1
|
Mills EG, Tsoutsouki J, Pierret ACS, Comninos AN, Dhillo WS. The Neuroendocrine Regulation of Reproductive Behavior and Emotional Control by Kisspeptin. J Clin Endocrinol Metab 2025; 110:e1747-e1758. [PMID: 39880372 DOI: 10.1210/clinem/dgaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025]
Abstract
Reproductive success and ultimately species survival at a population level is contingent on a plethora of neuroendocrine signals working in concert to regulate gonadal function and reproductive behavior. Among these, the neuropeptide kisspeptin (encoded by the KISS1/Kiss1 gene) has emerged as the master regulator of the hypothalamic-pituitary-gonadal axis. Besides the hypothalamus, both kisspeptin and its cognate receptor are extensively expressed throughout cortico-limbic brain structures in rodents and humans, which are regions traditionally implicated in behavioral and emotional responses. Thus, there exists a neuroanatomical framework through which kisspeptin can integrate reproductive behavior and emotional regulation with the reproductive axis. Accordingly, this sets the scene for recent findings derived from an assortment of species, including humans, unveiling kisspeptin as an important gatekeeper of reproductive behavior and emotional control. Herein, we summarize the major preclinical animal and human experimental evidence identifying kisspeptin as a key neuromodulator of reproductive behavior and emotional state. Such findings have laid the foundations for clinical applications of kisspeptin-based therapies for patients with related reproductive and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Jovanna Tsoutsouki
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Aureliane C S Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| |
Collapse
|
2
|
Liu J, Gao X, Zhan X, Lu Y, Yao L, Yi X, Gu Q. Evaluation of brain and neurophysiologic function in isolated congenital anosmia. Am J Otolaryngol 2025; 46:104664. [PMID: 40339214 DOI: 10.1016/j.amjoto.2025.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE Isolated congenital anosmia (ICA) is a relatively rare condition characterized by a complete lack of olfactory perception dating from birth or early childhood. Congenital deficits in sensory systems appear to have distinct effects on brain function and nervous system pathway, but little is known about ICA. The study aims to explore the neural basis of ICA through measuring brain activation in response to olfactory stimuli and cerebral processing in patients with ICA. METHODS Retrospective review of medical records of 11 ICA patients from two smell and taste centers. All patients who were diagnosed ICA thorough interview and medical investigation. We used olfactory pathway magnetic resonance imaging (MRI) to evaluate the structural change of olfactory system, and functional MRI (fMRI) to observe the brain's response to pleasant and unpleasant olfactory stimuli (phenethyl alcohol and isovaleric acid) in 11 patients with ICA and 11 age- and sex-matched controls. Additionally, we measured EEG signals using olfactory and trigeminal event-related potentials (oERP and tERP) in response to phenethyl alcohol and CO2 stimuli, respectively. The Sniffin' Sticks test was used to evaluate the participants' subjective olfactory function. RESULTS ICA patients showed the smaller olfactory bulb and shallower olfactory sulcus than controls. Healthy subjects showed brain activity in multiple regions associated with olfactory processing. Subjects with ICA exhibited reduced or no activation in the olfactory cortex, which is responsible for olfactory processing. Nevertheless, these subjects had activation outside the olfactory cortex, indicating functional compensation. In the case of ICA, oERP was missing in all patients while it was present in all control subjects. tERP was detected in 8 patients with anosmia, and these patients displayed higher amplitude signals in the N1 and P2 waves than the controls (p < 0.001, p < 0.05). CONCLUSION Congenital anosmia patients exhibit functional inactivation in the olfactory cortex and neurophysiologic deficits throughout the olfactory pathway. Our findings support the concept of distinct central nervous system abnormalities in ICA.
Collapse
Affiliation(s)
- Jia Liu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Xing Gao
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiaojun Zhan
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Yingxia Lu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Linyin Yao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Yi
- Department of Radiology, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Qinglong Gu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Monciatti AM, Lapini M, Gemignani J, Frediani G, Carpi F. Unpleasant odors compared to pleasant ones cause higher cortical activations detectable by fNIRS and observable mostly in females. APL Bioeng 2025; 9:016101. [PMID: 39801499 PMCID: PMC11719668 DOI: 10.1063/5.0231217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Olfactory perception can be studied in deep brain regions at high spatial resolutions with functional magnetic resonance imaging (fMRI), but this is complex and expensive. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are limited to cortical responses and lower spatial resolutions but are easier and cheaper to use. Unlike EEG, available fNIRS studies on olfaction are few, limited in scope, and contradictory. Here, we investigated fNIRS efficacy in assessing the hedonic valence of pleasant and unpleasant odors, using ten channels on each hemisphere, covering the orbitofrontal cortex and adjacent areas involved in olfactory and cognitive tasks. Measurements on 22 subjects (11 males and 11 females) showed statistically significant higher increases in oxygenated hemoglobin concentration for the unpleasant odor, compared to the pleasant one (mean difference = 1.025 × 10-1 μM). No difference in activation was found between the hemispheres. Conversely, differences were observed between the sexes: for the first time, we show that higher activations for the unpleasant odor relative to the pleasant one are detectable by fNIRS in females (mean difference = 1.704 × 10-1 μM), but not in an equal-sized and equal-age group of males. Moreover, females had greater activations relative to males for the unpleasant odor (mean difference = 1.285 × 10-1 μM). Therefore, fNIRS can capture peculiarities of olfactory activations, highlighting differences between odors with opposite valence and between sexes. This evidence positions fNIRS next to EEG as suitable technologies for cortical investigations of olfactory perception, providing complementary information (late and early response components, respectively), with lower costs and easier operation (albeit at lower resolutions) compared to fMRI.
Collapse
Affiliation(s)
- Anna Maria Monciatti
- Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, 50121 Florence, Italy
| | - Maddalena Lapini
- Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, 50121 Florence, Italy
| | | | - Gabriele Frediani
- Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, 50121 Florence, Italy
| | | |
Collapse
|
5
|
Ielo A, Bonanno L, Brunati C, Cannuli A, Basile GA, Dattola S, Migliorato A, Trimarchi F, Cascio F, Milardi D, Cerasa A, Quartarone A, Cacciola A. Structural and functional connectomics of the olfactory system in Parkinson's disease: a systematic review. Parkinsonism Relat Disord 2025; 132:107230. [PMID: 39721933 DOI: 10.1016/j.parkreldis.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Olfactory dysfunction, affecting 75-90 % of Parkinson's disease (PD) patients, holds significant predictive value for PD development. Advanced imaging techniques, such as diffusion MRI (dMRI) and functional MRI (fMRI), offer insights into structural and functional changes within olfactory pathways. This review summarizes a decade of research on MRI-based connectivity of the olfactory system in PD, focusing on structural and functional alterations in olfactory brain areas and their links to early olfactory processing changes. Fifteen dMRI and eighteen fMRI studies met inclusion criteria and were carefully reviewed. Among the studies investigating diffusion metrics, the most consistent finding was the reduction of fractional anisotropy in the olfactory tract and anterior olfactory structures, though evidence correlating this result to olfactory dysfunction is limited and contrasting. dMRI support the hypothesis that olfactory function may be correlated to structural alterations at the network-level. In contrast, fMRI studies found more consistent evidence of dysconnectivity in both primary and secondary olfactory areas as directly correlated to olfactory processing and dysfunction. Results suggest a potential dissociation between structural alterations in olfactory brain regions and early functional impairment in olfactory processing, likely related to different patient subtypes. Heterogeneity in clinical and technical factors may limit the generalizability of the results, leaving room for further investigations. By providing a comprehensive perspective on the use of dMRI and fMRI to explore the olfactory connectome in PD, our review might facilitate future research towards earlier diagnosis and more targeted therapeutic and neurorehabilitation strategies.
Collapse
Affiliation(s)
- Augusto Ielo
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.
| | - Costanza Brunati
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Cannuli
- Department of Engineering, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Alba Migliorato
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Fabio Trimarchi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Filippo Cascio
- Department of Otorhinolaryngology, Papardo Hospital, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR), Milan, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
6
|
Pirc M, Krale C, Smeets P, Boesveldt S. Perceptual differences in olfactory fat discrimination are not detected in neural activation. Chem Senses 2025; 50:bjaf007. [PMID: 39964953 PMCID: PMC11931621 DOI: 10.1093/chemse/bjaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 02/20/2025] Open
Abstract
Olfaction is involved in detecting, identifying, and discriminating dietary fat within foods, yet the underlying neural mechanisms remain uncharted. Our functional magnetic resonance imaging (fMRI) study investigated the neural correlates of olfactory fat perception and their association with discrimination ability in a complex food matrix. We measured brain activation resulting from orthonasal exposure to an ecologically relevant fat-related odor source-dairy milk, manipulated to contain 0%, 3.5%, or 14% fat. Twenty-six healthy, normosmic adults underwent olfactory fat content discrimination testing, followed by an fMRI task during which the 3 odor stimuli were delivered via an olfactometer (25 times/fat level) and rated on perceived intensity and liking. Participants discriminated between all fat levels, with fat level influencing perceived odor intensity and liking. These perceptual differences, however, were not reflected in differential brain activation. Brain activation differences were observed only when comparing odor exposure with no exposure. Specifically, in response to any odor, activation occurred in the anterior part of the supplementary motor area (SMA) while deactivating parts of the hippocampus, putamen, superior temporal gyrus, anterior cingulate cortex, insula, and posterior part of the SMA. Exposure to the 0% fat odor also activated the thalamus. No associations were found between perceived intensity and liking and neural responses. Results reaffirm the human ability to distinguish food fat content using solely olfactory cues and reveal a divergence between sensory perception and neural processing. Subsequent research should replicate and extend these findings onto retronasal fat perception while also examining potential effects of hunger, genetics, and dietary habits.
