation(s)
- Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Ryan P Reynolds
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Iraklis Petrof
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Alicia White
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, Massachusetts General Hospital for Children, Charlestown, MA, USA
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam D Gibson
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Maiko Suarez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Matthew J DeSalle
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Naoki Ito
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine E Kang
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Chicago, IL, USA
| | | | - Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Dane M Chetkovich
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Chicago, IL, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas A Coulter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amelia J Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA. .,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
França KLDA, de Almeida ACG, Saddow SE, Santos LEC, Scorza CA, Scorza FA, Rodrigues AM. GABA a excitation and synaptogenesis after Status Epilepticus - A computational study. Sci Rep 2018; 8:4193. [PMID: 29520076 PMCID: PMC5843660 DOI: 10.1038/s41598-018-22581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
The role of GABAergic neurotransmission on epileptogenesis has been the subject of speculation according to different approaches. However, it is a very complex task to specifically consider the action of the GABAa neurotransmitter, which, in its dependence on the intracellular level of Cl-, can change its effect from inhibitory to excitatory. We have developed a computational model that represents the dentate gyrus and is composed of three different populations of neurons (granule cells, interneurons and mossy cells) that are mutually interconnected. The interconnections of the neurons were based on compensation theory with Hebbian and anti-Hebbian rules. The model also incorporates non-synaptic mechanisms to control the ionic homeostasis and was able to reproduce ictal discharges. The goal of the work was to investigate the hypothesis that the observed aberrant sprouting is promoted by GABAa excitatory action. Conjointly with the abnormal sprouting of the mossy fibres, the simulations show a reduction of the mossy cells connections in the network and an increased inhibition of the interneurons as a response of the neuronal network to control the activity. This finding contributes to increasing the changes in the connectivity of the neuronal circuitry and to increasing the epileptiform activity occurrences.
Collapse
Affiliation(s)
- Keite Lira de Almeida França
- Laboratório de Neurociência Experimental e Computacional (LANEC), Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência Experimental e Computacional (LANEC), Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Stephen E Saddow
- Electrical Engineering Department, University of South of Florida, Tampa, FL, USA
| | - Luiz Eduardo Canton Santos
- Laboratório de Neurociência Experimental e Computacional (LANEC), Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, Brazil
| | | | | | - Antônio Márcio Rodrigues
- Laboratório de Neurociência Experimental e Computacional (LANEC), Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, Brazil.
| |
Collapse
|
27
|
Dinday MT, Girskis KM, Lee S, Baraban SC, Hunt RF. PAFAH1B1 haploinsufficiency disrupts GABA neurons and synaptic E/I balance in the dentate gyrus. Sci Rep 2017; 7:8269. [PMID: 28811646 PMCID: PMC5557934 DOI: 10.1038/s41598-017-08809-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Hemizygous mutations in the human gene encoding platelet-activating factor acetylhydrolase IB subunit alpha (Pafah1b1), also called Lissencephaly-1, can cause classical lissencephaly, a severe malformation of cortical development. Children with this disorder suffer from deficits in neuronal migration, severe intellectual disability, intractable epilepsy and early death. While many of these features can be reproduced in Pafah1b1+/- mice, the impact of Pafah1b1+/- on the function of individual subpopulations of neurons and ultimately brain circuits is largely unknown. Here, we show tangential migration of young GABAergic interneurons into the developing hippocampus is slowed in Pafah1b1+/- mice. Mutant mice had a decreased density of parvalbumin- and somatostatin-positive interneurons in dentate gyrus, but no change in density of calretinin interneurons. Whole-cell patch-clamp recordings revealed increased excitatory and decreased inhibitory synaptic inputs onto granule cells of Pafah1b1+/- mice. Mutant animals developed spontaneous electrographic seizures, as well as long-term deficits in contextual memory. Our findings provide evidence of a dramatic shift in excitability in the dentate gyrus of Pafah1b1+/- mice that may contribute to epilepsy or cognitive impairments associated with lissencephaly.
Collapse
Affiliation(s)
- Matthew T Dinday
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Kelly M Girskis
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Sunyoung Lee
- Department of Anatomy & Neurobiology, University of California Irvine, California, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California Irvine, California, USA.
| |
Collapse
|