1
|
Delugeau L, Grelier S, Peruch F. Enzymatic Treatment of Lignin in Alkaline Homogeneous Systems: A Review on Alkaliphilic Laccases. CHEMSUSCHEM 2025; 18:e202402377. [PMID: 39815958 PMCID: PMC12094154 DOI: 10.1002/cssc.202402377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
This short review explores the enzymatic treatment of lignin in alkaline homogeneous systems, focusing on alkaliphilic laccases. In acidic conditions, native laccases are known to promote lignin polymerization, while the addition of mediators enables depolymerization into valuable small molecules. Alkaliphilic laccases, which remain active in basic pH where the vast majority of industrial lignins are soluble, present an interesting alternative. However, the literature shows varied outcomes - polymerization, depolymerization, or both processes - making it difficult to draw clear trends. This review aims to summarize the current state of the art of the enzymatic treatment of lignin in alkaline conditions.
Collapse
Affiliation(s)
- Lou Delugeau
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 562933600PessacFrance
| | - Stéphane Grelier
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 562933600PessacFrance
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 562933600PessacFrance
| |
Collapse
|
2
|
Choolaei Z, Khusnutdinova AN, Skarina T, Stogios P, Diep P, Lemak S, Edwards EA, Savchenko A, Yakunin AF. Structural and Biochemical Insights into Lignin-Oxidizing Activity of Bacterial Peroxidases against Soluble Substrates and Kraft Lignin. ACS Chem Biol 2025; 20:830-844. [PMID: 40145573 DOI: 10.1021/acschembio.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Great interest has recently been drawn to the production of value-added products from lignin; however, its recalcitrance and high chemical complexity have made this challenging. Dye-decolorizing peroxidases and catalase-peroxidases are among the enzymes that are recognized to play important roles in environmental lignin oxidation. However, bacterial lignin-oxidizing enzymes remain less characterized compared to related proteins from fungi. In this study, screening of 18 purified bacterial peroxidases against the general chromogenic substrate 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) revealed the presence of peroxidase activity in all proteins. Agarose plate-based screens with kraft lignin identified detectable and high lignin oxidation activity in 15 purified proteins. Crystal structures were determined for the DyP-type peroxidases FC2591 from Frankia casuarinae, PF3257 from Pseudomonas fluorescens, and PR9465 from Pseudomonas rhizosphaerae. The structures revealed the presence of hemes with bound oxygens coordinated by conserved His, Arg, and Asp residues as well as three molecular tunnels connecting the heme with the protein surface. Structure-based site-directed mutagenesis of FC2591 identified at least five active site residues as essential for oxidase activity against both ABTS and lignin, whereas the S370A mutant protein showed a three- to 4-fold activity increase with both substrates. HPLC analysis of reaction products of the wild-type FC2591 and S370A mutant proteins with the model lignin dimer guaiacylglycerol-β-guaiacyl ether and kraft lignin revealed the formation of products consistent with the radical coupling of the reaction intermediates. Thus, this study identified novel bacterial heme peroxidases with lignin oxidation activity and provided further insights into our understanding of these enzymes.
Collapse
Affiliation(s)
- Zahra Choolaei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, Calgary T2N 4N1, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, U.K
| |
Collapse
|
3
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. THE ISME JOURNAL 2022; 16:1944-1956. [PMID: 35501417 PMCID: PMC9296663 DOI: 10.1038/s41396-022-01241-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, 13C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). 13C-Lignin degradation was monitored using IR-GCMS of 13CO2, and isotopic enrichment of DNA was measured with UHLPC-MS/MS. Assembly of 42 metagenomic libraries (72 Gb) yielded 344 contig bins, from which 125 draft genomes were produced. Fourteen genomes were significantly enriched with 13C from lignin, including genomes of Actinomycetes (Thermoleophilaceae, Solirubrobacteraceae, Rubrobacter sp.), Firmicutes (Kyrpidia sp., Alicyclobacillus sp.) and Gammaproteobacteria (Steroidobacteraceae). We employed multiple approaches to screen genomes for genes encoding putative ligninases and pathways for aromatic compound degradation. Our analysis identified several novel laccase-like multi-copper oxidase (LMCO) genes in 13C-enriched genomes. One of these LMCOs was heterologously expressed and shown to oxidize lignin model compounds and minimally transformed lignin. This study elucidated bacterial lignin depolymerization and mineralization in thermal ecosystems, establishing new possibilities for the efficient valorization of lignin at elevated temperature.
