1
|
Gazzi T, Brennecke B, Olikauskas V, Hochstrasser R, Wang H, Keen Chao S, Atz K, Mostinski Y, Topp A, Heer D, Kaufmann I, Ritter M, Gobbi L, Hornsperger B, Wagner B, Richter H, O'Hara F, Wittwer MB, Jul Hansen D, Collin L, Kuhn B, Benz J, Grether U, Nazaré M. Development of a Highly Selective NanoBRET Probe to Assess MAGL Inhibition in Live Cells. Chembiochem 2025; 26:e202400704. [PMID: 39607084 DOI: 10.1002/cbic.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Cell-free enzymatic assays are highly useful tools in early compound profiling due to their robustness and scalability. However, their inadequacy to reflect the complexity of target engagement in a cellular environment may lead to a significantly divergent pharmacology that is eventually observed in cells. The discrepancy that emerges from properties like permeability and unspecific protein binding may largely mislead lead compound selection to undergo further chemical optimization. We report the development of a new intracellular NanoBRET assay to assess MAGL inhibition in live cells. Based on a reverse design approach, a highly potent, reversible preclinical inhibitor was conjugated to the cell-permeable BODIPY590 acceptor fluorophore while retaining its overall balanced properties. An engineered MAGL-nanoluciferase (Nluc) fusion protein provided a suitable donor counterpart for the facile interrogation of intracellular ligand activity. Validation of assay conditions using a selection of known MAGL inhibitors set the stage for the evaluation of over 1'900 MAGL drug candidates derived from our discovery program. This evaluation enabled us to select compounds for further development based not only on target engagement, but also on favorable physicochemical parameters like permeability and protein binding. This study highlights the advantages of cell-based target engagement assays for accelerating compound profiling and progress at the early stages of drug discovery programs.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Benjamin Brennecke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Valentas Olikauskas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Remo Hochstrasser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Haiyan Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Suzan Keen Chao
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Kenneth Atz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Andreas Topp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Isabelle Kaufmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Martin Ritter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Luca Gobbi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Bjoern Wagner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Fionn O'Hara
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Dennis Jul Hansen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Joerg Benz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
2
|
Dabirzadeh A, Decary E, Fobisong CN, Wasserman SDF, Withington D. Systematic Review of Ex Vivo and In Vivo Pharmacokinetic Studies of Drugs Commonly Used During Extracorporeal Membrane Oxygenation. ASAIO J 2025; 71:1-10. [PMID: 39727272 DOI: 10.1097/mat.0000000000002326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a lifesaving treatment for critically ill patients in cardiac or respiratory failure refractory to conventional treatment. Patients on an ECMO circuit (pump, oxygenator, tubing) require numerous medications including sedatives, analgesics, cardioactive medications, and anticonvulsants. Currently, there are few dosing guidelines to optimize pharmacotherapy in this situation. A systematic review was conducted to describe pharmacokinetics (PK) of medications commonly used during ECMO. MEDLINE, Embase, Cochrane, BIOSIS, PubMed, and Web of Science databases were searched. All articles presenting ex vivo, animal, and human data on the PK of the subject medications in the ECMO circuit were included. Three authors independently examined citation titles and abstracts. Four authors extracted relevant details from included studies into standardized data extraction forms. Methodological quality was assessed using the ClinPK guidelines and the Joanna Briggs Institute Checklist. Forty-four studies examining 30 medications were included, 26 ex vivo studies (mostly adult circuits) and 18 observational studies (mainly neonatal patients). Pharmacokinetics varied depending on the medication's characteristics, study type, and population. Study quality was variable, limiting the possibility of deriving hard dosing guidelines from this available literature. Further population PK studies are needed to adequately determine dosing guidelines in adults and children requiring ECMO.
Collapse
Affiliation(s)
- Anita Dabirzadeh
- From the Faculty of Medicine, McGill University, Montreal, Canada
- Department of Anesthesia and Perioperative Medicine, Western University, London, Canada
| | - Elizabeth Decary
- Department of Anesthesia, Université de Montréal, Montreal, Canada
| | | | | | - Davinia Withington
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Pediatric Anaesthesia, Department of Anaesthesia, McGill University Health Center, Montreal, Canada
| |
Collapse
|
3
|
Franco S, Hammerschlag MR. Alternative drugs for the treatment of gonococcal infections: old and new. Expert Rev Anti Infect Ther 2024; 22:753-759. [PMID: 39243126 DOI: 10.1080/14787210.2024.2401560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION The rise in antibiotic resistance to N. gonorrhoeae poses a substantial threat to effective gonorrhea treatment. Historical progression of resistance from sulfonamides to the more recent declines in efficacy of fluoroquinolones and susceptibilities of ceftriaxone highlight the urgent need for novel therapeutic approaches, necessitating the examination of alternative and new antibiotics. AREAS COVERED This review examines the potential of repurposing older antibiotics for gonorrhea treatment with a focus on their efficacy and limitations. These include aztreonam, ertapenem, and fosfomycin. New oral drugs zoliflodacin and gepotidacin are in late clinical development, but there are concerns regarding their effectiveness for extragenital infections and the development of resistance. EXPERT OPINION While ceftriaxone remains the best treatment for gonorrhea across all anatomic sites, resistance may eventually limit its use. Among older antibiotics, ertapenem shows the most potential as an alternative but shares the same administrative drawbacks as ceftriaxone. New oral drugs zoliflodacin and gepotidacin initially appeared promising, but their efficacy for pharyngeal infections and potential for resistance development are concerning. Phase 3 trial results have not been made available except through press releases, which perpetuates concerns. Understanding pharmacokinetic and pharmacodynamic profiles of antibiotics will be key in optimizing future treatment recommendations.
Collapse
Affiliation(s)
- Susannah Franco
- Department of Pharmacy, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Margaret R Hammerschlag
- Department of Pediatrics, Division of Infectious Diseases, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
4
|
Lynch TL, Marin VL, McClure RA, Phipps C, Ronau JA, Rouhimoghadam M, Adams AM, Kandi S, Wolke ML, Shergalis AG, Potts GK, Nacham O, Richardson P, Kakavas SJ, Chhor G, Jenkins GJ, Woller KR, Warder SE, Vasudevan A, Reitsma JM. Quantitative Measurement of Rate of Targeted Protein Degradation. ACS Chem Biol 2024; 19:1604-1615. [PMID: 38980123 DOI: 10.1021/acschembio.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.