Collapse
Affiliation(s)
- Matjaž Pirc
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Catoo Krale
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Paul Smeets
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Fidecicchi T, Giannini A, Chedraui P, Luisi S, Battipaglia C, Genazzani AR, Genazzani AD, Simoncini T. Neuroendocrine mechanisms of mood disorders during menopause transition: A narrative review and future perspectives. Maturitas 2024; 188:108087. [PMID: 39111089 DOI: 10.1016/j.maturitas.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.
Collapse
Affiliation(s)
- Tiziana Fidecicchi
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy
| | - Andrea Giannini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| | - Peter Chedraui
- Escuela de Posgrado en Salud, Universidad Espíritu Santo, Av. Samborondón 5, Samborondón 092301, Ecuador
| | - Stefano Luisi
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41125 Modena, MO, Italy.
| | - Andrea R Genazzani
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy
| | - Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41125 Modena, MO, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| |
Collapse
|
8
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
9
|
Maimaitiaili S, Tang C, Liu C, Lv X, Chen Z, Zhang M, Cai J, Liang Z, Zhao B, Zhang W, Qiao T. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis. Front Aging Neurosci 2024; 16:1395911. [PMID: 38974904 PMCID: PMC11225314 DOI: 10.3389/fnagi.2024.1395911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.
Collapse
Affiliation(s)
- Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chen Tang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaochen Lv
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqiang Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zishun Liang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Biao Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Borghei A, Kelly R, Pearce JJ, Stoub TR, Sani S. Structural Connectivity of the Human Piriform Cortex: an Exploratory Study. Neurosurgery 2024; 94:856-863. [PMID: 37955443 DOI: 10.1227/neu.0000000000002756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The piriform cortex (PC) is part of the primary olfactory network in humans. Recent findings suggest that it plays a role in pathophysiology of epilepsy. Therefore, studying its connectivity can further our understanding of seizure propagation in epilepsy. We aimed to explore the structural connectivity of PC using high-quality human connectome project data coupled with segmentation of PC on anatomic MRI. METHODS Twenty subjects were randomly selected from the human connectome project database, and PC was traced on each hemisphere. Probabilistic whole-brain tractography was then used to visualize PC connectivity. RESULTS The strongest connectivity was noted between PC and ipsilateral insula in both hemispheres. Specifically, the posterior long gyrus of each insula was predominantly connected to PC. This was followed by connections between PC and basal ganglia as well as orbital frontal cortices. CONCLUSION The PC has the strongest connectivity with the insula bilaterally. Specifically, the posterior long gyri of insula have the strongest connectivity. This finding may provide additional insight for localizing and treating temporo-insular epilepsy.
Collapse
Affiliation(s)
- Alireza Borghei
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Ryan Kelly
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Travis R Stoub
- Department of Neurological Sciences, Rush University Medical Center, Chicago , Illinois , USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| |
Collapse
|
11
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
13
|
Woo KA, Kim H, Yoon EJ, Shin JH, Nam H, Jeon B, Kim YK, Lee J. Brain olfactory-related atrophy in isolated rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2023; 10:2192-2207. [PMID: 37743764 PMCID: PMC10723229 DOI: 10.1002/acn3.51905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE To investigate structural and functional connectivity changes in brain olfactory-related structures in a longitudinal prospective cohort of isolated REM sleep behavior disorder (iRBD) and their clinical correlations, longitudinal evolution, and predictive values for phenoconversion to overt synucleinopathies, especially Lewy body diseases. METHODS The cohort included polysomnography-confirmed iRBD patients and controls. Participants underwent baseline assessments including olfactory tests, neuropsychological evaluations, the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, 3T brain MRI, and 18 F-FP-CIT PET scans. Voxel-based morphometry (VBM) was performed to identify regions of atrophy in iRBD, and volumes of relevant olfactory-related regions of interest (ROI) were estimated. Subgroups of patients underwent repeated volumetric MRI and resting-state functional MRI (fMRI) scans after four years. RESULTS A total of 51 iRBD patients were included, with 20 of them converting to synucleinopathy (mean time to conversion 3.08 years). Baseline VBM analysis revealed atrophy in the right olfactory cortex and gyrus rectus in iRBD. Subsequent ROI comparisons with controls showed atrophy in the amygdala. These olfactory-related atrophies tended to be associated with worse depression, anxiety, and urinary problems in iRBD. Amygdala 18 F-FP-CIT uptake tended to be reduced in iRBD patients with hyposmia (nonsignificant after multiple comparison correction) and correlated with urinary problems. Resting-state fMRI of 23 patients and 32 controls revealed multiple clusters with aberrant olfactory-related functional connectivity. Hypoconnectivity between the putamen and olfactory cortex was associated with mild parkinsonian signs in iRBD. Longitudinal analysis of volumetric volumetric MRI in 22 iRBD patients demonstrated four-year progression of olfactory-related atrophy. Cox regression analysis revealed that this atrophy significantly predicted phenoconversion. INTERPRETATION Progressive atrophy of central olfactory structures may be a potential indicator of Lewy body disease progression in iRBD.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Heejung Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Radiation Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Eun Jin Yoon
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Memory Network Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Jung Hwan Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyunwoo Nam
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Beomseok Jeon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
14
|
Jobin B, Boller B, Frasnelli J. Smaller grey matter volume in the central olfactory system in mild cognitive impairment. Exp Gerontol 2023; 183:112325. [PMID: 37952649 DOI: 10.1016/j.exger.2023.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the major challenges in the diagnosis of Alzheimer's disease (AD) is to increase the specificity of the early diagnosis. While episodic memory impairment is a sensitive AD marker, other measures are needed to improve diagnostic specificity. A promising biomarker might be a cerebral atrophy of the central olfactory processing areas in the early stages of the disease since an impairment of olfactory identification is present at the clinical stage of AD. Our goal was therefore, (1) to evaluate the grey matter volume (GMV) of central olfactory processing regions in prodromal AD and (2) to assess its association with episodic memory. We included 34 cognitively normal healthy controls (HC), 92 individuals with subjective cognitive decline (SCD), and 40 with mild cognitive impairment (MCI). We performed regions of interest analysis (ROI) using two different approaches, allowing to extract GMV from (1) atlas-based anatomical ROIs and from (2) functional and non-functional subregions of these ROIs (olfactory ROIs and non-olfactory ROIs). Participants with MCI exhibited smaller olfactory ROIs GMV, including significant reductions in the piriform cortex, amygdala, entorhinal cortex, and left hippocampus compared to other groups (p ≤ 0.05, corrected). No significant effect was found regarding anatomical or non-olfactory ROIs GMV. The left hippocampus olfactory ROI GMV was correlated with episodic memory performance (p < 0.05 corrected). Limbic/medial-temporal olfactory processing areas are specifically atrophied at the MCI stage, and the degree of atrophy might predict cognitive decline in AD early stages.
Collapse
Affiliation(s)
- Benoît Jobin
- Department of Psychology, Université du Québec à Trois-Rivières, Qc, Canada; Research Centre of the Institut universitaire de Gériatrie de Montréal, Qc, Canada; Research Centre of the Hôpital du Sacré-Cœur de Montréal, Qc, Canada.
| | - Benjamin Boller
- Department of Psychology, Université du Québec à Trois-Rivières, Qc, Canada; Research Centre of the Institut universitaire de Gériatrie de Montréal, Qc, Canada
| | - Johannes Frasnelli
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Qc, Canada; Department of Anatomy, Université du Québec à Trois-Rivières, Qc, Canada
| |
Collapse
|
15
|
Zhu Y, Joshi A, Thaploo D, Hummel T. Exploring brain functional connectivity in patients with taste loss: a pilot study. Eur Arch Otorhinolaryngol 2023; 280:4491-4499. [PMID: 37198301 PMCID: PMC10477147 DOI: 10.1007/s00405-023-08019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE In a previous neuroimaging study, patients with taste loss showed stronger activations in gustatory cortices compared to people with normal taste function during taste stimulations. The aim of the current study was to examine whether there are changes in central-nervous functional connectivity in patients with taste loss. METHODS We selected 26 pairs of brain regions related to taste processing as our regions of interests (ROIs). Functional magnetic resonance imaging (fMRI) was used to measure brain responses in seven patients with taste loss and 12 healthy controls as they received taste stimulations (taste condition) and water (water condition). The data were analysed using ROI-to-ROI functional connectivity analysis (FCA). RESULTS We observed weaker functional connectivity in the patient group between the left and right orbitofrontal cortex in the taste condition and between the left frontal pole and the left superior frontal gyrus in the water condition. CONCLUSION These results suggested that patients with taste loss experience changes of functional connectivity between brain regions not only relevant to taste processing but also to cognitive functions. While further studies are needed, fMRI might be helpful in diagnosing taste loss as an additional tool in exceptional cases.