Collapse
|
5
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
6
|
Zovo K, Pupart H, Van Wieren A, Gillilan RE, Huang Q, Majumdar S, Lukk T. Substitution of the Methionine Axial Ligand of the T1 Copper for the Fungal-like Phenylalanine Ligand (M298F) Causes Local Structural Perturbations that Lead to Thermal Instability and Reduced Catalytic Efficiency of the Small Laccase from Streptomyces coelicolor A3(2). ACS OMEGA 2022; 7:6184-6194. [PMID: 35224382 PMCID: PMC8867573 DOI: 10.1021/acsomega.1c06668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Many industrial processes operate at elevated temperatures or within broad pH and salinity ranges. However, the utilization of enzymes to carry out biocatalysis in such processes is often impractical or even impossible. Laccases (EC 1.10.3.2), which constitute a large family of multicopper oxidases, have long been used in the industrial setting. Although fungal laccases are in many respects considered superior to their bacterial counterparts, the bacterial laccases have been receiving greater attention recently. Albeit lower in redox potential than fungal laccases, bacterial laccases are commonly thermally more stable, act within broader pH ranges, do not contain posttranslational modifications, and could therefore serve as a high potential scaffold for directed evolution for the production of enzymes with enhanced properties. Several examples focusing on the axial ligand mutations of the T1 copper site have been published in the past. However, structural evidence on the local and global changes induced by those mutations have thus far been of computational nature only. In this study, we set out to structurally and kinetically characterize a few of the most commonly reported axial ligand mutations of a bacterial small laccase (SLAC) from Streptomyces coelicolor. While one of the mutations (Met to Leu) equips the enzyme with better thermal stability, the other (Met to Phe) induces an opposite effect. These mutations cause local structural rearrangement of the T1 site as demonstrated by X-ray crystallography. Our analysis confirms past findings that for SLACs, single point mutations that change the identity of the axial ligand of the T1 copper are not enough to provide a substantial increase in the catalytic efficiency but can in some cases have a detrimental effect on the enzyme's thermal stability parameters instead.
Collapse
Affiliation(s)
- Kairit Zovo
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Hegne Pupart
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Arie Van Wieren
- Department
of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, United States
| | - Richard E. Gillilan
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, 161 Synchrotron Drive, Ithaca, New York 14850, United
States
| | - Qingqiu Huang
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, 161 Synchrotron Drive, Ithaca, New York 14850, United
States
| | - Sudipta Majumdar
- Department
of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, United States
| | - Tiit Lukk
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
7
|
Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1. Appl Environ Microbiol 2021; 87:e0135521. [PMID: 34524901 DOI: 10.1128/aem.01355-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a lacz1 gene fragment encoding laccase from the macrotranscriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that the expression level of the lacz1 gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete lacz1 gene is derived from a Bacillus sp. and encoded laccase. The corresponding protein, LacZ1, was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu2+ was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by gel permeation chromatography (GPC), and changes in the lignin structure were determined by 1H nuclear magnetic resonance (1H NMR) spectra. The degradation products of lignin by LacZ1 were determined by gas chromatography and mass spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. IMPORTANCE Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.