Collapse
Affiliation(s)
- Thomas L Lynch
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Colin Phipps
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Judith A Ronau
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ashley M Adams
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Soumya Kandi
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Malerie L Wolke
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Andrea G Shergalis
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul Richardson
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Stephan J Kakavas
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gekleng Chhor
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kevin R Woller
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Scott E Warder
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
5
|
Blumenfeld Z, Bera K, Castrén E, Lester HA. Antidepressants enter cells, organelles, and membranes. Neuropsychopharmacology 2024; 49:246-261. [PMID: 37783840 PMCID: PMC10700606 DOI: 10.1038/s41386-023-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
We begin by summarizing several examples of antidepressants whose therapeutic actions begin when they encounter their targets in the cytoplasm or in the lumen of an organelle. These actions contrast with the prevailing view that most neuropharmacological actions begin when drugs engage their therapeutic targets at extracellular binding sites of plasma membrane targets-ion channels, receptors, and transporters. We review the chemical, pharmacokinetic, and pharmacodynamic principles underlying the movements of drugs into subcellular compartments. We note the relationship between protonation-deprotonation events and membrane permeation of antidepressant drugs. The key properties relate to charge and hydrophobicity/lipid solubility, summarized by the parameters LogP, pKa, and LogDpH7.4. The classical metric, volume of distribution (Vd), is unusually large for some antidepressants and has both supracellular and subcellular components. A table gathers structures, LogP, PKa, LogDpH7.4, and Vd data and/or calculations for most antidepressants and antidepressant candidates. The subcellular components, which can now be measured in some cases, are dominated by membrane binding and by trapping in the lumen of acidic organelles. For common antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs), the target is assumed to be the eponymous reuptake transporter(s), although in fact the compartment of target engagement is unknown. We review special aspects of the pharmacokinetics of ketamine, ketamine metabolites, and other rapidly acting antidepressants (RAADs) including methoxetamine and scopolamine, psychedelics, and neurosteroids. Therefore, the reader can assess properties that markedly affect a drug's ability to enter or cross membranes-and therefore, to interact with target sites that face the cytoplasm, the lumen of organelles, or a membrane. In the current literature, mechanisms involving intracellular targets are termed "location-biased actions" or "inside-out pharmacology". Hopefully, these general terms will eventually acquire additional mechanistic details.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kallol Bera
- Department of Neurosciences and Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, USA
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Kotani N, Ito K. Translatability of in vitro potency to clinical efficacious exposure: A retrospective analysis of FDA-approved targeted small molecule oncology drugs. Clin Transl Sci 2023; 16:1359-1368. [PMID: 37173825 PMCID: PMC10432864 DOI: 10.1111/cts.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
In vitro potency is one of the important parameters representing efficacy potential of drugs and commonly used as benchmark of efficacious exposure at early clinical development. There are limited numbers of studies which systematically investigate on how predictive in vitro potency is to estimate therapeutic drug exposure, especially those focusing on targeted anticancer agents despite the recent increase in approvals. This study aims to fill in such knowledge gaps. A total of 87 small molecule targeted drugs approved for oncology indication between 2001 and 2020 by the US Food and Drug Administration (FDA) were identified; relevant preclinical and clinical data were extracted from the public domain. Relationships between the in vitro potency and the therapeutic dose or exposure (unbound average drug concentration [Cu,av ] as the primary exposure metrics) were assessed by descriptive analyses. The Spearman's rank correlation test showed slightly better correlation of the Cu,av (ρ = 0.232, p = 0.041) rather than the daily dose (ρ = 0.186, p = 0.096) with the in vitro potency. Better correlation was observed for the drugs for hematologic malignancies compared with those for solid tumors (root mean square error: 140 [n = 28] versus 297 [n = 59]). The present study shows that in vitro potency is predictive to estimate the therapeutic drug exposure to some extent, whereas the general trend of overexposure was observed. The results suggested that in vitro potency alone is not sufficient and robust enough to estimate the clinically efficacious exposure of molecularly targeted small molecule oncology drugs. The totality of data, including both nonclinical and clinical, needs to be considered for dose optimization.
Collapse
Affiliation(s)
- Naoki Kotani
- Research Institute of Pharmaceutical SciencesMusashino UniversityTokyoJapan
- Chugai Pharmaceutical Co., Ltd.TokyoJapan
| | - Kiyomi Ito
- Research Institute of Pharmaceutical SciencesMusashino UniversityTokyoJapan
| |
Collapse
|
7
|
Hammar R, Sellin ME, Artursson P. Epithelial and microbial determinants of colonic drug distribution. Eur J Pharm Sci 2023; 183:106389. [PMID: 36690119 DOI: 10.1016/j.ejps.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
A dynamic epithelium and a rich microbiota, separated by multi-layered mucus, make up the complex colonic cellular environment. Both cellular systems are characterized by high inter- and intraindividual differences, but their impact on drug distribution and efficacy remains incompletely understood. This research gap is pressing, as, e.g., inflammatory disorders of the colon are on the rise globally. In an effort to help close this gap, we provide considerations on determining colonic epithelial and microbial cellular parameters, and their impact on drug bioavailability. First, we cover the major cell types found in vivo within the epithelium and microbiota, and discuss how they can be modeled in vitro. We then draw attention to their structural similarities and differences with regard to determinants of drug distribution. Once a drug is solubilized in the luminal fluids, there are two main classes of such determinants: 1) binding processes, and 2) transporters and drug-metabolizing enzymes. Binding lowers the unbound intracellular fraction (fu,cell), which will, in turn, limit the amount of drug available for transport to desired sites. Transporters and drug metabolizing enzymes are ADME proteins impacting intracellular accumulation (Kp). Across cell types, we point out which processes are likely particularly impactful. Together, fu,cell and Kp can be used to describe intracellular bioavailability (Fic), which is a measure of local drug distribution, with consequences for efficacy. Determining these cellular parameters will be beneficial in understanding colonic drug distribution and will advance the field of drug delivery.
Collapse
Affiliation(s)
- Rebekkah Hammar
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
8
|
Nichols AL, Blumenfeld Z, Luebbert L, Knox HJ, Muthusamy AK, Marvin JS, Kim CH, Grant SN, Walton DP, Cohen BN, Hammar R, Looger L, Artursson P, Dougherty DA, Lester HA. Selective Serotonin Reuptake Inhibitors within Cells: Temporal Resolution in Cytoplasm, Endoplasmic Reticulum, and Membrane. J Neurosci 2023; 43:2222-2241. [PMID: 36868853 PMCID: PMC10072302 DOI: 10.1523/jneurosci.1519-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 03/05/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).
Collapse
Affiliation(s)
- Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
- Keck School of Medicine, University of Southern California, Los Angeles, California 90007
| | - Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Hailey J Knox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Anand K Muthusamy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Viginia 20147
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Stephen N Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - David P Walton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Rebekkah Hammar
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Loren Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Viginia 20147
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory Drug Discovery and Development Platform and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| |
Collapse
|
9
|
Zhang J, He M, Xie Q, Su A, Yang K, Liu L, Liang J, Li Z, Huang X, Hu J, Liu Q, Song B, Hu C, Chen L, Wang Y. Predicting In Vitro and In Vivo Anti-SARS-CoV-2 Activities of Antivirals by Intracellular Bioavailability and Biochemical Activity. ACS OMEGA 2022; 7:45023-45035. [PMID: 36530252 PMCID: PMC9753181 DOI: 10.1021/acsomega.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Cellular drug response (concentration required for obtaining 50% of a maximum cellular effect, EC50) can be predicted by the intracellular bioavailability (F ic) and biochemical activity (half-maximal inhibitory concentration, IC50) of drugs. In an ideal model, the cellular negative log of EC50 (pEC50) equals the sum of log F ic and the negative log of IC50 (pIC50). Here, we measured F ic's of remdesivir, favipiravir, and hydroxychloroquine in various cells and calculated their anti-SARS-CoV-2 EC50's. The predicted EC50's are close to the observed EC50's in vitro. When the lung concentrations of antiviral drugs are higher than the predicted EC50's in alveolar type 2 cells, the antiviral drugs inhibit virus replication in vivo, and vice versa. Overall, our results indicate that both in vitro and in vivo antiviral activities of drugs can be predicted by their intracellular bioavailability and biochemical activity without using virus. This virus-free strategy can help medicinal chemists and pharmacologists to screen antivirals during early drug discovery, especially for researchers who are not able to work in the high-level biosafety lab.
Collapse
Affiliation(s)
- Jinwen Zhang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Mingfeng He
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Qian Xie
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ailing Su
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Kuangyang Yang
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Lichu Liu
- Institute
of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese
Medicine, Foshan528000, China
| | - Jianhui Liang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Ziqi Li
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiuxin Huang
- The
First Clinical College of Changsha Medical College, Changsha410219, China
| | - Jianshu Hu
- Department
of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | - Qian Liu
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Bing Song
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Chun Hu
- Key
Laboratory of Structure-based Drug Design & Discovery (Ministry
of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lei Chen
- School of
Life Science and Technology, Key Laboratory of Developmental Genes
and Human Disease, Southeast University, Nanjing210096, China
| | - Yan Wang
- Center
for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
10
|
Dimitrijevic D, Fabian E, Nicol B, Funk-Weyer D, Landsiedel R. Toward Realistic Dosimetry In Vitro: Determining Effective Concentrations of Test Substances in Cell Culture and Their Prediction by an In Silico Mass Balance Model. Chem Res Toxicol 2022; 35:1962-1973. [PMID: 36264934 PMCID: PMC9682521 DOI: 10.1021/acs.chemrestox.2c00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nominal concentrations (CNom) in cell culture media are routinely used to define concentration-effect relationships in the in vitro toxicology. The actual concentration in the medium (CMedium) can be affected by adsorption processes, evaporation, or degradation of chemicals. Therefore, we measured the total and free concentration of 12 chemicals, covering a wide range of lipophilicity (log KOW -0.07-6.84), in the culture medium (CMedium) and cells (CCell) after incubation with Balb/c 3T3 cells for up to 48 h. Measured values were compared to predictions using an as yet unpublished in silico mass balance model that combined relevant equations from similar models published by others. The total CMedium for all chemicals except tamoxifen (TAM) were similar to the CNom. This was attributed to the cellular uptake of TAM and accumulation into lysosomes. The free (i.e., unbound) CMedium for the low/no protein binding chemicals were similar to the CNom, whereas values of all moderately to highly protein-bound chemicals were less than 30% of the CNom. Of the 12 chemicals, the two most hydrophilic chemicals, acetaminophen (APAP) and caffeine (CAF), were the only ones for which the CCell was the same as the CNom. The CCell for all other chemicals tended to increase over time and were all 2- to 274-fold higher than CNom. Measurements of CCytosol, using a digitonin method to release cytosol, compared well with CCell (using a freeze-thaw method) for four chemicals (CAF, APAP, FLU, and KET), indicating that both methods could be used. The mass balance model predicted the total CMedium within 30% of the measured values for 11 chemicals. The free CMedium of all 12 chemicals were predicted within 3-fold of the measured values. There was a poorer prediction of CCell values, with a median overprediction of 3- to 4-fold. In conclusion, while the number of chemicals in the study is limited, it demonstrates the large differences between CNom and total and free CMedium and CCell, which were also relatively well predicted by the mass balance model.