Collapse
Affiliation(s)
- Yunmeng Zhu
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Akshita Joshi
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Divesh Thaploo
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center Smell & Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
16
|
Hatsukawa H, Ishikawa M. Psychological states affecting initial pupil size changes after olfactory stimulation in healthy participants. Sci Rep 2023; 13:16050. [PMID: 37749199 PMCID: PMC10520065 DOI: 10.1038/s41598-023-43004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Odor perception affects physiological and psychological states. Pupillary light reflex (PLR) parameters can be affected by olfactory stimulation and psychological states, although it remains unclear whether the olfactory stimulation-induced psychological changes can associate with PLR parameter changes. This study aimed to investigate effects of olfactory stimulation-induced psychological changes on PLR parameter changes with repeated measurements. We collected data on six mood subscales of the profile of mood states, and on five PLR parameter measurements from 28 healthy participants. Participants underwent a 10-min olfactory stimulation on different days with six odorants available with the T&T olfactometer. As obtained data were clustered, we used linear mixed-effects models for statistical analyses. The olfactory stimulation using the no-odor liquid did not affect mood states and the initial pupil size (INIT). The sweat odorant worsened all mood subscales including fatigue-inertia (Fatigue)/Vigor-Activity (Vigor), and decreased INIT compared to the no-odor liquid. When comparing INIT responses related to changes in mood subscales between the no-odor liquid and the sweat odorant, worsened states of Fatigue/Vigor were associated with decreased INIT in the sweat odorant. Fatigue/Vigor can be used as mental fatigue indicators. Thus, mental fatigue can be associated with decreased INIT in the olfactory stimulation.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan.
| |
Collapse
|
17
|
Okkels N, Horsager J, Labrador-Espinosa M, Kjeldsen PL, Damholdt MF, Mortensen J, Vestergård K, Knudsen K, Andersen KB, Fedorova TD, Skjærbæk C, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain 2023; 146:3690-3704. [PMID: 37279796 DOI: 10.1093/brain/awad192] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Janne Mortensen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Zhang Z, Wu Y, Luo Q, Tu J, Li J, Xiong J, Lv H, Ye J. Regional homogeneity alterations of resting-state functional magnetic resonance imaging of chronic rhinosinusitis with olfactory dysfunction. Front Neurosci 2023; 17:1146259. [PMID: 37575305 PMCID: PMC10412925 DOI: 10.3389/fnins.2023.1146259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
Objectives The aim of this study was to assess the brain functional changes of patients with chronic rhinosinusitis with olfactory dysfunction (CRSwOD) using regional homogeneity (ReHo) of resting-state functional magnetic resonance imaging (MRI) scans, and to better explain the occurrence and development of olfactory decline in patients with chronic sinusitis provides a new idea for the study of more advanced olfactory therapy modalities. Methods A total of 28 CRSwOD patients, 24 patients with CRS without olfactory dysfunction (CRSsOD), and 25 healthy controls (HCs) were recruited. All subjects underwent olfactory testing, clinical and brief psychological assessments, and MRI scans. A two-sided two-sample t test with AlphaSim correction (voxel-p < 0.001, cluster size >54 voxels) was used to detect differences between CRSwOD, CRSsOD, and HC groups. Results Compared with HCs, the ReHo values in traditional olfactory regions (e.g., parahippocampal gyrus (PHG), hippocampal, olfactory cortex) were increased, and ReHo values in the frontal gyrus, middle temporal gyrus, precuneus, and posterior cingulate gyrus were decreased in CRSwOD patients. The ReHo values in the precuneus and posterior cingulate gyrus of CRSwOD patients were negatively correlated with Questionnaire of Olfactory Disorders-Negative Statements (QOD-NS) scores. Compared with CRSsOD patients, the ReHo values in cerebellar regions were increased and those in the inferior temporal gyrus, precuneus, postcentral, and paracentral gyrus were decreased in CRSwOD patients. The receiver operating characteristic (ROC) curve showed that the mean ReHo values significantly differed between the CRSwOD and CRSsOD groups. Conclusion Synchronization of regional brain activity in the regions of the secondary olfactory cortex orbitofrontal cortex (OFC), temporal gyrus, precuneus, and cerebellum may be closely related to the development of olfactory dysfunction. Precuneus and posterior cingulate gyrus may be critical brain areas of action for emotional dysfunction in CRSwOD patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxin Xiong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiting Lv
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Chung TWH, Zhang H, Wong FKC, Sridhar S, Lee TMC, Leung GKK, Chan KH, Lau KK, Tam AR, Ho DTY, Cheng VCC, Yuen KY, Hung IFN, Mak HKF. A Pilot Study of Short-Course Oral Vitamin A and Aerosolised Diffuser Olfactory Training for the Treatment of Smell Loss in Long COVID. Brain Sci 2023; 13:1014. [PMID: 37508945 PMCID: PMC10377650 DOI: 10.3390/brainsci13071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Olfactory dysfunction (OD) is a common neurosensory manifestation in long COVID. An effective and safe treatment against COVID-19-related OD is needed. Methods: This pilot trial recruited long COVID patients with persistent OD. Participants were randomly assigned to receive short-course (14 days) oral vitamin A (VitA; 25,000 IU per day) and aerosolised diffuser olfactory training (OT) thrice daily (combination), OT alone (standard care), or observation (control) for 4 weeks. The primary outcome was differences in olfactory function by butanol threshold tests (BTT) between baseline and end-of-treatment. Secondary outcomes included smell identification tests (SIT), structural MRI brain, and serial seed-based functional connectivity (FC) analyses in the olfactory cortical network by resting-state functional MRI (rs-fMRI). Results: A total of 24 participants were randomly assigned to receive either combination treatment (n = 10), standard care (n = 9), or control (n = 5). Median OD duration was 157 days (IQR 127-175). Mean baseline BTT score was 2.3 (SD 1.1). At end-of-treatment, mean BTT scores were significantly higher for the combination group than control (p < 0.001, MD = 4.4, 95% CI 1.7 to 7.2) and standard care (p = 0.009) groups. Interval SIT scores increased significantly (p = 0.009) in the combination group. rs-fMRI showed significantly higher FC in the combination group when compared to other groups. At end-of-treatment, positive correlations were found in the increased FC at left inferior frontal gyrus and clinically significant improvements in measured BTT (r = 0.858, p < 0.001) and SIT (r = 0.548, p = 0.042) scores for the combination group. Conclusions: Short-course oral VitA and aerosolised diffuser OT was effective as a combination treatment for persistent OD in long COVID.
Collapse
Affiliation(s)
- Tom Wai-Hin Chung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fergus Kai-Chuen Wong
- Department of Ear, Nose and Throat, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Tatia Mei-Chun Lee
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui-Kai Lau
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deborah Tip-Yin Ho
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Alotaibi MM, De Marco M, Venneri A. Sex differences in olfactory cortex neuronal loss in aging. Front Hum Neurosci 2023; 17:1130200. [PMID: 37323926 PMCID: PMC10265738 DOI: 10.3389/fnhum.2023.1130200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Aging plays a major role in neurodegenerative disorders such as Alzheimer's disease, and impacts neuronal loss. Olfactory dysfunction can be an early alteration heralding the presence of a neurodegenerative disorder in aging. Studying alterations in olfaction-related brain regions might help detection of neurodegenerative diseases at an earlier stage as well as protect individuals from any danger caused by loss of sense of smell. Objective To assess the effect of age and sex on olfactory cortex volume in cognitively healthy participants. Method Neurologically healthy participants were divided in three groups based on their age: young (20-35 years; n = 53), middle-aged (36-65 years; n = 66) and older (66-85 years; n = 95). T1-weighted MRI scans acquired at 1.5 T were processed using SPM12. Smoothed images were used to extract the volume of olfactory cortex regions. Results ANCOVA analyses showed significant differences in volume between age groups in the olfactory cortex (p ≤ 0.0001). In women, neuronal loss started earlier than in men (in the 4th decade of life), while in men more substantial neuronal loss in olfactory cortex regions was detected only later in life. Conclusion Data indicate that age-related reduction in the volume of the olfactory cortex starts earlier in women than in men. The findings suggest that volume changes in olfaction-related brain regions in the aging population deserve further attention as potential proxies of increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Majed M. Alotaibi
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
22
|
Hernandez AK, Landis BN, Altundag A, Fjaeldstad AW, Gane S, Holbrook EH, Huart C, Konstantinidis I, Lechner M, Macchi A, Portillo Mazal P, Miwa T, Philpott CM, Pinto JM, Poletti SC, Vodicka J, Welge-Luessen A, Whitcroft KL, Hummel T. Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination. ORL J Otorhinolaryngol Relat Spec 2023; 85:312-320. [PMID: 37062268 PMCID: PMC10711772 DOI: 10.1159/000530211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. SUMMARY As a group of clinical olfactory researchers, we propose the standardization of the terms "dysosmia," "anosmia," "hyposmia," "normosmia," "hyperosmia," "olfactory intolerance," "parosmia," and "phantosmia" (or "olfactory hallucination") in olfaction-related communication, with specific definitions in this text. KEY MESSAGES The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field.