Collapse
|
8
|
Vuong TV, Singh R, Eltis LD, Master ER. The Comparative Abilities of a Small Laccase and a Dye-Decoloring Peroxidase From the Same Bacterium to Transform Natural and Technical Lignins. Front Microbiol 2021; 12:723524. [PMID: 34733245 PMCID: PMC8559727 DOI: 10.3389/fmicb.2021.723524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
The relative ability of the small laccase (sLac) and dye-decoloring peroxidase (DyP2) from Amycolatopsis sp. 75iv2 to transform a variety of lignins was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The enzymes modified organosolv hardwood lignin to different extents even in the absence of an added mediator. More particularly, sLac decreased the lignin modification metric S (S-lignin)/Ar (total aromatics) by 58% over 16h, while DyP2 lowered this ratio by 31% in the absence of exogenous H2O2. When used on their own, both sLac and DyP2 also modified native lignin present in aspen wood powder, albeit to lesser extents than in the organosolv lignin. The addition of ABTS for sLac and Mn2+ as well as H2O2 for DyP2 led to increased lignin modification in aspen wood powder as reflected by a decrease in the G/Ar metric by up to a further 13%. This highlights the importance of exogenous mediators for transforming lignin within its native matrix. Furthermore, the addition of ABTS reduced the selectivity of sLac for S-lignin over G-lignin, indicating that the mediator also altered the product profiles. Finally, when sLac was included in reactions containing DyP2, in part to generate H2O2in situ, the relative abundance of lignin products differed from individual enzymatic treatments. Overall, these results identify possible routes to tuning lignin modification or delignification through choice of enzyme and mediator. Moreover, the current study expands the application of ToF-SIMS to evaluating enzyme action on technical lignins, which can accelerate the discovery and engineering of industrially relevant enzymes for lignin valorization.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rahul Singh
- Department of Microbiology and Immunology, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada.,Genome British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
9
|
Malhotra M, Suman SK. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58929-58944. [PMID: 33712950 DOI: 10.1007/s11356-021-13283-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rising global population and worldwide industrialization have led to unprecedented energy demand that is causing fast depletion of fossil reserves. This has led to search for alternative energy sources that are renewable and environment friendly. Use of lignocellulosic biomass for energy generation is considered a promising approach as it does not compete with food supply. However, the lignin component of the biomass acts as a natural barrier that prevents its efficient utilization. In order to remove the lignin and increase the amount of fermentable sugars, the lignocellulosic biomass is pretreated using physical and chemical methods which are costly and hazardous for environment. Moreover, during the traditional pretreatment process, numerous inhibitory compounds are generated that adversely affect the growth of fermentative microbes. Alternatively, biological methods that use microbes and their enzymes disrupt lignin polymers and increase the accessibility of the carbohydrates for the sugar generation. Microbial laccases have been considered as an efficient biocatalyst for delignification and detoxification offering a green initiative for energy generation process. The present review aims to bring together recent studies in bioenergy generation using laccase biocatalyst in the pretreatment processes. The work provides an overview of the sustainable and eco-friendly approach of biological delignification and detoxification through whole-cell and enzymatic methods, use of laccase-mediator system, and immobilized laccases for this purpose. It also summarizes the advantages, associated challenges, and potential prospects to overcome the limitations.
Collapse
Affiliation(s)
- Manisha Malhotra
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Sunil Kumar Suman
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India.
| |
Collapse
|
10
|
Liu S, Liu H, Shen C, Fang W, Xiao Y, Fang Z. Comparison of performances of different fungal laccases in delignification and detoxification of alkali-pretreated corncob for bioethanol production. J Ind Microbiol Biotechnol 2021; 48:6132310. [PMID: 33693714 PMCID: PMC9113415 DOI: 10.1093/jimb/kuab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022]
Abstract
The performance of the alkaline fungal laccase PIE5 (pH 8.5) in the
delignification and detoxification of alkali-pretreated corncob to produce
bioethanol was evaluated and compared with that of the neutral counterpart
(rLcc9, 6.5), with the acidic laccase rLacA (4.0) was used as an independent
control. Treatment with the three laccases facilitated bioethanol production
compared with their respective controls. The lignin contents of
alkali-pretreated corncob reduced from 4.06%, 5.06%, and
7.80% to 3.44%, 3.95%, and 5.03%, after PIE5, rLcc9,
and rLacA treatment, respectively. However, the performances of the laccases
were in the order rLacA > rLcc9 > PIE5
in terms of decreasing total phenol concentration (0.18, 0.36, and
0.67 g/l), boosting ethanol concentration (8.02, 7.51, and
7.31 g/l), and volumetric ethanol productivity (1.34, 0.94, and
0.91 g/l hr), and shortening overall fermentation time. Our
results would inform future attempts to improve laccases for ethanol production.