Collapse
Affiliation(s)
- Dunja Dimitrijevic
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany
| | - Eric Fabian
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Beate Nicol
- Safety
& Environmental Assurance Centre, Unilever
U.K., Sharnbrook, MK44 ILQBedford, United Kingdom
| | - Dorothee Funk-Weyer
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany,BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany,. Fax: +49 621 60-58134
| |
Collapse
|
11
|
Younis IR, Manchandani P, Hassan HE, Qosa H. Trends in FDA Transporter-Based Post Marketing Requirements and Commitments Over the Last Decade. Clin Pharmacol Ther 2022; 112:635-642. [PMID: 35780478 DOI: 10.1002/cpt.2701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Characterizing interactions between new molecular entities (NMEs) and drug transporters is a critical element of drug development that helps in assessing potential transporter-based drug-drug interactions (DDIs). However, not all NME new drug applications (NDAs) include a full characterization of NMEs transporter-based DDI, which necessitates the issuance of post marketing requirement (PMR)/post marketing commitment (PMC) by the US Food and Drug Administration (FDA) to characterize these potential interactions. The objective of this analysis is to identify trends in transporter-based PMRs/PMCs issued by the FDA between 2012 and 2021. A decrease in the number of transporter-based PMRs/PMCs was observed from 2012 to 2016 and an increasing trend in the number of PMRs/PMCs was observed after 2017. The majority of these transporter-based PMRs/PMCs requested clinical evaluation (48%), some requested in vitro assessment (38%), and 2.5% requested modeling and simulation assessment. Most of the PMRs/PMCs requested evaluation of NMEs as perpetrator with the efflux transporters, P-gp and/or BCRP (53%). Forty-eight percent of the PMRs/PMCs were fulfilled with 67% resulted in labelling updates. On average 2.5 years were needed for the information related to PMRs/PMCs to show in NMEs labeling. In conclusion, this analysis highlights the increased emphasis from the FDA on proper characterization of transporter-based DDI and call for the need of early characterization of NMEs-transporters interaction before initial NDA approval.
Collapse
Affiliation(s)
- Islam R Younis
- Department of Clinical Pharmacology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Pooja Manchandani
- Clincial Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Hazem E Hassan
- School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
12
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lay CS, Thomas DA, Evans JP, Campbell M, McCombe K, Phillipou AN, Gordon LJ, Jones EJ, Riching K, Mahmood M, Messenger C, Carver CE, Gatfield KM, Craggs PD. Development of an intracellular quantitative assay to measure compound binding kinetics. Cell Chem Biol 2022; 29:287-299.e8. [PMID: 34520747 DOI: 10.1016/j.chembiol.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/09/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Contemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC50, EC50, or KD. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins. Here, we describe an intracellular NanoBRET competition assay that can be used to quantify cellular kinetic rates of compound binding to nanoluciferase-fused bromodomain and extra-terminal (BET) proteins. Comparative rates are generated using a cell-free NanoBRET assay and by utilizing orthogonal recombinant protein-based methodologies. A screen of known pan-BET inhibitors is used to demonstrate the value of this approach in the investigation of kinetic selectivity between closely related proteins.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Daniel A Thomas
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Arctoris, Oxford OX14 4SA, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Campbell
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kristopher McCombe
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Emma J Jones
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | | | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
14
|
Birus R, El-Awaad E, Ballentin L, Alchab F, Aichele D, Ettouati L, Götz C, Le Borgne M, Jose J. 4,5,7-Trisubstituted indeno[1,2-b]indole inhibits CK2 activity in tumor cells equivalent to CX-4945 and shows strong anti-migratory effects. FEBS Open Bio 2021; 12:394-411. [PMID: 34873879 PMCID: PMC8804612 DOI: 10.1002/2211-5463.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022] Open
Abstract
Highly pleiotropic and constitutively active protein kinase CK2 is a key target in cancer therapy, but only one small-molecule inhibitor has reached clinical trials-CX-4945. In this study, we present the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2) that decreased the intracellular CK2 activity in A431, A549, and LNCaP tumor cell lines analogous to CX-4945 (> 75% inhibition at 20 µm) and similarly blocked CK2-specific Akt phosphorylation in LNCaP cells. Cellular uptake analysis demonstrated higher intracellular concentrations of 5a-2 (408.3 nm) compared with CX-4945 (119.3 nm). This finding clarifies the comparable effects of both compounds on the intracellular CK2 activity despite their different inhibitory potency in vitro [IC50 = 25 nm (5a-2) and 3.7 nm (CX-4945)]. Examination of the effects of both CK2 inhibitors on cancer cells using live-cell imaging revealed notable differences. Whereas CX-4945 showed a stronger pro-apoptotic effect on tumor cells, 5a-2 was more effective in inhibiting tumor cell migration. Our results showed that 49% of intracellular CX-4945 was localized in the nuclear fraction, whereas 71% of 5a-2 was detectable in the cytoplasm. The different subcellular distribution, and thus the site of CK2 inhibition, provides a possible explanation for the different cellular effects. Our study indicates that investigating CK2 inhibition-mediated cellular effects in relation to the subcellular sites of CK2 inhibition may help to improve our understanding of the preferential roles of CK2 within different cancer cell compartments.
Collapse
Affiliation(s)
- Robin Birus
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Ehab El-Awaad
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Laurens Ballentin
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Faten Alchab
- EEA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie-ISPB, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, France.,Faculty of Pharmacy, Manara University, Latakia, Syria
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Laurent Ettouati
- CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie, ISPB, Université Lyon 1, Université de Lyon, France
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| |
Collapse
|
15
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
16
|
Kong NR, Liu H, Che J, Jones LH. Physicochemistry of Cereblon Modulating Drugs Determines Pharmacokinetics and Disposition. ACS Med Chem Lett 2021; 12:1861-1865. [PMID: 34795877 DOI: 10.1021/acsmedchemlett.1c00475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide engage cereblon and mediate a protein interface with neosubstrates such as zinc finger transcription factors promoting their polyubiquitination and degradation. The IMiDs have garnered considerable excitement in drug discovery, leading to exploration of targeted protein degradation strategies. Although the molecular modes-of-action of the IMiDs and related degraders have been the subject of intense research, their pharmacokinetics and disposition have been relatively understudied. Here, we assess the effects of physicochemistry of the IMiDs, the phthalimide EM-12, and the candidate drug CC-220 (iberdomide) on lipophilicity, solubility, metabolism, permeability, intracellular bioavailability, and cell-based potency. The insights yielded in this study will enable the rational property-based design and development of targeted protein degraders in the future.