Collapse
Affiliation(s)
- Anna Kristina Hernandez
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Otolaryngology – Head and Neck Surgery, Philippine General Hospital, University of the Philippines – Manila, Manila, Philippines
- Department of Otolaryngology – Head and Neck Surgery, Asian Hospital and Medical Center, Muntinlupa, Philippines
| | - Basile N. Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology, University Hospital of Geneva, Geneva, Switzerland
| | - Aytug Altundag
- Department of Otolaryngology, Head and Neck Surgery, Biruni University Medical School, Istanbul, Turkey
| | - Alexander Wieck Fjaeldstad
- Department of Otorhinolaryngology, University Clinic for Flavour, Balance and Sleep, Regional Hospital Gødstrup, Herning, Denmark
- Department of Clinical Medicine, Flavour Institute, Aarhus University, Aarhus, Denmark
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
| | - Simon Gane
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Eric H. Holbrook
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Caroline Huart
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Iordanis Konstantinidis
- Smell and Taste Clinic, Second Academic Otorhinolaryngology Department, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matt Lechner
- Division of Surgery and Interventional Science, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- ENT Department, Homerton Healthcare NHS Foundation Trust, London, UK
| | - Alberto Macchi
- ENT Clinic, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Patricia Portillo Mazal
- Servicio de Otorrinolaringología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada, Japan
| | - Carl M. Philpott
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Smell and Taste Clinic, James Paget University Hospital, Gorleston, UK
| | - Jayant M. Pinto
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sophia C. Poletti
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Vodicka
- Department of Otorhinolaryngology and Head and Neck Surgery, Hospital Pardubice, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Antje Welge-Luessen
- Department of Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Katherine L. Whitcroft
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- The Centre for Olfactory Research and Applications, Institute of Philosophy, School of Advanced Study, University of London, London, UK
- UCL Ear Institute, Faculty of Brain Sciences, University College London, London, UK
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Okkels N, Horsager J, Labrador-Espinosa MA, Hansen FO, Andersen KB, Just MK, Fedorova TD, Skjærbæk C, Munk OL, Hansen KV, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Distribution of cholinergic nerve terminals in the aged human brain measured with [ 18F]FEOBV PET and its correlation with histological data. Neuroimage 2023; 269:119908. [PMID: 36720436 DOI: 10.1016/j.neuroimage.2023.119908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Frederik O Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Chang F, Hong J, Yuan F, Wu D. Association between cognition and olfaction-specific parameters in patients with chronic rhinosinusitis. Eur Arch Otorhinolaryngol 2023; 280:3249-3258. [PMID: 36689021 DOI: 10.1007/s00405-023-07853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients with chronic rhinosinusitis (CRS) have reported significantly cognitive and olfactory dysfunction. This study aimed to explore the relationship between cognitive function and olfaction-specific parameters in patients with CRS. METHODS A cross-sectional survey method was used to investigate 98 participants, including 75 patients with CRS and 23 healthy controls. Cognitive function and psychophysical olfactory tests were performed. Olfactory cleft endoscopy scale and olfactory cleft computed tomography (CT) scores were obtained. Multivariate logistic regression was used to analyze the risk factors of Mild Cognitive Impairment (MCI) in patients with CRS. RESULTS There are significant differences in age, Montreal Cognitive Assessment (MoCA) scores, number of MCI, Lund-Mackay olfactory cleft (LM-OC) score, and blood eosinophil count between CRS with and without olfactory dysfunction groups (all P < 0.05). Total MoCA scores were positively correlated with thresholds-discrimination-identification (TDI) score (r = 0.541, P < 0.001), olfactory threshold (OT) (r = 0.440, P < 0.001), olfactory discrimination (OD) (r = 0.541, P < 0.001), and olfactory identification (OI) (r = 0.382, P = 0.001) scores. Furthermore, total MoCA scores were negatively correlated with LM-OC scores (r = - 0.351, P = 0.002). After adjusting for patient demographics, only the OD score was an independent risk factor for MCI among patients with CRS (odds ratio = 0.792; P = 0.039). The OD scores less than 11.5 were the best predictor of MCI in patients with CRS. CONCLUSION Olfaction-specific clinical parameters were highly correlated with cognitive function in patients with CRS and the OD score was an independent risk factor for MCI in patients with CRS.
Collapse
Affiliation(s)
- Feifan Chang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Junsheng Hong
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fan Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Wu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
25
|
Du S, Wang Y, Li G, Wei H, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N. Olfactory functional covariance connectivity in Parkinson's disease: Evidence from a Chinese population. Front Aging Neurosci 2023; 14:1071520. [PMID: 36688163 PMCID: PMC9846552 DOI: 10.3389/fnagi.2022.1071520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Central anosmia is a potential marker of the prodrome and progression of Parkinson's disease (PD). Resting-state functional magnetic resonance imaging studies have shown that olfactory dysfunction is related to abnormal changes in central olfactory-related structures in patients with early PD. Methods This study, which was conducted at Guanyun People's Hospital, analyzed the resting-state functional magnetic resonance data using the functional covariance connection strength method to decode the functional connectivity between the white-gray matter in a Chinese population comprising 14 patients with PD and 13 controls. Results The following correlations were observed in patients with PD: specific gray matter areas related to smell (i.e., the brainstem, right cerebellum, right temporal fusiform cortex, bilateral superior temporal gyrus, right Insula, left frontal pole and right superior parietal lobule) had abnormal connections with white matter fiber bundles (i.e., the left posterior thalamic radiation, bilateral posterior corona radiata, bilateral superior corona radiata and right superior longitudinal fasciculus); the connection between the brainstem [region of interest (ROI) 1] and right cerebellum (ROI2) showed a strong correlation. Right posterior corona radiation (ROI11) showed a strong correlation with part 2 of the Unified Parkinson's Disease Rating Scale, and right superior longitudinal fasciculus (ROI14) showed a strong correlation with parts 1, 2, and 3 of the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr Scale. Discussion The characteristics of olfactory-related brain networks can be potentially used as neuroimaging biomarkers for characterizing PD states. In the future, dynamic testing of olfactory function may help improve the accuracy and specificity of olfactory dysfunction in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shouyun Du
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guodong Li
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yijie Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yi Wang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China,*Correspondence: Zenglin Cai, ✉
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China,Nizhuan Wang, ✉
| |
Collapse
|
26
|
Li C, Hong L, Zou L, Zhu Y, Ye J, Wu F, Chen C. Variations in olfactory function among bipolar disorder patients with different episodes and subtypes. Front Psychiatry 2023; 14:1080622. [PMID: 37020734 PMCID: PMC10067908 DOI: 10.3389/fpsyt.2023.1080622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose Most studies on olfactory function in individuals with bipolar disorder (BD) have not distinguished between the different subtypes or between the acute phase (mania or depression) and euthymic state. In this study, we compared olfactory function among BD patients with different subtypes and episodes to explore the potential use of olfactory function as a biomarker for the early identification of BD. Patients and methods The study sample consisted of 117 BD patients who were hospitalized between April 2019 and June 2019, and 47 healthy volunteers as controls. The BD patients were divided into a bipolar I disorder (BD I) (n = 86) and bipolar II disorder (BD II) group (n = 31) according to the different subtypes, and divided into depressive BD (n = 36), manic BD (n = 44), or euthymic BD (n = 37) groups according to the types of episodes they experienced. We assessed olfactory sensitivity (OS) and olfactory identification (OI) via the Sniffin' Sticks test and used the Hamilton Depression Rating Scale (HAMD) and Young Manic Rating Scale (YMRS) to evaluate BD characteristics among all subjects. Results Compared with controls, the participants with BD showed decreased OS and OI. We found statistically significant differences in OS and OI between the BD I group and controls, as well as differences in OS between the BD I and BD II group. Least-significant difference multiple comparisons revealed statistically significant differences in OS between the depressive BD group, manic BD group and controls and also between the manic BD and euthymic BD group. OI was positively correlated with the YMRS score in the BD I group and OS was negatively correlated with the HAMD score in the BD II group. Conclusion This may be the first study to compare olfactory function in patients with BD I vs. BD II via pairwise comparisons. Our findings suggest that OS may have potential as a biomarker for distinguishing the different subtypes of BD and as a state-related biomarker for differentiating the acute phase from the euthymic state of BD. However, further prospective research is warranted.
Collapse
Affiliation(s)
- Chunyang Li
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
- *Correspondence: Chunyang Li,
| | - Liu Hong
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
| | - Laiquan Zou
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiping Zhu
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
| | - Jianfu Ye
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
| | - Fenlan Wu
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
| | - Chao Chen
- Department of Psychiatry, Shunde Wu Zhongpei Hospital, Foshan, Guangdong, China
- Chao Chen,
| |
Collapse
|
27
|
Thaploo D, Joshi A, Georgiopoulos C, Warr J, Hummel T. Tractography indicates lateralized differences between trigeminal and olfactory pathways. Neuroimage 2022; 261:119518. [PMID: 35926760 DOI: 10.1016/j.neuroimage.2022.119518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 11/15/2022] Open
Abstract
Odorous sensations are based on trigeminal and olfactory perceptions. Both trigeminal and olfactory stimuli generate overlapping as well as distinctive activations in the olfactory cortex including the piriform cortex. Orbitofrontal cortex (OFC), an integrative center for all senses, is directly activated in the presence of olfactory stimulations. In contrast, the thalamus, a very important midbrain structure, is not directly activated in the presence of odors, but rather acts as a relay for portions of olfactory information between primary olfactory cortex and higher-order processing centers. The aims of the study were (1) to examine the number of streamlines between the piriform cortex and the OFC and also between the piriform cortex and the thalamus and (2) to explore potential correlations between these streamlines and trigeminal and olfactory chemosensory perceptions. Thirty-eight healthy subjects were recruited for the study and underwent diffusion MRI using a 3T MRI scanner with 67 diffusion directions. ROIs were adapted from two studies looking into olfaction in terms of functional and structural properties of the olfactory system. The "waytotal number" was used which corresponds to number of streamlines between two regions of interests. We found the number of streamlines between the piriform cortex and the thalamus to be higher in the left hemisphere, whereas the number of streamlines between the piriform cortex and the OFC were higher in the right hemisphere. We also found streamlines between the piriform cortex and the thalamus to be positively correlated with the intensity of irritating (trigeminal) odors. On the other hand, streamlines between the piriform cortex and the OFC were correlated with the threshold scores for these trigeminal odors. This is the first studying the correlations between streamlines and olfactory scores using tractography. Results suggest that different chemosensory stimuli are processed through different networks in the chemosensory system involving the thalamus.