Furthermore, based on our data and the fact that additional procedures, such as
pH adjustment, are needed during neutral/alkaline fungal laccase treatment, we
suggest acidic fungal laccases may be a better choice than neutral/alkaline
fungal laccases in bioethanol production.
Collapse
Affiliation(s)
- Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Huan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Chen Shen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
11
|
Spence EM, Calvo-Bado L, Mines P, Bugg TDH. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact 2021; 20:15. [PMID: 33468127 PMCID: PMC7814577 DOI: 10.1186/s12934-020-01504-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic modification of Rhodococcus jostii RHA1 was carried out in order to optimise the production of pyridine-2,4-dicarboxylic acid and pyridine-2,5-dicarboxylic acid bioproducts from lignin or lignocellulose breakdown, via insertion of either the Sphingobium SYK-6 ligAB genes or Paenibacillus praA gene respectively. Insertion of inducible plasmid pTipQC2 expression vector containing either ligAB or praA genes into a ΔpcaHG R. jostii RHA1 gene deletion strain gave 2–threefold higher titres of PDCA production from lignocellulose (200–287 mg/L), compared to plasmid expression in wild-type R. jostii RHA1. The ligAB genes were inserted in place of the chromosomal pcaHG genes encoding protocatechuate 3,4-dioxygenase, under the control of inducible Picl or PnitA promoters, or a constitutive Ptpc5 promoter, producing 2,4-PDCA products using either wheat straw lignocellulose or commercial soda lignin as carbon source. Insertion of Amycolatopsis sp. 75iv2 dyp2 gene on a pTipQC2 expression plasmid led to enhanced titres of 2,4-PDCA products, due to enhanced rate of lignin degradation. Growth in minimal media containing wheat straw lignocellulose led to the production of 2,4-PDCA in 330 mg/L titre in 40 h, with > tenfold enhanced productivity, compared with plasmid-based expression of ligAB genes in wild-type R. jostii RHA1. Production of 2,4-PDCA was also observed using several different polymeric lignins as carbon sources, and a titre of 240 mg/L was observed using a commercially available soda lignin as feedstock.![]()
Collapse
Affiliation(s)
- Edward M Spence
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Paul Mines
- Biome Bioplastics Ltd, North Road, Marchwood, Southampton, SO40 4BL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Trubitsina LI, Lisov AV, Belova OV, Trubitsin IV, Demin VV, Konstantinov AI, Zavarzina AG, Leontievsky AA. Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids. PLoS One 2020; 15:e0239005. [PMID: 32946485 PMCID: PMC7500650 DOI: 10.1371/journal.pone.0239005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
The two-domain bacterial laccases oxidize substrates at alkaline pH. The role of natural phenolic compounds in the oxidation of substrates by the enzyme is poorly understood. We have studied the role of ferulic and caffeic acids in the transformation of low molecular weight substrates and of soil humic acid (HA) by two-domain laccase of Streptomyces puniceus (SpSL, previously undescribed). A gene encoding a two-domain laccase was cloned from S. puniceus and over-expressed in Escherichia coli. The recombinant protein was purified by affinity chromatography to an electrophoretically homogeneous state. The enzyme showed high thermal stability, alkaline pH optimum for the oxidation of phenolic substrates and an acidic pH optimum for the oxidation of K4[Fe(CN)6] (potassium ferrocyanide) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt). Phenolic compounds were oxidized with lower efficiency than K4[Fe(CN)6] and ABTS. The SpSL did not oxidize 3.4-dimethoxybenzoic alcohol and p-hydroxybenzoic acid neither in the absence of phenolic acids nor in their presence. The enzyme polymerized HA-the amount of its high molecular weight fraction (>80 kDa) increased at the expense of low MW fraction (10 kDa). The addition of phenolic acids as potential mediators did not cause the destruction of HA by SpSL. In the absence of the HA, the enzyme polymerized caffeic and ferulic acids to macromolecular fractions (>80 kDa and 10-12 kDa). The interaction of SpSL with HA in the presence of phenolic acids caused an increase in the amount of HA high MW fraction and a two-fold increase in the molecular weight of its low MW fraction (from 10 to 20 kDa), suggesting a cross-coupling reaction. Infrared and solution-state 1H-NMR spectroscopy revealed an increase in the aromaticity of HA after its interaction with phenolic acids. The results of the study expand our knowledge on the transformation of natural substrates by two-domain bacterial laccases and indicate a potentially important role of the enzyme in the formation of soil organic matter (SOM) at alkaline pH values.