Collapse
Affiliation(s)
- Nikki R. Kong
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Lyn H. Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
18
|
Aguayo-Ortiz R, Creech J, Jiménez-Vázquez EN, Guerrero-Serna G, Wang N, da Rocha AM, Herron TJ, Espinoza-Fonseca LM. A multiscale approach for bridging the gap between potency, efficacy, and safety of small molecules directed at membrane proteins. Sci Rep 2021; 11:16580. [PMID: 34400719 PMCID: PMC8368179 DOI: 10.1038/s41598-021-96217-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Membrane proteins constitute a substantial fraction of the human proteome, thus representing a vast source of therapeutic drug targets. Indeed, newly devised technologies now allow targeting "undruggable" regions of membrane proteins to modulate protein function in the cell. Despite the advances in technology, the rapid translation of basic science discoveries into potential drug candidates targeting transmembrane protein domains remains challenging. We address this issue by harmonizing single molecule-based and ensemble-based atomistic simulations of ligand-membrane interactions with patient-derived induced pluripotent stem cell (iPSC)-based experiments to gain insights into drug delivery, cellular efficacy, and safety of molecules directed at membrane proteins. In this study, we interrogated the pharmacological activation of the cardiac Ca2+ pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA2a) in human iPSC-derived cardiac cells as a proof-of-concept model. The combined computational-experimental approach serves as a platform to explain the differences in the cell-based activity of candidates with similar functional profiles, thus streamlining the identification of drug-like candidates that directly target SERCA2a activation in human cardiac cells. Systematic cell-based studies further showed that a direct SERCA2a activator does not induce cardiotoxic pro-arrhythmogenic events in human cardiac cells, demonstrating that pharmacological stimulation of SERCA2a activity is a safe therapeutic approach targeting the heart. Overall, this novel multiscale platform encompasses organ-specific drug potency, efficacy, and safety, and opens new avenues to accelerate the bench-to-patient research aimed at designing effective therapies directed at membrane protein domains.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico, Mexico
| | - Jeffery Creech
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric N Jiménez-Vázquez
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guadalupe Guerrero-Serna
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nulang Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro da Rocha
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Todd J Herron
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
- CARTOX, Inc., 56655 Grand River Ave., PO Box 304, New Hudson, MI, 48165, USA
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Relationship between plasma and intracellular concentrations of bedaquiline and its M2 metabolite in South African patients with rifampin-resistant TB. Antimicrob Agents Chemother 2021; 65:e0239920. [PMID: 34370588 PMCID: PMC8522761 DOI: 10.1128/aac.02399-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
Collapse
|
20
|
Lumbar cerebrospinal fluid-to-brain extracellular fluid surrogacy is context-specific: insights from LeiCNS-PK3.0 simulations. J Pharmacokinet Pharmacodyn 2021; 48:725-741. [PMID: 34142308 PMCID: PMC8405486 DOI: 10.1007/s10928-021-09768-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2022]
Abstract
Predicting brain pharmacokinetics is critical for central nervous system (CNS) drug development yet difficult due to ethical restrictions of human brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS diseases due to disease-specific pathophysiology. We previously published a comprehensive CNS physiologically-based PK (PBPK) model that predicted the PK profiles of small drugs at brain and cerebrospinal fluid compartments. Here, we improved this model with brain non-specific binding and pH effect on drug ionization and passive transport. We refer to this improved model as Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the unbound drug concentrations of brain ECF and CSF compartments in rats and humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study the effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow, on brain extracellular fluid (ECF) pharmacokinetics. The effect of altered CSF dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting drug exposure at brain ECF and lumbar CSF were compared. Simulation results showed that altered CSF dynamics changed the CSF PK profiles, but not the brain ECF profiles, irrespective of the drug's physicochemical properties. Our analysis supports the notion that lumbar CSF drug concentration is not an accurate surrogate of brain ECF, particularly in CNS diseases. Systems approaches account for multiple levels of CNS complexity and are better suited to predict brain PK.
Collapse
|
21
|
Wegler C, Matsson P, Krogstad V, Urdzik J, Christensen H, Andersson TB, Artursson P. Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes. Mol Pharm 2021; 18:1792-1805. [PMID: 33739838 PMCID: PMC8041379 DOI: 10.1021/acs.molpharmaceut.1c00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.
Collapse
Affiliation(s)
- Christine Wegler
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Pär Matsson
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
| | - Veronica Krogstad
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Jozef Urdzik
- Department
of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Hege Christensen
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Tommy B. Andersson
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Per Artursson
- Department
of Pharmacy and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
22
|
A Concept Evaluation Study of a New Combination Bictegravir plus Tenofovir Alafenamide Nanoformulation with Prolonged Sustained-Drug-Release Potency for HIV-1 Preexposure Prophylaxis. Antimicrob Agents Chemother 2021; 65:AAC.02320-20. [PMID: 33526487 DOI: 10.1128/aac.02320-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The antiretroviral treatment (ART) approach is the best-prescribed approach to date for preexposure prophylaxis (PrEP) for high-risk individuals. However, the daily combination antiretroviral (cARV) regimen has become cumbersome for healthy individuals, leading to nonadherence. Recent surveys showed high acceptance of parenteral sustained-release ART enhancing PrEP adherence. Our approach is to design a parenteral nanoparticle (NP)-based cARV sustained-release (cARV-SR) system as long-acting HIV PrEP. Here, we report a new combination of two potent ARVs (tenofovir alafenamide fumarate [TAF] and bictegravir [BIC]) loaded as a nanoformulation intended as a cARV-SR for PrEP. The BIC+TAF NPs were fabricated by using a standardized in-house methodology. In vitro intracellular kinetics, cytotoxicity, and HIV-1 protection studies demonstrated that BIC+TAF encapsulation prolonged drug retention, reduced drug-associated cytotoxicity, and enhanced HIV protection. In human peripheral blood mononuclear cells, nanoformulated BIC+TAF demonstrated significant (P < 0.05) improvement in the drug's selectivity index by 472 times compared to the BIC+TAF in solution. In vivo pharmacokinetic study of BIC, TAF, and respective drug metabolites in female BALB/c mice after single subcutaneous doses of BIC+TAF NPs demonstrated plasma drug concentrations of BIC and tenofovir above the intracellular 50% inhibitory concentration during the entire 30-day study period and prolonged persistence of both active drugs in the HIV target organs, including the vagina, colon, spleen, and lymph nodes. This report demonstrates that the encapsulation of BIC+TAF in a nanoformulation improved its therapeutic selectivity and the in vivo pharmacokinetics of free drugs. Based on these preliminary studies, we hypothesize that cARV-SR has potential as an innovative once-monthly delivery treatment for PrEP.
Collapse
|
23
|
Burk O, Kronenberger T, Keminer O, Lee SML, Schiergens TS, Schwab M, Windshügel B. Nelfinavir and Its Active Metabolite M8 Are Partial Agonists and Competitive Antagonists of the Human Pregnane X Receptor. Mol Pharmacol 2021; 99:184-196. [PMID: 33483427 DOI: 10.1124/molpharm.120.000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The HIV protease inhibitor nelfinavir is currently being analyzed for repurposing as an anticancer drug for many different cancers because it exerts manifold off-target protein interactions, finally resulting in cancer cell death. Xenosensing pregnane X receptor (PXR), which also participates in the control of cancer cell proliferation and apoptosis, was previously shown to be activated by nelfinavir; however, the exact molecular mechanism is still unknown. The present study addresses the effects of nelfinavir and its major and pharmacologically active metabolite nelfinavir hydroxy-tert-butylamide (M8) on PXR to elucidate the underlying molecular mechanism. Molecular docking suggested direct binding to the PXR ligand-binding domain, which was confirmed experimentally by limited proteolytic digestion and competitive ligand-binding assays. Concentration-response analyses using cellular transactivation assays identified nelfinavir and M8 as partial agonists with EC50 values of 0.9 and 7.3 µM and competitive antagonists of rifampin-dependent induction with IC50 values of 7.5 and 25.3 µM, respectively. Antagonism exclusively resulted from binding into the PXR ligand-binding pocket. Impaired coactivator recruitment by nelfinavir as compared with the full agonist rifampin proved to be the underlying mechanism of both effects on PXR. Physiologic relevance of nelfinavir-dependent modulation of PXR activity was investigated in respectively treated primary human hepatocytes, which showed differential induction of PXR target genes and antagonism of rifampin-induced ABCB1 and CYP3A4 gene expression. In conclusion, we elucidate here the molecular mechanism of nelfinavir interaction with PXR. It is hypothesized that modulation of PXR activity may impact the anticancer effects of nelfinavir. SIGNIFICANCE STATEMENT: Nelfinavir, which is being investigated for repurposing as an anticancer medication, is shown here to directly bind to human pregnane X receptor (PXR) and thereby act as a partial agonist and competitive antagonist. Its major metabolite nelfinavir hydroxy-tert-butylamide exerts the same effects, which are based on impaired coactivator recruitment. Nelfinavir anticancer activity may involve modulation of PXR, which itself is discussed as a therapeutic target in cancer therapy and for the reversal of chemoresistance.