Collapse
Affiliation(s)
- Divesh Thaploo
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Haus 5, Fetscherstraße 74, Dresden 01307, Germany.
| | - Akshita Joshi
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Haus 5, Fetscherstraße 74, Dresden 01307, Germany
| | - Charalampos Georgiopoulos
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Haus 5, Fetscherstraße 74, Dresden 01307, Germany; Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Haus 5, Fetscherstraße 74, Dresden 01307, Germany
| |
Collapse
|
28
|
Chouinard‐Leclaire C, Manescu S, Collignon O, Lepore F, Frasnelli J. Altered morphological traits along central olfactory centers in congenitally blind subjects. Eur J Neurosci 2022; 56:4486-4500. [DOI: 10.1111/ejn.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Simona Manescu
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) Université de Montréal Montréal Québec Canada
| | - Olivier Collignon
- Institutes for research in Psychology (IPSY) and Neurosciences (IoNS) University of Louvain Belgium
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) Université de Montréal Montréal Québec Canada
| | - Johannes Frasnelli
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) Université de Montréal Montréal Québec Canada
- Department of Anatomy Université du Québec à Trois‐Rivières Canada
- Centre d’études avancées en médecine du sommeil (CÉAMS), Centre de Recherche de l’Hôpital du Sacré‐Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord‐de‐l’Île‐de‐Montréal (CIUSSS du Nord‐de‐l’Île‐de‐Montréal) Canada
| |
Collapse
|
29
|
Gao X, Su B, Sun Z, Xu L, Wei Y, Wu D. Patterns of Gray and White Matter Volume Alterations in Patients With Post-Traumatic Anosmia: A Voxel-Based Morphometry Study. Front Neurol 2022; 13:690760. [PMID: 35860485 PMCID: PMC9289146 DOI: 10.3389/fneur.2022.690760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTraumatic brain injury is one of the major causes of human olfactory dysfunction and leads to brain structure alterations, mainly in the cortical olfactory regions. Our study aimed to investigate volume changes in the gray matter (GM) and white matter (WM) in patients with post-traumatic anosmia and then to explore the relationship between GM volume and olfactory function.MethodsEthics committee approved prospective studies which included 22 patients with post-traumatic anosmia and 18 age- and gender-matched healthy volunteers. Olfactory function was assessed using the Sniffin' Sticks. High-resolution 3-dimensional T1 MRIs of the participants were acquired on a 3T scanner and the data were collected for voxel-based morphometry (VBM) analysis. Furthermore, the GM and WM volumes of the whole brain regions were compared and correlated with olfactory function.ResultsThe analysis revealed significant GM volume reduction in the orbitofrontal cortex (OFC), gyrus rectus (GR), olfactory cortex, insula, parahippocampal, temporal pole, and cerebellum (all P < 0.001) in patients. Besides, WM volume loss was also found in the OFC, GR, and insula (all P < 0.001) in patients. All WM atrophy areas were connected to areas of GM volume loss spatially. Correlation analysis showed the olfactory scores were significantly positively correlated with the GM volume of the occipital cortex (P < 0.001, and PFWE < 0.05), while no significant correlation was found between the Sniffin' Sticks test scores and the WM volume in patients.ConclusionThe reduction of GM and WM volume in olfactory-related regions was responsible for olfactory dysfunction in post-traumatic patients. The occipital cortex may play a compensation mechanism to maintain the residual olfactory function. To our knowledge, we report here for the first time on white matter volume alterations specifically in post-traumatic patients with anosmia.
Collapse
Affiliation(s)
- Xing Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Baihan Su
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhifu Sun
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Medical Imaging, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Yongxiang Wei
| | - Dawei Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing, China
- Dawei Wu
| |
Collapse
|
30
|
Veldhuizen MG, Cecchetto C, Fjaeldstad AW, Farruggia MC, Hartig R, Nakamura Y, Pellegrino R, Yeung AWK, Fischmeister FPS. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci 2022; 16:885304. [PMID: 35707745 PMCID: PMC9190244 DOI: 10.3389/fnsys.2022.885304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.
Collapse
Affiliation(s)
- Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alexander W. Fjaeldstad
- Flavour Clinic, Department of Otorhinolaryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yuko Nakamura
- The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Andy W. K. Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Florian Ph. S. Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
31
|
Subtle Differences in Brain Architecture in Patients with Congenital Anosmia. Brain Topogr 2022; 35:337-340. [PMID: 35325351 PMCID: PMC9098554 DOI: 10.1007/s10548-022-00895-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
People suffering from congenital anosmia show normal brain architecture although they do not have functional sense of smell. Some studies in this regard point to the changes in secondary olfactory cortex, orbitofrontal cortex (OFC), in terms of gray matter volume increase. However, diffusion tensor imaging has not been explored so far. We included 13 congenital anosmia subjects together with 15 controls and looked into various diffusion parameters like FA. Increased FA in bilateral OFC confirms the earlier studies reporting increased gray matter thickness. However, it is quite difficult to interpret FA in terms of gray matter volume. Increased FA has been seen with recovery after traumatic brain injury. Such changes in OFC point to the plastic nature of the brain.
Collapse
|
32
|
Wang Y, Wei H, Du S, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N. Functional Covariance Connectivity of Gray and White Matter in Olfactory-Related Brain Regions in Parkinson’s Disease. Front Neurosci 2022; 16:853061. [PMID: 35310108 PMCID: PMC8930839 DOI: 10.3389/fnins.2022.853061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Before the onset of motor symptoms, Parkinson’s disease (PD) involves dysfunction of the anterior olfactory nucleus and olfactory bulb, causing olfactory disturbance, commonly resulting in hyposmia in the early stages of PD. Accumulating evidence has shown that blood oxygen level dependent (BOLD) signals in white matter are altered by olfactory disorders and related stimuli, and the signal changes in brain white matter pathways show a certain degree of specificity, which can reflect changes of early olfactory dysfunction in Parkinson’s disease. In this study, we apply the functional covariance connectivity (FCC) method to decode FCC of gray and white matter in olfactory-related brain regions in Parkinson’s disease. Our results show that the dorsolateral prefrontal, anterior entorhinal cortex and fronto-orbital cortices in the gray matter have abnormal connectivity with the posterior corona radiata and superior corona radiata in white matter in patients with Parkinson’s hyposmia. The functional covariance connection strength (FCS) of the right dorsolateral prefrontal cortex and white matter, and the covariance connection strength of the left superior corona radiata and gray matter function have potential diagnostic value. These results demonstrate that alterations in FCC of gray and white matter in olfactory-related brain regions can reflect the change of olfactory function in the early stages of Parkinson’s disease, indicating that it could be a potential neuroimaging marker for early diagnosis.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- Department of Neurology, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Shouyun Du
- Department of Neurology, Guanyun People’s Hospital, Lianyungang, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yijie Wu
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Wang
- Department of Radiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- Department of Neurology, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Zenglin Cai,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- Nizhuan Wang,
| |
Collapse
|
33
|
Lee S, Kim J, Kim BJ, Kim RY, Ha E, Kim S, Hong SN, Lyoo IK, Kim DW. Gray matter volume reduction in the emotional brain networks in adults with anosmia. J Neurosci Res 2022; 100:1321-1330. [PMID: 35240720 DOI: 10.1002/jnr.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/10/2022]
Abstract
Loss of olfaction, or anosmia, frequently accompanies emotional dysfunctions, partly due to the overlapping brain regions between the olfactory and emotional processing centers. Here, we investigated whether anosmia was associated with gray matter volume alterations at a network level, and whether these alterations were related to the olfactory-specific quality of life (QOL) and depressive symptoms. Structural brain magnetic resonance imaging was acquired in 22 individuals with postinfectious or idiopathic anosmia (the anosmia group) and 30 age- and sex-matched controls (the control group). Using independent component analysis on the gray matter volumes, we identified 10 morphometric networks. The gray matter volumes of these networks were compared between the two groups. Olfactory-specific QOL and depressive symptoms were assessed by self-report questionnaires and clinician-administered interviews, respectively. The anosmia group showed lower gray matter volumes in the hippocampus-amygdala and the precuneus networks, relative to the control group. Lower gray matter volumes in the hippocampus-amygdala network were also linearly associated with lower olfactory-specific QOL and higher depressive symptom scores. These findings suggest a close relationship between anosmia and gray matter volume alterations in the emotional brain networks, albeit without determined causal relations.
Collapse
Affiliation(s)
- Suji Lee
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea.,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Echevarria-Cooper SL, Zhou G, Zelano C, Pestilli F, Parrish TB, Kahnt T. Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI. J Neurosci 2022; 42:58-68. [PMID: 34759031 PMCID: PMC8741165 DOI: 10.1523/jneurosci.1552-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function.SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.