Collapse
Affiliation(s)
- Liubov I. Trubitsina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPhM RAS), Pushchino, Russia
| | - Alexander V. Lisov
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPhM RAS), Pushchino, Russia
| | - Oxana V. Belova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPhM RAS), Pushchino, Russia
| | - Ivan V. Trubitsin
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPhM RAS), Pushchino, Russia
| | - Vladimir V. Demin
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna G. Zavarzina
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey A. Leontievsky
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPhM RAS), Pushchino, Russia
| |
Collapse
|
13
|
Rivas S, Rigual V, Domínguez JC, Alonso MV, Oliet M, Parajó JC, Rodriguez F. A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Yang X, Gu C, Lin Y. A novel fungal laccase from Sordaria macrospora k-hell: expression, characterization, and application for lignin degradation. Bioprocess Biosyst Eng 2020; 43:1133-1139. [PMID: 32067135 DOI: 10.1007/s00449-020-02309-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/08/2020] [Indexed: 11/25/2022]
Abstract
The laccase has the ability to oxidize substituted phenols and the water is the sole byproduct, thus it has been employed to remove and/or modify the lignin in lignocellulosic material. A putative laccase gene, LacSM, from Sordaria macrospora k-hell was screened by a genome mining approach. Then, it was cloned and highly expressed in Escherichia coli. The molecular weight of recombinant LacSM was ~ 67 kDa. The optimal pH values for the LacSM oxidation of guaiacol, syringaldazine, 2,6-dimethoxyphenol, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) were 6, 7, 5, and 5, respectively. The optimal activity of laccase was observed at 60, 55, 55, and 50 °C for four respective substrates. LacSM remained stable at pH 5-8 and thermostable at 60 °C with guaiacol as the substrate. 1 mM K+, Na+, or Mn2+ ions slightly stimulated laccase activity. In addition, LacSM was moderately tolerant to the Cl- ion and showed an ability to remove and/or modify lignin. Thus, LacSM was a potential candidate for industrial applications, such as lignin degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 334 Building 6, University Park, Panyu district, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Chenguang Gu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 334 Building 6, University Park, Panyu district, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 334 Building 6, University Park, Panyu district, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 2020; 55:26-33. [PMID: 31918394 DOI: 10.1016/j.cbpa.2019.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.
Collapse
|
16
|
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiol (Praha) 2019; 65:431-437. [PMID: 31863277 DOI: 10.1007/s12223-019-00765-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Laccases have been widely explored for their ligninolytic capability in bioethanol production and bioremediation of industrial effluents. However, low reaction rates have posed a major challenge to commercialization of such processes. This study reports the first evidence of laccase inhibition by two types of lignin degradation intermediates - fungal-solubilized lignin and alkali-treated lignin - thus offering a highly plausible explanation for low reaction rates due to buildup of inhibitors during the actual process. Reversed-phase high-performance liquid chromatography revealed the presence of similar polar compounds in both lignin samples. A detailed kinetic study on laccase, using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as the substrate, was used to calculate the Michaelis constant (Km) and maximum reaction rate (Vmax). With an increase in the concentration of lignin degradation intermediates, Vmax remained nearly constant, while Km increased from 1.3 to 4.0 times that of pure laccase, revealing that the inhibition was competitive in nature. The kinetic studies reported here and the insight gained into the nature of inhibition can help design process strategies to mitigate this effect and improve overall process efficiency. This work is applicable to processes that employ laccase for delignification of biomass, such as second-generation biofuels processes, as well as for industrial effluent treatment in paper and pulp industries.