Collapse
Affiliation(s)
- Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Thales Kronenberger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Oliver Keminer
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Serene M L Lee
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Tobias S Schiergens
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| | - Björn Windshügel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany (O.B., M.S.); Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany (T.K., O.K., B.W.); Biobank of the Department of General, Visceral, and Transplantion Surgery, University Hospital, Ludwig-Maximilians University, Munich, Munich, Germany (S.M.L.L., T.S.S.); Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany (M.S.); and Department of Chemistry, Institute for Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany (B.W.)
| |
Collapse
|
24
|
Vasta JD, Corona CR, Robers MB. A High-Throughput Method to Prioritize PROTAC Intracellular Target Engagement and Cell Permeability Using NanoBRET. Methods Mol Biol 2021; 2365:265-282. [PMID: 34432249 DOI: 10.1007/978-1-0716-1665-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Target engagement and cell permeation are important parameters that may limit the efficacy of proteolysis-targeting chimeras (PROTACs). Here, we present an approach that facilitates both the quantitation of PROTAC binding affinity for an E3 ligase of interest, as well as the assessment of relative intracellular availability. We present a panel of E3 ligase target engagement assays based upon the NanoBRET Target Engagement platform. Querying E3 ligase engagement under live-cell and permeabilized-cell conditions allow calculation of an availability index that can be used to rank order the intracellular availability of PROTACs. Here we present examples where the cellular availability of PROTACs and their monovalent precursors are prioritized using NanoBRET assays for CRBN or VHL E3 ligases.
Collapse
|
25
|
Piña-Olmos S, Dolores-Hernández M, Villaseñor A, Díaz-Torres R, Ramírez Bribiesca E, López-Arellano R, Ramírez-Noguera P. Extracellular and intracellular zilpaterol and clenbuterol quantification in Hep G2 liver cells by UPLC-PDA and UPLC-MS/MS. J Pharm Biomed Anal 2020; 195:113817. [PMID: 33303268 DOI: 10.1016/j.jpba.2020.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Zilpaterol and Clenbuterol are β-adrenergic agonists that have been widely used to feed cattle. Although the use of Zilpaterol has been approved, Clenbuterol is still used illegally at unknown doses. However, the research of both substances has been based mainly on the evaluation of residues. To our knowledge, this is the first time that a cellular model using Hep G2 cells treated with Zilpaterol and Clenbuterol is presented as an alternative approach to quantify both drugs at the cellular level. Thus, a complete analytical methodology has been developed for the accurate quantitation of these β-adrenergic agonists in both cellular compartments. We propose the use of ultra-performance liquid chromatography with photodiode array detector (UPLC-PDA) for extracellular determinations while UPLC coupled to a tandem mass spectrometer (UPLC-MS/MS) for intracellular analysis. The methods were fully validated in terms of selectivity, linearity, accuracy, and precision, limits of detection and quantitation (LOD and LOQ, respectively), stability, carryover, and matrix effect. The method for intracellular content was linear ranging from 0.25 to 8 ng/mL while for extracellular content, the concentration of Zilpaterol and Clenbuterol ranged from 0.125 to 4 μg/mL, with correlation coefficients of R > 0.98 and >0.99, respectively. The combination of the two methodologies in the cellular model showed intracellular concentrations of 0.344 ± 0.06 μg/mL and 2.483 ± 0.36 μg/mL for Zilpaterol and Clenbuterol, respectively. Extracellular concentration was 0.728 ± 0.14 μg/mL and 0.822 ± 0.11 μg/mL for Zilpaterol and Clenbuterol, respectively. This work shows the potential applications of cellular modelling in the study of toxicity for the mentioned drugs.
Collapse
Affiliation(s)
- Sofia Piña-Olmos
- Laboratorio de Toxicología Celular, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, 54714, Mexico
| | - Mariana Dolores-Hernández
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, 54714, Mexico
| | - Alma Villaseñor
- Instituto de Medicina Molecular Aplicada (IMMA), Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Roberto Díaz-Torres
- Laboratorio de Toxicología Celular, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, 54714, Mexico
| | - Efrén Ramírez Bribiesca
- Programa de Ganadería, Colegio de Posgraduados, Montecillo, Carretera México-Texcoco Km.36.5, Montecillo, Texcoco, 56230, Estado de México, Mexico
| | - Raquel López-Arellano
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, 54714, Mexico
| | - Patricia Ramírez-Noguera
- Laboratorio de Toxicología Celular, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, 54714, Mexico.
| |
Collapse
|
26
|
Kumar Y, Yadav R, Bhatia A. Can natural detergent properties of bile acids be used beneficially in tackling coronavirus disease-19? Future Virol 2020. [PMCID: PMC7737566 DOI: 10.2217/fvl-2020-0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
27
|
Matsson P, Baranczewski P, Giacomini KM, Andersson TB, Palm J, Palm K, Charman WN, Bergström CAS. A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research. J Pharm Sci 2020; 110:2-11. [PMID: 33096136 DOI: 10.1016/j.xphs.2020.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022]
Abstract
This issue of the Journal of Pharmaceutical Sciences is dedicated to Professor Per Artursson and the groundbreaking contributions he has made and continues to make in the Pharmaceutical Sciences. Per is one of the most cited researchers in his field, with more than 30,000 citations and an h-index of 95 as of September 2020. Importantly, these citations are distributed over the numerous fields he has explored, clearly showing the high impact the research has had on the discipline. We provide a short portrait of Per, with emphasis on his personality, driving forces and the inspirational sources that shaped his career as a world-leading scientist in the field. He is a curious scientist who deftly moves between disciplines and has continued to innovate, expand boundaries, and profoundly impact the pharmaceutical sciences throughout his career. He has developed new tools and provided insights that have significantly contributed to today's molecular and mechanistic approaches to research in the fields of intestinal absorption, cellular disposition, and exposure-efficacy relationships of pharmaceutical drugs. We want to celebrate these important contributions in this special issue of the Journal of Pharmaceutical Sciences in Per's honor.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pawel Baranczewski
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Retired)
| | - Johan Palm
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Katrin Palm
- Early Product Development and Manufacture, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - William N Charman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | | |
Collapse
|
28
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
29
|
Longuespée R, Theile D, Fresnais M, Burhenne J, Weiss J, Haefeli WE. Approaching sites of action of drugs in clinical pharmacology: New analytical options and their challenges. Br J Clin Pharmacol 2020; 87:858-874. [PMID: 32881012 DOI: 10.1111/bcp.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical pharmacology is an important discipline for drug development aiming to define pharmacokinetics (PK), pharmacodynamics (PD) and optimum exposure to drugs, i.e. the concentration-response relationship and its modulators. For this purpose, information on drug concentrations at the anatomical, cellular and molecular sites of action is particularly valuable. In pharmacological assays, the limited accessibility of target cells in readily available samples (i.e. blood) often hampers mass spectrometry-based monitoring of the absolute quantity of a compound and the determination of its molecular action at the cellular level. Recently, new sample collection methods have been developed for the specific capture of rare circulating cells, especially for the diagnosis of circulating tumour cells. In parallel, new advances and developments in mass spectrometric instrumentation now allow analyses to be scaled down to the cellular level. Together, these developments may permit the monitoring of minute drug quantities and show their effect at the cellular level. In turn, such PK/PD associations on a cellular level would not only enrich our pharmacological knowledge of a given compound but also expand the basis for PK/PD simulations. In this review, we describe novel concepts supporting clinical pharmacology at the anatomical, cellular and molecular sites of action, and highlight the new challenges in mass spectrometry-based monitoring. Moreover, we present methods to tackle these challenges and define future needs.
Collapse
Affiliation(s)
- Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, Lin X, Lu D, Wang L, Chen J, Su LH, Nomie KJ, Li F, Wang MC, Shu X, Onuchic JN, Woyach JA, Wang ML, Wang J. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun 2020; 11:4268. [PMID: 32848159 PMCID: PMC7450057 DOI: 10.1038/s41467-020-17997-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.
Collapse
Affiliation(s)
- Wen-Hao Guo
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Liu
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lynn Hsiao Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Krystle J Nomie
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael L Wang
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Pereno V, Lei J, Carugo D, Stride E. Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6388-6398. [PMID: 32407094 DOI: 10.1021/acs.langmuir.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 μm/s, which increased to 8.5 ± 3.8 μm/s in the presence of microbubbles compared to 12 ± 0.12 μm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.