Collapse
Affiliation(s)
- Shiloh L Echevarria-Cooper
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- The Graduate School, Northwestern University Interdepartmental Neuroscience (NUIN), Evanston, Illinois 60208
| | - Guangyu Zhou
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Christina Zelano
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, Illinois 60611
| | - Thorsten Kahnt
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Psychology, Northwestern University, Weinberg College of Arts and Sciences, Evanston, Illinois 60208
| |
Collapse
|
35
|
郭 怡, 姚 淋, 孙 智, 黄 小, 刘 佳, 魏 永. [Prognostic value of olfactory bulb volume in patients with post-viral olfactory dysfunction]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:8-13. [PMID: 34979611 PMCID: PMC10128224 DOI: 10.13201/j.issn.2096-7993.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Objective:The purpose of this study was to compare the olfactory function examination results of patients with post-viral olfactory dysfunction(PVOD) in different prognostic groups and analyze prognostic factors, especially the influence of olfactory bulb volume(OBV) on prognosis, so as to provide objective basis for clinical diagnosis and treatment. Methods:After approval by the hospital ethics committee, the patients with PVOD admitted to Beijing Anzhen Hospital's outpatient department from January 2019 to December 2019 were followed up for at least 1 year. These patients completed the Sniffin' Sticks test and MRI examination of the olfactory pathway before treatment. According to the results of the Sniffin' Sticks test after 1 year follow-up(threshold-discrimination-identification(TDI) score of the patients was increased at least 6 points), the patients were divided into two groups as the improvement group and the non-improvement group. The prognostic factors of PVOD patients were preliminarily determined by comparing the differences of various factors and the results of olfactory function examination between the two groups. Results:In this study, 47 patients with PVOD were included, with the smell improvement rate was 53.2%. Compared with the improvement group, the patients in the non-improvement group had longer duration, poorer initial olfactory function, higher olfactory threshold, and poorer olfactory discrimination and recognition ability(All P<0.01). There was no statistical difference in terms of gender, age, allergic rhinitis and smoking between the two groups(All P>0.05).The OBV of the non-improvement group was (59.48±23.92) mm³, which was significantly lower than that in the improvement group([92.77±14.35]mm³, P<0.001). Multiple logistic regression analysis showed that prognostic factors included course of disease(OR 0.677, 95%CI 0.461-0.993, P=0.046), initial T value(OR 263.806, 95%CI 1.028-67 675.884, P=0.049) and OBV(OR 1.160, 95%CI 1.002-1.343, P=0.047). The area under the receiver operating characteristic curve(ROC curve) of OBV was 0.888(0.797-0.979, P<0.001). The correct diagnostic index of OBV≥78.50 mm³was used to determine the prognosis of olfactory function, with a specificity of 0.818 and a sensitivity of 0.840. The ROC curve analysis showed that the area under the ROC curve of duration was 0.822(0.703-0.940, P<0.001). The correct diagnostic index of the duration ≤6 months was used to determine the prognosis of olfactory function, with a specificity of 0.727 and a sensitivity of 0.800. The area of T score was 0.793(0.662-0.924, P=0.001). T score ≥1.25 was used as the correct diagnostic index to determine the prognosis of olfactory function. The specificity and sensitivity were 0.818 and 0.680, respectively. Conclusion:The prognosis of olfactory function in PVOD patients is related to the course of disease, the degree of olfactory loss and OBV. Those with no improvement in olfactory function have a longer disease course, aggravated olfactory damage and reduced OBV than those with improved olfactory function. The factors of Duration ≤6 months, T value ≥1.25 and OBV≥78.50 mm³suggested better prognosis, and the results of objective olfactory examination have greater value in evaluating the prognosis of olfactory function.
Collapse
Affiliation(s)
- 怡辰 郭
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 淋尹 姚
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 智甫 孙
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 小兵 黄
- 首都医科大学附属北京安贞医院耳鼻咽喉头颈外科(北京,100029)Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - 佳 刘
- 首都儿童研究所耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics
| | - 永祥 魏
- 首都儿童研究所耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics
| |
Collapse
|
36
|
Mills EG, Yang L, Abbara A, Dhillo WS, Comninos AN. Current Perspectives on Kisspeptins Role in Behaviour. Front Endocrinol (Lausanne) 2022; 13:928143. [PMID: 35757400 PMCID: PMC9225141 DOI: 10.3389/fendo.2022.928143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide kisspeptin is now well-established as the master regulator of the mammalian reproductive axis. Beyond the hypothalamus, kisspeptin and its cognate receptor are also extensively distributed in extra-hypothalamic brain regions. An expanding pool of animal and human data demonstrates that kisspeptin sits within an extensive neuroanatomical and functional framework through which it can integrate a range of internal and external cues with appropriate neuroendocrine and behavioural responses. In keeping with this, recent studies reveal wide-reaching effects of kisspeptin on key behaviours such as olfactory-mediated partner preference, sexual motivation, copulatory behaviour, bonding, mood, and emotions. In this review, we provide a comprehensive update on the current animal and human literature highlighting the far-reaching behaviour and mood-altering roles of kisspeptin. A comprehensive understanding of this important area in kisspeptin biology is key to the escalating development of kisspeptin-based therapies for common reproductive and related psychological and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| |
Collapse
|
37
|
Li SB, Li ZT, Lyu ZH, Zhang XY, Zou LQ. Odour identification impairment is a trait but not a disease-specific marker for bipolar disorders: Comparisons of bipolar disorder with different episodes, major depressive disorder and schizophrenia. Aust N Z J Psychiatry 2022; 56:71-80. [PMID: 33726558 DOI: 10.1177/0004867421998774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Olfactory deficits have been reported in bipolar disorder, but this finding is controversial. This study investigated whether olfactory deficit can serve as a specific marker for bipolar disorder by comparing olfactory function in different mood episodes of bipolar disorder. We also compared olfactory function in bipolar disorder and other mental disorders - namely, major depressive disorder and schizophrenia. METHODS The study consisted of two experiments. Experiment 1 enrolled 175 bipolar disorder patients (70 depressed subgroup, 70 manic subgroup and 35 euthymic subgroup) and 47 controls. Experiment 2 enrolled the participants from Experiment 1, along with 85 major depressive disorder and 90 schizophrenia patients. The Sniffin' Sticks test was used to evaluate odour identification ability and odour threshold (as a measure of odour sensitivity). The Hamilton Depression Rating Scale and Young Mania Rating Scale were used to assess depressive symptoms in all subjects and manic symptoms in bipolar disorder patients, respectively. We also used the Positive and Negative Syndrome Scale to assess clinical symptoms in schizophrenia patients. RESULTS All three bipolar disorder patient subgroups (depressed, manic and euthymic subgroup) showed reduced odour identification ability compared to controls; however, only patients in the acute phase of a mood episode (depressed, and manic subgroup) showed impaired odour sensitivity. Clinical symptoms were negatively correlated with odour sensitivity but not odour identification ability. Bipolar disorder and major depressive disorder patients showed less odour identification and sensitivity impairment than schizophrenia patients. CONCLUSION Odour sensitivity is a potential dopaminergic marker for distinguishing between bipolar disorder patients in acute phase vs remission, while odour identification is a trait but a nonspecific marker of bipolar disorder.
Collapse
Affiliation(s)
- Shu-Bin Li
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ze-Tian Li
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhi-Hong Lyu
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Yuan Zhang
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lai-Quan Zou
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Chen B, Wang Q, Zhong X, Mai N, Zhang M, Zhou H, Haehner A, Chen X, Wu Z, Auber LA, Rao D, Liu W, Zheng J, Lin L, Li N, Chen S, Chen B, Hummel T, Ning Y. Structural and Functional Abnormalities of Olfactory-Related Regions in Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease. Int J Neuropsychopharmacol 2021; 25:361-374. [PMID: 34893841 PMCID: PMC9154279 DOI: 10.1093/ijnp/pyab091] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/11/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Odor identification (OI) dysfunction is an early marker of Alzheimer's disease (AD), but it remains unclear how olfactory-related regions change from stages of subjective cognitive decline (SCD) and mild cognitive impairment (MCI) to AD dementia. METHODS Two hundred and sixty-nine individuals were recruited in the present study. The olfactory-related regions were defined as the regions of interest, and the grey matter volume (GMV), low-frequency fluctuation, regional homogeneity (ReHo), and functional connectivity (FC) were compared for exploring the changing pattern of structural and functional abnormalities across AD, MCI, SCD, and normal controls. RESULTS From the SCD, MCI to AD groups, the reduced GMV, increased low-frequency fluctuation, increased ReHo, and reduced FC of olfactory-related regions became increasingly severe, and only the degree of reduced GMV of hippocampus and caudate nucleus clearly distinguished the 3 groups. SCD participants exhibited reduced GMV (hippocampus, etc.), increased ReHo (caudate nucleus), and reduced FC (hippocampus-hippocampus and hippocampus-parahippocampus) in olfactory-related regions compared with normal controls. Additionally, reduced GMV of the bilateral hippocampus and increased ReHo of the right caudate nucleus were associated with OI dysfunction and global cognitive impairment, and they exhibited partially mediated effects on the relationships between OI and global cognition across all participants. CONCLUSION Structural and functional abnormalities of olfactory-related regions present early with SCD and deepen with disease severity in the AD spectrum. The hippocampus and caudate nucleus may be the hub joining OI and cognitive function in the AD spectrum.
Collapse
Affiliation(s)
| | | | | | - Naikeng Mai
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Min Zhang
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Huarong Zhou
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Xinru Chen
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Zhangying Wu
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Swiss Integrative Center of Human Health, Fribourg, Switzerland
| | - Dongping Rao
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Wentao Liu
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Jinhong Zheng
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lijing Lin
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Nanxi Li
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Sihao Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bingxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Yuping Ning
- Correspondence: Yuping Ning, PhD, No. 13, Mingxin Road, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China ()
| |
Collapse
|
39
|
Decreased activity of piriform cortex and orbitofrontal hyperactivation in Usher Syndrome, a human disorder of ciliary dysfunction. Brain Imaging Behav 2021; 16:1176-1185. [PMID: 34850367 PMCID: PMC9107447 DOI: 10.1007/s11682-021-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Usher syndrome (USH) is a condition characterized by ciliary dysfunction leading to retinal degeneration and hearing/vestibular loss. Putative olfactory deficits in humans have been documented at the psychophysical level and remain to be proven at the neurophysiological level. Thus, we aimed to study USH olfactory impairment using functional magnetic resonance imaging. We analyzed differences in whole-brain responses between 27 USH patients and 26 healthy participants during an olfactory detection task with a bimodal odorant (n-butanol). The main research question was whether between-group differences could be identified using a conservative whole-brain approach and in a ROI-based approach in key olfactory brain regions. Results indicated higher olfactory thresholds in USH patients, thereby confirming the hypothesis of reduced olfactory acuity. Importantly, we found decreased BOLD activity for USH patients in response to odorant stimulation in the right piriform cortex, while right orbitofrontal cortex showed increased activity. We also found decreased activity in other higher-level regions in a whole brain approach. We suggest that the hyper activation in the orbitofrontal cortex possibly occurs as a compensatory mechanism after the under-recruitment of the piriform cortex. This study suggests that olfactory deficits in USH can be objectively assessed using functional neuroimaging which reveals differential patterns of activity both in low- and high-level regions of the olfactory network. 1. Psychophysical olfactory deficits are present in Usher Syndrome, a ciliary disorder. 2. USH patients show decreased BOLD activity in the right piriform olfactory cortex; 3. USH patients show increased activity in the orbitofrontal olfactory cortex; 4. USH patients show patterns of decreased activity in high-level cortical regions; 5. Functional neuroimaging unravels USH olfactory deficits at the population level.