Collapse
|
17
|
Lisov A, Trubitsina L, Lisova Z, Trubitsin I, Zavarzina A, Leontievsky A. Transformation of humic acids by two-domain laccase from Streptomyces anulatus. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Singh G, Singh S, Kaur K, Kumar Arya S, Sharma P. Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness. J GEN APPL MICROBIOL 2019; 65:26-33. [DOI: 10.2323/jgam.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
20
|
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75:3569-3592. [PMID: 30046841 PMCID: PMC11105425 DOI: 10.1007/s00018-018-2883-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Quan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
21
|
Zinovyev G, Sulaeva I, Podzimek S, Rössner D, Kilpeläinen I, Sumerskii I, Rosenau T, Potthast A. Getting Closer to Absolute Molar Masses of Technical Lignins. CHEMSUSCHEM 2018; 11:3259-3268. [PMID: 29989331 PMCID: PMC6175078 DOI: 10.1002/cssc.201801177] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/08/2018] [Indexed: 05/07/2023]
Abstract
Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.
Collapse
Affiliation(s)
- Grigory Zinovyev
- Department of Chemistry, Division of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaKonrad-Lorenz-Strasse 24A-3430TullnAustria
| | - Irina Sulaeva
- Department of Chemistry, Division of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaKonrad-Lorenz-Strasse 24A-3430TullnAustria
| | - Stepan Podzimek
- Wyatt Technology Europe GmbHHochstrasse 12a56307DernbachGermany
- Institute of Chemistry and Technology of Macromolecular MaterialsUniversity of PardubiceStudentska 573Pardubice532 10Czech Republic
| | - Dierk Rössner
- Wyatt Technology Europe GmbHHochstrasse 12a56307DernbachGermany
| | - Ilkka Kilpeläinen
- Department of ChemistryUniversity of HelsinkiA.I. Virtasen Aukio 100014HelsinkiFinland
| | - Ivan Sumerskii
- Department of Chemistry, Division of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaKonrad-Lorenz-Strasse 24A-3430TullnAustria
| | - Thomas Rosenau
- Department of Chemistry, Division of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaKonrad-Lorenz-Strasse 24A-3430TullnAustria
| | - Antje Potthast
- Department of Chemistry, Division of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaKonrad-Lorenz-Strasse 24A-3430TullnAustria
| |
Collapse
|
22
|
Rizal NFAA, Ibrahim MF, Zakaria MR, Abd-Aziz S, Yee PL, Hassan MA. Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production. Molecules 2018; 23:E1381. [PMID: 29880760 PMCID: PMC6099572 DOI: 10.3390/molecules23061381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.
Collapse
Affiliation(s)
- Nur Fatin Athirah Ahmad Rizal
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Rafein Zakaria
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Phang Lai Yee
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
23
|
Perna V, Agger JW, Holck J, Meyer AS. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Sci Rep 2018; 8:8114. [PMID: 29802313 PMCID: PMC5970232 DOI: 10.1038/s41598-018-26523-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
Laccases (EC 1.10.3.2) are enzymes known for their ability to catalyse the oxidation of phenolic compounds using molecular oxygen as the final electron acceptor. Lignin is a natural phenylpropanoids biopolymer whose degradation in nature is thought to be aided by enzymatic oxidation by laccases. Laccase activity is often measured spectrophotometrically on compounds such as syringaldazine and ABTS which poorly relate to lignin. We employed natural phenolic hydroxycinnamates having different degree of methoxylations, p-coumaric, ferulic and sinapic acid, and a lignin model OH-dilignol compound as substrates to assess enzyme kinetics by HPLC-MS on two fungal laccases Trametes versicolor laccase, Tv and Ganoderma lucidum laccase, Gl. The method allowed accurate kinetic measurements and detailed insight into the product profiles of both laccases. Both Tv and Gl laccase are active on the hydroxycinnammates and show a preference for substrate with methoxylations. Product profiles were dominated by the presence of dimeric and trimeric species already after 10 minutes of reaction and similar profiles were obtained with the two laccases. This new HPLC-MS method is highly suitable and accurate as a new method for assaying laccase activity on genuine phenolic substrates, as well as a tool for examining laccase oxidation product profiles.