Collapse
Affiliation(s)
- Valerio Pereno
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences and Institute for Life Sciences, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
32
|
Jansson-Löfmark R, Hjorth S, Gabrielsson J. Does In Vitro Potency Predict Clinically Efficacious Concentrations? Clin Pharmacol Ther 2020; 108:298-305. [PMID: 32275768 PMCID: PMC7484912 DOI: 10.1002/cpt.1846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
The in vitro affinity of a compound for its target is an important feature in drug discovery, but what remains is how predictive in vitro properties are of in vivo therapeutic drug exposure. We assessed the relationship between in vitro potency and clinically efficacious concentrations for marketed small molecule drugs (n = 164) and how they may differ depending on therapeutic indication, mode of action, receptor type, target localization, and function. Approximately 70% of compounds had a therapeutic unbound plasma exposure lower than in vitro potency; the median ratio of exposure in relation to in vitro potency was 0.32, and 80% had ratios within the range of 0.007 to 8.7. We identified differences in the in vivo–to–in vitro potency ratio between indications, mode of action, target type, and matrix localization, and whether or not the drugs had active metabolites. The in vitro–assay variability contributions appeared to be the smallest; within the same drug target and mode of action the within‐variability was slightly broader; but both were substantially less compared with the overall distribution of ratios. These data suggest that in vitro potency conditions, estimated in vivo potency, required level of receptor occupancy, and target turnover are key components for further understanding the link between clinical drug exposure and in vitro potency.
Collapse
Affiliation(s)
- Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephan Hjorth
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.,Pharmacilitator AB (Inc.), Vallda, Sweden
| | - Johan Gabrielsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Ahmed N, Kermanshahi B, Ghazani SM, Tait K, Tcheng M, Roma A, Callender SP, Smith RW, Tam W, Wettig SD, Rogers MA, Marangoni AG, Spagnuolo PA. Avocado-derived polyols for use as novel co-surfactants in low energy self-emulsifying microemulsions. Sci Rep 2020; 10:5566. [PMID: 32221368 PMCID: PMC7101315 DOI: 10.1038/s41598-020-62334-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Avocado (Persea americana Mill.; Lauraceae) seed-derived polyhydroxylated fatty alcohols (PFAs) or polyols (i.e., avocadene and avocadyne) are metabolic modulators that selectively induce apoptosis of leukemia stem cells and reverse pathologies associated with diet-induced obesity. Delivery systems containing avocado polyols have not been described. Herein, natural surface active properties of these polyols are characterized and incorporated into self-emulsifying drug delivery systems (SEDDS) that rely on molecular self-assembly to form fine, transparent, oil-in-water (O/W) microemulsions as small as 20 nanometers in diameter. Mechanistically, a 1:1 molar ratio of avocadene and avocadyne (i.e., avocatin B or AVO was shown to be a eutectic mixture which can be employed as a novel, bioactive, co-surfactant that significantly reduces droplet size of medium-chain triglyceride O/W emulsions stabilized with polysorbate 80. In vitro cytotoxicity of avocado polyol-SEDDS in acute myeloid leukemia cell lines indicated significant increases in potency and bioactivity compared to conventional cell culture delivery systems. A pilot pharmacokinetic evaluation of AVO SEDDS in C57BL/6J mice revealed appreciable accumulation in whole blood and biodistribution in key target tissues. Lastly, incorporation of AVO in SEDDS significantly improved encapsulation of the poorly water-soluble drugs naproxen and curcumin.
Collapse
Affiliation(s)
- Nawaz Ahmed
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Behnoush Kermanshahi
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Saeed M Ghazani
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Katrina Tait
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Matthew Tcheng
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Alessia Roma
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | - Shannon P Callender
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Richard W Smith
- University of Waterloo Mass Spectrometry Facility, Department of Chemistry, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada
| | - Michael A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada
| | | | - Paul A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2WI, Canada.
| |
Collapse
|
34
|
Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol 2020; 273:121-150. [PMID: 33258066 DOI: 10.1007/164_2020_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
35
|
Drozdzik M, Szelag‐Pieniek S, Post M, Zeair S, Wrzesinski M, Kurzawski M, Prieto J, Oswald S. Protein Abundance of Hepatic Drug Transporters in Patients With Different Forms of Liver Damage. Clin Pharmacol Ther 2019; 107:1138-1148. [PMID: 31697849 DOI: 10.1002/cpt.1717] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Sylwia Szelag‐Pieniek
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Mariola Post
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Samir Zeair
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Maciej Wrzesinski
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Jesus Prieto
- Center for Applied Medical Research University of Navarra Pamplona Spain
| | - Stefan Oswald
- Department of Clinical Pharmacology University Medicine of Greifswald Greifswald Germany
| |
Collapse
|
36
|
Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3528148. [PMID: 31814871 PMCID: PMC6877910 DOI: 10.1155/2019/3528148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022]
Abstract
Ferulic acid (FA) is a natural phenolic antioxidant, which can exert also several other beneficial effects to combat neuroinflammation and neurodegenerative diseases, such as Alzheimer's disease. One of these properties is the inhibition of several enzymes and factors, such as β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), cyclooxygenases (COXs), lipoxygenases (LOXs), mammalian (or mechanistic) target for rapamycin (mTOR), and transcription factor NF-κB. We have previously synthesized three L-type amino acid transporter 1- (LAT1-) utilizing FA-derivatives with the aim to develop brain-targeted prodrugs of FA. In the present study, the cellular uptake and bioavailability of these FA-derivatives were evaluated in mouse primary astrocytic cell cultures together with their inhibitory effects towards BACE1, COX/LOX, mTOR, NF-κB, acetylcholinesterase (AChE), and oxidative stress. According to the results, all three FA-derivatives were taken up 200–600 times more effectively at 10 μM concentration into the astrocytes than FA, with one derivative having a high intracellular bioavailability (Kp,uu), particularly at low concentrations. Moreover, all of the derivatives were able to inhibit BACE1, COX/LOX, AChE, and oxidative stress measured as decreased cellular lipid peroxidation. Furthermore, one of the derivatives modified the total mTOR amount. Therefore, these derivatives have the potential to act as multifunctional compounds preventing β-amyloid accumulation as well as combating inflammation and reducing oxidative stress in the brain. Thus, this study shows that converting a parent drug into a transporter-utilizing derivative not only may increase its brain and cellular uptake, and bioavailability but can also broaden the spectrum of pharmacological effects elicited by the derivative.
Collapse
|
37
|
A Cell-Free Approach Based on Phospholipid Characterization for Determination of the Cell Specific Unbound Drug Fraction (f u,cell). Pharm Res 2019; 36:178. [PMID: 31701258 PMCID: PMC6838048 DOI: 10.1007/s11095-019-2717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/06/2019] [Indexed: 01/27/2023]
Abstract
Purpose The intracellular fraction of unbound compound (fu,cell) is an important parameter for accurate prediction of drug binding to intracellular targets. fu,cell is the result of a passive distribution process of drug molecules partitioning into cellular structures. Initial observations in our laboratory showed an up to 10-fold difference in the fu,cell of a given drug for different cell types. We hypothesized that these differences could be explained by the phospholipid (PL) composition of the cells, since the PL cell membrane is the major sink of unspecific drug binding. Therefore, we determined the fu,cell of 19 drugs in cell types of different origin. Method The cells were characterized for their total PL content and we used mass spectrometric PL profiling to delineate the impact of each of the four major cellular PL subspecies: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The cell-based experiments were compared to cell-free experiments that used beads covered by PL bilayers consisting of the most abundant PL subspecies. Results PC was found to give the largest contribution to the drug binding. Improved correlations between the cell-based and cell-free assays were obtained when affinities to all four major PL subspecies were considered. Together, our data indicate that fu,cell is influenced by PL composition of cells. Conclusion We conclude that cellular PL composition varies between cell types and that cell-specific mixtures of PLs can replace cellular assays for determination of fu,cell as a rapid, small-scale assay covering a broad dynamic range. . ![]()
Electronic supplementary material The online version of this article (10.1007/s11095-019-2717-1) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Yüzer A, Ayaz F, Ince M. Immunomodulatory activities of zinc(II)phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents. Bioorg Chem 2019; 92:103249. [DOI: 10.1016/j.bioorg.2019.103249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
|
39
|
Validation of Cell-Based Assay for Quantification of Sesamol Uptake and Its Application for Measuring Target Exposure. Molecules 2019; 24:molecules24193522. [PMID: 31569436 PMCID: PMC6803937 DOI: 10.3390/molecules24193522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The intracellular drug concentration is needed for determination of target exposure at the site of action regarding its pharmacological action and adverse effects. Sesamol is an antiproliferative molecule from Sesamum indicum with promising health benefits. We present a method for measuring the intracellular sesamol content using reverse-phase HPLC with a UV diode array in melanoma cells. Sesamol was completely resolved by isocratic elution (4.152 ± 0.008 min) with methanol/water (70%, v/v) through a 30 °C, 5-µm C-18 column and detection at 297 nm. The present assay offers high sensitivity, fast elution, and an accurate and linear nominal concentration range of 10–1000 ng/mL (R2 = 0.9972). The % accuracy of the sesamol quality control sample was −3.36% to 1.50% (bias) with a 0.84% to 5.28% relative standard deviation (RSD), representing high repeatability and high reproducibility. The % recovery was 94.80% to 99.29%, which determined that there was no loss of sesamol content during the sample preparation. The validated method was applied to monitor intracellular sesamol concentration after treatment from 5 min to 24 h. The remaining intracellular sesamol content was correlated with its antiproliferative effect (R2 = 0.9483). In conclusion, this assay demonstrated low manipulation, quick elution, and high sensitivity, precision, accuracy, and recovery, and it was successfully applied to the quantification of sesamol in target cells.