Collapse
|
40
|
Poessel M, Morys F, Breuer N, Villringer A, Hummel T, Horstmann A. Brain response to food odors is not associated with body mass index and obesity-related metabolic health measures. Appetite 2021; 168:105774. [PMID: 34715246 DOI: 10.1016/j.appet.2021.105774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Smell perception plays a role in eating behavior and might be involved in the development of obesity. In fact, olfactory function is impaired in obesity and might depend on metabolic health factors. To date, the underlying neural mechanisms remain unclear. Here, we investigate neural processing of food-related odors in normal-weight, overweight and obese individuals. Fifty-three young and healthy participants (28.8 ± 4.4 years, 27 female; 24 normal-weight, 10 overweight, and 19 obese) were presented with high- (chocolate, potato chips) and low-caloric (orange, cucumber) food odors during a functional magnetic resonance imaging (fMRI). We also assessed olfactory identification ability, body mass index (BMI), body fat percentage, insulin resistance, and leptin levels. In brief, olfactory perception of food odors was linked to brain activity in the entorhinal and piriform cortex, and the insula, hippocampus, and amygdala. Insulin resistance was negatively related to olfactory identification. Additionally, perception of sweet versus savory odors was related to a higher brain activity in the right middle/superior frontal gyrus. Finally, we found no effect of obesity status, BMI, metabolic factors, or body fat percentage on neural responses to food odors. Overall, this suggests that food odor processing might depend on factors other than body weight status or associated markers of metabolic health.
Collapse
Affiliation(s)
- Maria Poessel
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany; IFB AdiposityDiseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany.
| | - Filip Morys
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany; Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Nora Breuer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany; IFB AdiposityDiseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital at the University of Leipzig, Liebigstraße 16, 04103, Leipzig, Germany; Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099, Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany; International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany; International Max Planck Research School on the Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, P.O. Box 500355, 04103, Leipzig, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany; IFB AdiposityDiseases, Leipzig University Medical Center, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
41
|
Olfactory hallucinations in a population-based sample. Psychiatry Res 2021; 304:114117. [PMID: 34391204 DOI: 10.1016/j.psychres.2021.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Olfactory hallucinations referring to olfactory perceptions in the absence of chemical stimuli, occur in non-clinical and clinical populations. Few studies have investigated their prevalence in the general population and little is known about factors triggering and maintaining them such as substance use, severe life events, and mood. We analyzed self-report data from 2500 community dwelling Norwegians, aged 18-96 years, for occurrence of olfactory hallucinations and co-occurring hallucinations in other modalities (auditory, visual, tactile). Analyses included age, sex, self-reported symptoms of depression and anxiety, mental health status, and experience of severe life-events. The results show that 4.2% (95% CI 3.5-5.1%) reported having experienced olfactory hallucinations, and 56% of individuals experiencing olfactory hallucinations also reported these in combination with hallucinations in other modalities. Prevalence varied significantly in terms of age and sex, in that olfactory hallucinations were most frequently reported by young individuals and females. Self-reported symptoms of anxiety and experience of stressful life events were significantly associated with olfactory hallucinations, suggesting that experiencing olfactory hallucinations may negatively affect functioning and may increase the likelihood of developing psychopathology. Findings underline the need to continue to examine olfactory hallucinations albeit with a more comprehensive assessment in order to increase knowledge on this experience.
Collapse
|
42
|
Odor Identification and Regional Gray Matter Atrophy in Patients with Alzheimer's Disease, Parkinson's Disease, and the Healthy Elderly: A Cross-Sectional Structural MRI Study. Brain Sci 2021; 11:brainsci11101296. [PMID: 34679361 PMCID: PMC8534255 DOI: 10.3390/brainsci11101296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple associations between impaired olfactory performance and regional cortical and deep gray matter atrophy have been reported in separate studies of patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), and of the healthy elderly. We aimed to evaluate such possible associations among these populations in a unified manner. Twenty AD, twenty PD patients’ and twenty healthy age- and sex-matched controls’ odor identification performance was assessed with the Lithuanian adaptation of the Sniffin’ Sticks 12 odor identification test, followed by morphometric gray matter analysis by MRI using FreeSurfer. AD patients had significantly lower cognitive performance than both PD patients and the healthy elderly, as evaluated with the Mini-Mental State Examination (MMSE). Odor identification performance was significantly worse in AD and PD patients compared with the healthy elderly; AD patients performed slightly worse than PD patients, but the difference was not statistically significant. Among patients with AD, worse odor identification performance was initially correlated with atrophy of multiple cortical and deep gray matter regions known to be involved in olfactory processing, however, only two measures—decreased thicknesses of the right medial and left lateral orbitofrontal cortices—remained significant after adjustment for possible confounders (age, MMSE score, and global cortical thickness). Among patients with PD and the healthy elderly we found no similar statistically significant correlations. Our findings support the key role of the orbitofrontal cortex in odor identification among patients with AD, and suggest that correlations between impaired odor identification performance and regional gray matter atrophy may be relatively more pronounced in AD rather than in PD.
Collapse
|
43
|
Jobin B, Boller B, Frasnelli J. Volumetry of Olfactory Structures in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and a Meta-Analysis. Brain Sci 2021; 11:1010. [PMID: 34439629 PMCID: PMC8393728 DOI: 10.3390/brainsci11081010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Olfactory decline is an early symptom of Alzheimer's disease (AD) and is a predictor of conversion from mild cognitive impairment (MCI) to AD. Olfactory decline could reflect AD-related atrophy of structures related to the sense of smell. The aim of this study was to verify whether the presence of a clinical diagnosis of AD or MCI is associated with a volumetric decrease in the olfactory bulbs (OB) and the primary olfactory cortex (POC). We conducted two systematic reviews, one for each region and a meta-analysis. We collected articles from PsychNet, PubMed, Ebsco, and ProQuest databases. Results showed large and heterogeneous effects indicating smaller OB volumes in patients with AD (k = 6, g = -1.21, 95% CI [-2.19, -0.44]) and in patients with MCI compared to controls. There is also a trend for smaller POC in patients with AD or MCI compared to controls. Neuroanatomical structures involved in olfactory processing are smaller in AD and these volumetric reductions could be measured as early as the MCI stage.
Collapse
Affiliation(s)
- Benoît Jobin
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada;
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
- Research Centre of the CIUSSS du Nord-de-l’île-de-Montréal, Montréal, QC H4J 1C5, Canada;
| | - Benjamin Boller
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada;
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
| | - Johannes Frasnelli
- Research Centre of the CIUSSS du Nord-de-l’île-de-Montréal, Montréal, QC H4J 1C5, Canada;
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada
| |
Collapse
|
44
|
Investigating morphological changes in the brain in relation to etiology and duration of olfactory dysfunction with voxel-based morphometry. Sci Rep 2021; 11:12704. [PMID: 34135435 PMCID: PMC8209212 DOI: 10.1038/s41598-021-92224-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Olfactory loss (OL) affects up to 20% of the general population and is related to changes in olfaction-related brain regions. This study investigated the effect of etiology and duration of OL on gray matter volume (GMV) of these regions in 257 patients. Voxel-based morphometry was applied to measure GMV in brain regions of interest to test the effects of etiology and duration on regional GMV and the relation between olfactory function and regional GMV. Etiology of OL had a significant effect on GMV in clusters representing the gyrus rectus and orbitofrontal cortex (OFC), bilaterally. Patients with congenital anosmia had reduced GMV in the gyrus rectus and an increased OFC volume compared to patients with acquired OL. There was a significant association between volume of the left OFC and olfactory function. This implies that changes in GMV in patients with acquired OL are mainly reflected in the OFC and depend on olfactory function. Morphology of olfactory areas in the brain therefore seems to relate to olfactory function and the subsequent degree of exposure to olfactory input in patients with acquired OL. Differences in GMV in congenital anosmia are most likely due to the fact that patients were never able to smell.
Collapse
|
45
|
Whitcroft KL, Noltus J, Andrews P, Hummel T. Sinonasal surgery alters brain structure and function: Neuroanatomical correlates of olfactory dysfunction. J Neurosci Res 2021; 99:2156-2171. [PMID: 34110641 DOI: 10.1002/jnr.24897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Olfactory dysfunction (OD) is more common than hearing loss, partial blindness, or blindness and can have a significant impact on the quality of life. Moreover, unexplained OD is an early biomarker in neurodegenerative diseases and increases 5-year mortality risk. Structural alterations in olfactory eloquent brain regions may represent the neuroanatomical correlates of OD. Previous studies have demonstrated reduced gray matter (GM) volume in areas of presumed olfactory relevance in patients with OD. However, being cross-sectional in nature, these studies do not provide evidence of causality, for which longitudinal work is required. At present, however, longitudinal studies addressing olfactory structural plasticity are limited, both in number and methodological approach: to our knowledge, such work has not included parallel functional imaging to confirm the relevance of structural change. We therefore performed a longitudinal multimodal neuroimaging study investigating structural and functional plasticity in 24 patients undergoing surgical treatment for chronic rhinosinusitis, compared with 17 healthy controls. We demonstrated functionally significant structural plasticity within the orbitofrontal, anterior cingulate and insular cortices, and temporal poles in patients 3 months after surgery. Of interest, GM volume decreased in these regions, in association with increased psychophysical scores and BOLD signal. To our knowledge, this is the first study to demonstrate both structural and functional plasticity of the central olfactory networks, thereby confirming these areas as neuroanatomical correlates of olfactory function/dysfunction.