Collapse
Affiliation(s)
- Valentina Perna
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Jane W Agger
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark.
| | - Jesper Holck
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Anne S Meyer
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
24
|
Rocha-Martín J, Martínez-Bernal C, Zamorano LS, Reyes-Sosa FM, Díez García B. Inhibition of enzymatic hydrolysis of pretreated corn stover and sugar cane straw by laccases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G. Evaluation of Screened Lignin-degrading Fungi for the Biological Pretreatment of Corn Stover. Sci Rep 2018; 8:5385. [PMID: 29599465 PMCID: PMC5876370 DOI: 10.1038/s41598-018-23626-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
The biological pretreatment of lignocellulosic biomass is a low-cost and eco-friendly method for facilitating enzymatic hydrolysis. In this study, strains with lignin depletion capability were screened using a high-throughput screening method. Sixty-three strains were screened out and Myrothecium verrucaria secreted three lignin-degrading enzymes simultaneously during the bio-pretreatment process. The activity levels of laccase, lignin peroxidase and manganese peroxidase were 6.61, 0.78 and 1.31 U g−1 dry biomass. The content of lignin in corn stover decreased by 42.30% after bio-pretreatment, and the conversion rate increased by 123.84% during the subsequent saccharification process in comparison with the untreated corn stover. Furthermore, the effects of bio-pretreatment on the structure of corn stover were presented using a scanning electron microscope (SEM), Brunauer-Emmet-Teller (BET), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The results showed that M.V. is a promising lignin-degrading fungus. This research demonstrated an efficient pretreatment approach for enhancing the enzymatic saccharification of corn stover.
Collapse
Affiliation(s)
- Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Xiaoxiao Yu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Yang Sun
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Gang Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China.
| |
Collapse
|
26
|
Brenelli L, Squina FM, Felby C, Cannella D. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:10. [PMID: 29371886 PMCID: PMC5771016 DOI: 10.1186/s13068-017-0985-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/30/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The discovery of lignin as activator for the redox enzyme lytic polysaccharide monooxygenases (LPMOs) for the oxidation of cell-wall polysaccharides opens a new scenario for investigation of the interplay between different lignocellulose-degrading enzymes. The lignin-active enzymes in one hand, and the carbohydrate active in the other, are linked through a variety of electrons carrier molecules either derived from lignin or enzymatically transferred. Likewise, in nature, many lignocellulose-degrading organisms are expressing those enzymes simultaneously, and we wanted to test if a major commercial available lignin oxidase enzyme, i.e., laccase could benefit and synergize the activity of the LPMOs by depolymerizing the insoluble lignin. RESULTS In this work, two fungal laccases together with a mediator (ABTS) were used to isolate low-molecular-weight lignin from lignocellulosic biomass. The isolated lignins were used as electron donors for activation of LPMOs. A direct correlation between the low-molecular-weight lignin isolated with laccases and an increased activity of a cellulolytic cocktail containing LPMO was found when pure cellulose was hydrolyzed. We then tried to implement existing commercial cellulases cocktail with laccase enzymes, but under the conditions tested, the co-incubation of laccases with LPMOs showed a substrate competition towards oxygen inhibiting the LPMO. In addition, we found that laccase treatment may cause other modifications to pure cellulose, rendering the material more recalcitrant for enzymatic saccharification. CONCLUSIONS Laccase-mediated system was able to depolymerize lignin from pre-treated and native sugarcane bagasse and wheat straw, and the released phenolic molecules were able to donate electrons to LPMO enzymes boosting the overall enzymatic hydrolysis of cellulose. Likewise, other poly-phenol oxidase, we might have just started showing possible pros or cons in applying several oxidase enzymes for a simultaneous degradation of cellulose and lignin, and we found that the competition towards oxygen and their different consumption rates must be taken into account for any possible co-application.