Collapse
|
40
|
Heith CS, Hansen LA, Bakken RM, Ritter SL, Long BR, Hume JR, Zhang L, Amundsen DB, Steiner ME, Fischer GA. Effects of an Ex Vivo Pediatric Extracorporeal Membrane Oxygenation Circuit on the Sequestration of Mycophenolate Mofetil, Tacrolimus, Hydromorphone, and Fentanyl. J Pediatr Pharmacol Ther 2019; 24:290-295. [PMID: 31337991 DOI: 10.5863/1551-6776-24.4.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES With the expanding use of extracorporeal membrane oxygenation (ECMO), understanding drug pharmacokinetics has become increasingly important, particularly in pediatric patients. This ex vivo study examines the effect of a pediatric Quadrox-iD ECMO circuit on the sequestration and binding of mycophenolate mofetil (MMF), tacrolimus, and hydromorphone hydrochloride, which have not been extensively studied to date in pediatric ECMO circuits. Fentanyl, which has been well studied, was used as a comparator. METHODS ECMO circuits were set up using Quadrox-iD pediatric oxygenators and centrifugal pumps. The circuit was primed with whole blood and a reservoir was attached to represent a 5-kg patient. Fourteen French venous and 12 French arterial ECMO cannulas were inserted into the sealed reservoir. Temperature, pH, PO2, and PCO2 were monitored and corrected. MMF, tacrolimus, hydromorphone, and fentanyl were injected into the ECMO circuit. Serial blood samples were taken from a postoxygenator site at intervals over 12 hours, and levels were measured. RESULTS Hydromorphone hydrochloride was not as significantly sequestered by the ex vivo pediatric ECMO circuit when compared with fentanyl. Both mycophenolic acid and tacrolimus serum concentrations were stable in the circuit over 12 hours. CONCLUSIONS Hydromorphone may represent a useful medication for pain control for pediatric patients on ECMO due to its minimal sequestration. Mycophenolic acid and tacrolimus also did not show significant sequestration in the circuit, which was unexpected given their lipophilicity and protein-binding characteristics, but may provide insight into unexplored pharmacokinetics of particular medications in ECMO circuits.
Collapse
|
41
|
Abstract
Bioavailability is an ancient but effective terminology by which the entire therapeutic efficacy of a drug directly or indirectly relays. Despite considering general plasma bioavailability, specific organ/tissue bioavailability will pave the path to broad spectrum dose calculation. Clear knowledge and calculative vision on bioavailability can improve the research and organ-targeting phenomenon. This article comprises a detailed introduction on bioavailability along with regulatory aspects, kinetic data and novel bioformulative approaches to achieve improved organ specific bioavailability, which may not be readily related to blood plasma bioavailability.
Collapse
|
42
|
Treyer A, Ullah M, Parrott N, Molitor B, Fowler S, Artursson P. Impact of Intracellular Concentrations on Metabolic Drug-Drug Interaction Studies. AAPS JOURNAL 2019; 21:77. [PMID: 31214810 PMCID: PMC6581936 DOI: 10.1208/s12248-019-0344-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Accurate prediction of drug-drug interactions (DDI) is a challenging task in drug discovery and development. It requires determination of enzyme inhibition in vitro which is highly system-dependent for many compounds. The aim of this study was to investigate whether the determination of intracellular unbound concentrations in primary human hepatocytes can be used to bridge discrepancies between results obtained using human liver microsomes and hepatocytes. Specifically, we investigated if Kpuu could reconcile differences in CYP enzyme inhibition values (Ki or IC50). Firstly, our methodology for determination of Kpuu was optimized for human hepatocytes, using four well-studied reference compounds. Secondly, the methodology was applied to a series of structurally related CYP2C9 inhibitors from a Roche discovery project. Lastly, the Kpuu values of three commonly used CYP3A4 inhibitors—ketoconazole, itraconazole, and posaconazole—were determined and compared to compound-specific hepatic enrichment factors obtained from physiologically based modeling of clinical DDI studies with these three compounds. Kpuu obtained in suspended human hepatocytes gave good predictions of system-dependent differences in vitro. The Kpuu was also in fair agreement with the compound-specific hepatic enrichment factors in DDI models and can therefore be used to improve estimations of enrichment factors in physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Andrea Treyer
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - Mohammed Ullah
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Birgit Molitor
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden. .,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala, Sweden. .,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Polak S, Tylutki Z, Holbrook M, Wiśniowska B. Better prediction of the local concentration-effect relationship: the role of physiologically based pharmacokinetics and quantitative systems pharmacology and toxicology in the evolution of model-informed drug discovery and development. Drug Discov Today 2019; 24:1344-1354. [PMID: 31132414 DOI: 10.1016/j.drudis.2019.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Model-informed drug discovery and development (MID3) is an umbrella term under which sit several computational approaches: quantitative systems pharmacology (QSP), quantitative systems toxicology (QST) and physiologically based pharmacokinetics (PBPK). QSP models are built using mechanistic knowledge of the pharmacological pathway focusing on the putative mechanism of drug efficacy; whereas QST models focus on safety and toxicity issues and the molecular pathways and networks that drive these adverse effects. These can be mediated through exaggerated on-target or off-target pharmacology, immunogenicity or the physiochemical nature of the compound. PBPK models provide a mechanistic description of individual organs and tissues to allow the prediction of the intra- and extra-cellular concentration of the parent drug and metabolites under different conditions. Information on biophase concentration enables the prediction of a drug effect in different organs and assessment of the potential for drug-drug interactions. Together, these modelling approaches can inform the exposure-response relationship and hence support hypothesis generation and testing, compound selection, hazard identification and risk assessment through to clinical proof of concept (POC) and beyond to the market.
Collapse
Affiliation(s)
- Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | - Zofia Tylutki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Mark Holbrook
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| |
Collapse
|
44
|
Spangler B, Yang S, Baxter Rath CM, Reck F, Feng BY. A Unified Framework for the Incorporation of Bioorthogonal Compound Exposure Probes within Biological Compartments. ACS Chem Biol 2019; 14:725-734. [PMID: 30908011 DOI: 10.1021/acschembio.9b00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Compartmentalization is a crucial facet of many biological systems, and key aspects of cellular processes rely on spatial segregation within the cell. While many drug targets reside in specific intracellular compartments, the tools available for assessing compound exposure are generally limited to whole-cell measurements. To address this gap, we recently developed a bioorthogonal chemistry-based method to assess compartment-specific compound exposure and demonstrated its use in Gram-negative bacteria. To expand the applicability of this approach, we report here novel bioorthogonal probe modalities which enable diverse probe incorporation strategies. The probes we developed utilize a cleavable thiocarbamate linker to connect localizing elements such as metabolic substrates to a cyclooctyne moiety which enables the detection of azide-containing molecules. Adducts between the probe and azide-bearing compounds can be recovered and affinity purified after exposure experiments, thus facilitating the mass-spectrometry based analysis used to assess compound exposure. The bioorthogonal system reported here thus provides a valuable new tool for interrogating compartment-specific compound exposure in a variety of biological contexts while retaining a simple and unified sample preparation and analysis workflow.