Collapse
Affiliation(s)
- Katherine L Whitcroft
- Department of Otorhinolaryngology, TU Dresden, Dresden, Germany.,UCL Ear Institute, University College London, London, UK.,Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, UK.,Royal National Throat Nose and Ear Hospital, London, UK
| | - Jan Noltus
- Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Peter Andrews
- UCL Ear Institute, University College London, London, UK.,Royal National Throat Nose and Ear Hospital, London, UK
| | - Thomas Hummel
- Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
46
|
Parvand M, Rankin CH. Is There a Shared Etiology of Olfactory Impairments in Normal Aging and Neurodegenerative Disease? J Alzheimers Dis 2021; 73:1-21. [PMID: 31744002 DOI: 10.3233/jad-190636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As we age, our olfactory function declines. In addition to occurring in normal aging, more rapid decrement of olfactory decline has been associated with several neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). It has been argued that since olfactory deficits occur less frequently or are absent in diseases such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy, olfactory deficits can be used for differential diagnoses of AD and PD. The purpose of this review is to provide a survey of current knowledge about the molecular bases and differential patterns of olfactory deficits present in normal aging, AD, and PD. As substantial research has been conducted in this area, the majority of the content of this review focuses on articles published in the past decade. We hypothesize that olfactory deficits in normal aging, AD, and PD may have different underlying causes, and propose the use of model organisms with small, tractable nervous systems and/or easy to manipulate genomes to further investigate the cellular mechanisms responsible for these deficits.
Collapse
Affiliation(s)
- Mahraz Parvand
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Fjaeldstad AW, Stiller-Stut F, Gleesborg C, Kringelbach ML, Hummel T, Fernandes HM. Validation of Olfactory Network Based on Brain Structural Connectivity and Its Association With Olfactory Test Scores. Front Syst Neurosci 2021; 15:638053. [PMID: 33927597 PMCID: PMC8078209 DOI: 10.3389/fnsys.2021.638053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 01/26/2023] Open
Abstract
Olfactory perception is a complicated process involving multiple cortical and subcortical regions, of which the underlying brain dynamics are still not adequately mapped. Even in the definition of the olfactory primary cortex, there is a large degree of variation in parcellation templates used for investigating olfaction in neuroimaging studies. This complicates comparison between human olfactory neuroimaging studies. The present study aims to validate an olfactory parcellation template derived from both functional and anatomical data that applies structural connectivity (SC) to ensure robust connectivity to key secondary olfactory regions. Furthermore, exploratory analyses investigate if different olfactory parameters are associated with differences in the strength of connectivity of this structural olfactory fingerprint. By combining diffusion data with an anatomical atlas and advanced probabilistic tractography, we found that the olfactory parcellation had a robust SC network to key secondary olfactory regions. Furthermore, the study indicates that higher ratings of olfactory significance were associated with increased intra- and inter-hemispheric SC of the primary olfactory cortex. Taken together, these results suggest that the patterns of SC between the primary olfactory cortex and key secondary olfactory regions has potential to be used for investigating the nature of olfactory significance, hence strengthening the theory that individual differences in olfactory behaviour are encoded in the structural network fingerprint of the olfactory cortex.
Collapse
Affiliation(s)
- Alexander Wieck Fjaeldstad
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Flavour Clinic, Department of Otorhinolaryngology, Holstebro Regional Hospital, Holstebro, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Franz Stiller-Stut
- Interdisciplinary Center for Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Carsten Gleesborg
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Morten L Kringelbach
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.,Center of Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Thomas Hummel
- Interdisciplinary Center for Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Henrique M Fernandes
- Flavour Institute, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom.,Center of Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Altered glucose metabolism of the olfactory-related cortices in anosmia patients with traumatic brain injury. Eur Arch Otorhinolaryngol 2021; 278:4813-4821. [PMID: 33744988 DOI: 10.1007/s00405-021-06754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Impaired brain cortices contribute significantly to the pathophysiological mechanisms of post-traumatic olfactory dysfunction (PTOD). This study aimed to use 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to measure cerebral cortices' metabolism activity and then to explore their associations with olfaction in patients with PTOD. METHODS Ethics committee-approved prospective studies included 15 patients with post-traumatic anosmia and 11 healthy volunteers. Olfactory function was assessed using the Sniffin' Sticks. Participants underwent 18F-FDG PET/CT scan and the image data were collected for the voxel-based whole brain analysis. Furthermore, the standardized uptake value ratio (SUVR) of the whole brain regions was measured and correlated with olfactory function. RESULTS Patients with post-traumatic anosmia showed significantly reduced glucose metabolism in bilateral rectus, bilateral superior and medial orbitofrontal cortex (OFC), bilateral thalamus, left hippocampus and parahippocampus and left superior temporal pole (all p < 0.001). In contrast, patients with post-traumatic anosmia had significantly increased glucose metabolism in the bilateral insula (all p < 0.001). SUVR values among a total of 17 cerebral cortices including frontal, limbic, and temporal regions were significantly and positively correlated with olfactory function. The cerebral cortices with the top three correlations were the right middle frontal OFC (r = 0.765, p = 0.001), right caudate (r = 0.652, p = 0.010) and right putamen (r = 0.623, p = 0.002). CONCLUSION Patients with post-traumatic anosmia presented with distinct patterns of brain metabolism and key cortices that highly associated with the retained olfactory function were identified. The preliminary results further support the potential use of PET imaging for precisely assessing brain metabolism in patients with PTOD.
Collapse
|
49
|
Su B, Bleier B, Wei Y, Wu D. Clinical Implications of Psychophysical Olfactory Testing: Assessment, Diagnosis, and Treatment Outcome. Front Neurosci 2021; 15:646956. [PMID: 33815048 PMCID: PMC8012732 DOI: 10.3389/fnins.2021.646956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose of Review Olfactory dysfunction dramatically impairs quality of life with a prevalence of 20% in the general adult population. Psychophysical olfactory testing has been widely used to evaluate the ability to smell due to its validated utility and feasibility in clinic. This review summarizes the current literature regarding psychophysical olfactory testing and the clinical relevance of the olfactory testing with different components. Furthermore, the review highlights the diagnosis and treatment value of olfactory subtests in patients with olfactory dysfunction. Recent Findings With the accumulation of studies of psychophysical olfactory testing in olfactory disorders, the clinical relevance of olfactory testing with different components is expanding. Different olfactory domains present with distinct olfactory processing and cortical activity. Psychophysical assessment of olfaction with three domains reveals different levels of olfactory processing and might assist with analyzing the pathophysiologic mechanism of the various olfactory disorders. Furthermore, olfactory thresholds provided the largest amount of non-redundant information to the olfactory diagnosis. Sinonasal olfactory dysfunction and non-sinonasal-related olfactory dysfunction are emerging classifications of smell disorders with certain characteristics of olfactory impairment and different responses to the therapy including steroids, sinus surgery, and olfactory training. Summary These recent advancements should promote the understanding of psychophysical olfactory testing, the association between individual subcomponents and neurophysiological processes, and pave the way for precision assessment and treatment of the olfactory dysfunction.
Collapse
Affiliation(s)
- Baihan Su
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Benjamin Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Yongxiang Wei
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Dawei Wu
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Han P. Improved Odor Identification Ability and Increased Regional Gray Matter Volume After Olfactory Training in Patients With Idiopathic Olfactory Loss. Iperception 2021; 12:20416695211005811. [PMID: 33996020 PMCID: PMC8073728 DOI: 10.1177/20416695211005811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Idiopathic olfactory loss (IOL) is thought as an early marker for neurodegenerative disease. This study investigated the effect of olfactory training (OT) on regional gray matter volume (GMV) among patients with IOL. A total of 24 patients (mean age 64.6 years, 11 male) with IOL and 30 control participants with normal olfaction (mean age 62.6 years, 13 males) were included in the study. Voxel-based morphometry was performed to compare the GMV between patient and control groups. Only the patients received OT (averaged duration 7 months), and a longitudinal approach was used to examine the GMV change from pre- to post-OT. Moreover, the effect of OT on GMV change was explored for patients with different severity of olfactory loss (anosmia vs. hyposmia). Olfactory performance was measured alongside using the "Sniffin' Sticks." Patients had improved odor identification and larger GMV in the bilateral cerebellum, bilateral thalamus, left precentral gyrus, right gyrus rectus, and medial orbitofrontal cortex after OT. However, no correlation was found between changes of odor identification and increased regional GMV. Besides, patients with anosmia, compared with patient with hyposmia, demonstrated increased GMV in the left precuneus, left superior frontal medial cortex, and left midcingulate cortex after OT. The study showed improved odor identification ability among patients with IOL after OT, which is unlikely related to spontaneous recovery. In this specific patient group, the GMV alterations may be associated with factors not directly predicted by the currently performed measurements, but possibly higher order olfactory-related functional changes.
Collapse
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|