Collapse
Affiliation(s)
- Lívia Brenelli
- Faculty of Science, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil, Sorocaba, Brazil
| | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil, Sorocaba, Brazil
| | - Claus Felby
- Faculty of Science, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - David Cannella
- Faculty of Science, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Present Address: Interfaculty School of Bioengineering, Université Libre de Bruxelles (ULB), Campus Plaine CP242, Boulevard du Triomphe, Brussels, 1050 Belgium
| |
Collapse
|
27
|
De La Torre M, Martín-Sampedro R, Fillat Ú, Eugenio ME, Blánquez A, Hernández M, Arias ME, Ibarra D. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. ACTA ACUST UNITED AC 2017; 44:1561-1573. [DOI: 10.1007/s10295-017-1977-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
Abstract
Abstract
This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.
Collapse
Affiliation(s)
- María De La Torre
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | | | - Úrsula Fillat
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - María E Eugenio
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| | - Alba Blánquez
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - Manuel Hernández
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - María E Arias
- 0000 0004 1937 0239 grid.7159.a Departamento de Biomedicina y Biotecnología Universidad de Alcalá Autovía A-2, Km 33.600 28805 Alcalá De Henares Madrid Spain
| | - David Ibarra
- Forestry Products Department INIA-CIFOR Ctra. de La Coruña Km 7.5 28040 Madrid Spain
| |
Collapse
|
28
|
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:218. [PMID: 28924453 PMCID: PMC5598073 DOI: 10.1186/s13068-017-0906-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/07/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Physisporinus vitreus relies on a new versatile peroxidase (VP)-based delignification strategy to remove enzymatic recalcitrance of corn stover efficiently, so that saccharification of corn stover was significantly enhanced to 349.1 mg/g biomass (yield of glucose) and 91.5% (hydrolysis yield of cellulose) at 28 days, as high as levels reached by thermochemical treatment. Analysis of the lignin structure using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) showed that the total abundance of lignin-derived compounds decreased by 54.0% and revealed a notable demethylation during lignin degradation by P. vitreus. Monomeric and dimeric lignin model compounds were used to confirm the ligninolytic capabilities of extracellular ligninases secreted by P. vitreus. The laccase (Lac) from P. vitreus could not oxidize nonphenolic lignin compounds and polymerized β-O-4 and 5-5' dimers to precipitate which had a negative effect on the enzymatic hydrolysis of corn stover in vitro. However, the VP from P. vitreus could oxidize both phenolic and nonphenolic lignin model compounds as well as break the β-O-4 and 5-5' dimers into monomeric compounds, which were measured by high-performance liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Moreover, we showed that addition of purified VP in vitro improved the enzymatic hydrolysis of corn stover by 14.1%. CONCLUSIONS From the highly efficient system of enzymatic recalcitrance removal by new white-rot fungus, we identified a new delignification strategy based on VP which could oxidize both phenolic and nonphenolic lignin units and break different linkages in lignin. In addition, this is the first evidence that VP could break 5-5' linkage efficiently in vitro. Moreover, VP improved the enzymatic hydrolysis of corn stover in vitro. The remarkable lignin-degradative potential makes VP attractive for biotechnological applications.
Collapse
Affiliation(s)
- Wen Kong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiao Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Lei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ahmad Alhujaily
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Jingli Zhang
- College of Life Science and Technology, WuHan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Hongbo Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
29
|
Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|