Collapse
Affiliation(s)
- Benjamin Spangler
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | - Shengtian Yang
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | | | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | - Brian Y. Feng
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| |
Collapse
|
45
|
Krasavin M, Shetnev A, Baykov S, Kalinin S, Nocentini A, Sharoyko V, Poli G, Tuccinardi T, Korsakov M, Tennikova TB, Supuran CT. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur J Med Chem 2019; 168:301-314. [PMID: 30826507 DOI: 10.1016/j.ejmech.2019.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023]
Abstract
An expanded set of pyridazine-containing benzene sulfonamides was investigated for inhibition of four human carbonic anhydrase isoforms, which revealed a pronounced inhibition trend toward hCA IX, a cancer-related, membrane-bound isoform of the enzyme. Comparison of antiproliferative effects of these compounds against cancer (PANC-1) and normal (ARPE-19) cells at 50 μM concentration narrowed the selection of compounds to the eight which displayed selective growth inhibition toward the cancer cells. More detailed investigation in concentration-dependent mode against normal (ARPE-19) and two cancer cell lines (PANC-1 and SK-MEL-2) identified two lead compounds one of which displayed a notable cytotoxicity toward pancreatic cancer cells while the other targeted the melanoma cells. These findings significantly expand the knowledge base concerning the hCA IX inhibitors whose inhibitory potency against a recombinant enzyme translates into selective anticancer activity under hypoxic conditions which are aimed to model the environment of a growing tumor.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| | - Anton Shetnev
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Sergey Baykov
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Mikhail Korsakov
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
46
|
Filppula AM, Parvizi R, Mateus A, Baranczewski P, Artursson P. Improved predictions of time-dependent drug-drug interactions by determination of cytosolic drug concentrations. Sci Rep 2019; 9:5850. [PMID: 30971754 PMCID: PMC6458156 DOI: 10.1038/s41598-019-42051-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022] Open
Abstract
The clinical impact of drug-drug interactions based on time-dependent inhibition of cytochrome P450 (CYP) 3A4 has often been overpredicted, likely due to use of improper inhibitor concentration estimates at the enzyme. Here, we investigated if use of cytosolic unbound inhibitor concentrations could improve predictions of time-dependent drug-drug interactions. First, we assessed the inhibitory effects of ten time-dependent CYP3A inhibitors on midazolam 1′-hydroxylation in human liver microsomes. Then, using a novel method, we determined the cytosolic bioavailability of the inhibitors in human hepatocytes, and used the obtained values to calculate their concentrations at the active site of the enzyme, i.e. the cytosolic unbound concentrations. Finally, we combined the data in mechanistic static predictions, by considering different combinations of inhibitor concentrations in intestine and liver, including hepatic concentrations corrected for cytosolic bioavailability. The results were then compared to clinical data. Compared to no correction, correction for cytosolic bioavailability resulted in higher accuracy and precision, generally in line with those obtained by more demanding modelling. The best predictions were obtained when the inhibition of hepatic CYP3A was based on unbound maximal inhibitor concentrations corrected for cytosolic bioavailability. Our findings suggest that cytosolic unbound inhibitor concentrations improves predictions of time-dependent drug-drug interactions for CYP3A.
Collapse
Affiliation(s)
- Anne M Filppula
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.
| | - Rezvan Parvizi
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - André Mateus
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - Pawel Baranczewski
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.,Department of Pharmacy and SciLifeLab Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy and Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden. .,Department of Pharmacy and SciLifeLab Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
47
|
The future of drug development: the paradigm shift towards systems therapeutics. Drug Discov Today 2018; 23:1990-1995. [DOI: 10.1016/j.drudis.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
|
48
|
Schlessinger A, Welch MA, van Vlijmen H, Korzekwa K, Swaan PW, Matsson P. Molecular Modeling of Drug-Transporter Interactions-An International Transporter Consortium Perspective. Clin Pharmacol Ther 2018; 104:818-835. [PMID: 29981151 PMCID: PMC6197929 DOI: 10.1002/cpt.1174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Membrane transporters play diverse roles in the pharmacokinetics and pharmacodynamics of small-molecule drugs. Understanding the mechanisms of drug-transporter interactions at the molecular level is, therefore, essential for the design of drugs with optimal therapeutic effects. This white paper examines recent progress, applications, and challenges of molecular modeling of membrane transporters, including modeling techniques that are centered on the structures of transporter ligands, and those focusing on the structures of the transporters. The goals of this article are to illustrate current best practices and future opportunities in using molecular modeling techniques to understand and predict transporter-mediated effects on drug disposition and efficacy.Membrane transporters from the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies regulate the cellular uptake, efflux, and homeostasis of many essential nutrients and significantly impact the pharmacokinetics of drugs; further, they may provide targets for novel therapeutics as well as facilitate prodrug approaches. Because of their often broad substrate selectivity they are also implicated in many undesirable and sometimes life-threatening drug-drug interactions (DDIs).5,6.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew A. Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Herman van Vlijmen
- Computational Chemistry, Discovery Sciences, Janssen Research & Development, Beerse, Belgium
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Sweden
,Address correspondence to: Pär Matsson, Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden, Phone: +46-(0)18-471 46 30, Fax: +46-(0)18-471 42 23,
| |
Collapse
|
49
|
Guo Y, Chu X, Parrott NJ, Brouwer KL, Hsu V, Nagar S, Matsson P, Sharma P, Snoeys J, Sugiyama Y, Tatosian D, Unadkat JD, Huang SM, Galetin A. Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clin Pharmacol Ther 2018; 104:865-889. [PMID: 30059145 PMCID: PMC6197917 DOI: 10.1002/cpt.1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This white paper examines recent progress, applications, and challenges in predicting unbound and total tissue and intra/subcellular drug concentrations using in vitro and preclinical models, imaging techniques, and physiologically based pharmacokinetic (PBPK) modeling. Published examples, regulatory submissions, and case studies illustrate the application of different types of data in drug development to support modeling and decision making for compounds with transporter-mediated disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this article are to illustrate current best practices and outline practical strategies for selecting appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma concentrations, and to use these data in the application of PBPK modeling for human pharmacokinetic (PK), efficacy, and safety assessment in drug development.
Collapse
Affiliation(s)
- Yingying Guo
- Investigational Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, DC0714, Indianapolis, IN 46285, USA; Tel: 317-277-4324
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 732-594-0977
| | - Neil J. Parrott
- Pharmaceutical Sciences, Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB #7569 Kerr Hall, Chapel Hill, NC 27599-7569, USA; Tel: (919) 962-7030
| | - Vicky Hsu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Swati Nagar
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, 3307 N Broad Street, Philadelphia PA 19140, USA; 215-707-9110
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden +46-(0)18-471 46 30
| | - Pradeep Sharma
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca R&D, Cambridge CB4 0WG, UK
| | - Jan Snoeys
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen R&D, Beerse, Belgium; Tel: +32-14606812
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama 230-0045, Japan; Tel: (045) 506-1814
| | - Daniel Tatosian
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 908-464-2375
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; 206-685-2869
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester M13 9PT, UK; + 44-161-275-6886
| |
Collapse
|
50
|
Zubiaur P, Saiz-Rodríguez M, Koller D, Ovejero-Benito MC, Wojnicz A, Abad-Santos F. How to make P-glycoprotein (ABCB1, MDR1) harbor mutations and measure its expression and activity in cell cultures? Pharmacogenomics 2018; 19:1285-1297. [PMID: 30334473 DOI: 10.2217/pgs-2018-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several polymorphisms have been identified in ABCB1, the gene encoding for the P-glycoprotein. This transporter alters the pharmacokinetics or effectiveness of drugs by excreting them from cells where it is expressed (e.g., blood-brain barrier, intestine or tumors). No consensus has been reached regarding the functional consequences of these polymorphisms in the transporter's function. The aim of this review was to describe a methodology that allows the assessment of P-gp function when harboring polymorphisms. We describe how to obtain cell lines with high expression levels of the transporter with polymorphisms and several tactics to measure its expression and activity. This methodology may help elucidate the contribution of polymorphisms in ABCB1 to drug pharmacokinetics, effectiveness and safety or to cancer chemotherapy failure.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María Carmen Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|