1
|
Yao Y, Zhou R, Yan C, Yan S, Han G, Liu Y, Fan D, Chen Z, Fan X, Chen Y, Li J, Yang Y, Tang Z. LncRNA RMG controls liquid-liquid phase separation of MEIS2 to regulate myogenesis. Int J Biol Macromol 2025; 310:143309. [PMID: 40252346 DOI: 10.1016/j.ijbiomac.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) regulate liquid-liquid phase separation (LLPS), driving the formation of biomolecular condensates essential for cellular function. However, this regulatory mechanism is yet to be reported in skeletal muscles. In this study, we comprehensively analyzed lncRNAs in skeletal muscle across multiple pig breeds, developmental stages, and tissues. Our analysis identified over 10,000 novel lncRNAs. We found that the lnc-regulator of muscle growth (lnc-RMG) regulates myogenesis by modulating the LLPS of Meis homeobox 2 (MEIS2). Lnc-RMG was specifically expressed in the skeletal muscle, with significantly higher expression in the fetal stage than in the embryonic stage. Notably, lnc-RMG was highly conserved between pigs and humans and exhibits similar biological functions in myogenesis. Furthermore, lnc-RMG knockdown promoted skeletal muscle regeneration. Mechanistically, lnc-RMG produces mature microRNA (miR)-133a-3p, which targets and inhibits MEIS2 expression, thereby inhibiting MEIS2 LLPS. This inhibition promoted the transcription of transforming growth factor-β receptor II (TGFβR2), ultimately regulating myogenesis. Overall, our findings revealed a novel lnc-RMG/miR-133a-3p/MEIS2/TGFβR2 axis that regulated myogenesis through LLPS and provided new insights into the molecular mechanisms that drive muscle development and regeneration. These findings highlight potential therapeutic targets for muscle-related diseases and novel strategies for livestock improvement.
Collapse
Affiliation(s)
- Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shanying Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guohao Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Danyang Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Chen
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Jiaying Li
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
2
|
Zolfaghari Dehkharghani M, Mousavi S, Kianifard N, Fazlzadeh A, Parsa H, Tavakoli Pirzaman A, Fazlollahpour-Naghibi A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction. IJC HEART & VASCULATURE 2024; 55:101529. [PMID: 39498345 PMCID: PMC11532444 DOI: 10.1016/j.ijcha.2024.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Myocardial infarction (MI), a major global cause of mortality and morbidity, continues to pose a significant burden on public health. Despite advances in understanding its pathogenesis, there remains a need to elucidate the intricate molecular mechanisms underlying MI progression. Long non-coding RNAs (lncRNAs) have emerged as key regulators in diverse biological processes, yet their specific roles in MI pathophysiology remain elusive. Conducting a thorough review of literature using PubMed and Google Scholar databases, we investigated the involvement of lncRNAs in MI, focusing on their regulatory functions and downstream signaling pathways. Our analysis revealed extensive dysregulation of lncRNAs in MI, impacting various biological processes through diverse mechanisms. Notably, lncRNAs act as crucial modulators of gene expression and signaling cascades, functioning as decoys, regulators, and scaffolds. Furthermore, studies identified the multifaceted roles of lncRNAs in modulating inflammation, apoptosis, autophagy, necrosis, fibrosis, remodeling, and ischemia-reperfusion injury during MI progression. Recent research highlights the pivotal contribution of lncRNAs to MI pathogenesis, offering novel insights into potential therapeutic interventions. Moreover, the identification of circulating lncRNA signatures holds promise for the development of non-invasive diagnostic biomarkers. In summary, findings underscore the significance of lncRNAs in MI pathophysiology, emphasizing their potential as therapeutic targets and diagnostic tools for improved patient management and outcomes.
Collapse
Affiliation(s)
| | - Safa Mousavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Kianifard
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Fazlzadeh
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Parsa
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
3
|
Hofman B, Szyda J, Frąszczak M, Mielczarek M. Long non-coding RNA variability in porcine skeletal muscle. J Appl Genet 2024; 65:565-573. [PMID: 38539022 DOI: 10.1007/s13353-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 08/09/2024]
Abstract
Recently, numerous studies including various tissues have been carried out on long non-coding RNAs (lncRNAs), but still, its variability has not yet been fully understood. In this study, we characterised the inter-individual variability of lncRNAs in pigs, in the context of number, length and expression. Transcriptomes collected from muscle tissue belonging to six Polish Landrace boars (PL1-PL6), including half-brothers (PL1-PL3), were investigated using bioinformatics (lncRNA identification and functional analysis) and statistical (lncRNA variability) methods. The number of lncRNA ranged from 1289 to 3500 per animal, and the total number of common lncRNAs among all boars was 232. The number, length and expression of lncRNAs significantly varied between individuals, and no consistent pattern has been found between pairs of half-brothers. In detail, PL5 exhibits lower expression than the others, while PL4 has significantly higher expression than PL2-PL3 and PL5-PL6. Noteworthy, comparing the inter-individual variability of lncRNA and mRNA expression, they exhibited concordant patterns. The enrichment analysis for common lncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology, and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes. The high variability of lncRNA landscape in the porcine genome has been revealed in this study. The inter-individual differences have been found in the context of three aspects: the number, length and expression of lncRNAs, which contribute to a better understanding of its complex nature.
Collapse
Affiliation(s)
- Bartłomiej Hofman
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| |
Collapse
|
4
|
Li M, Liu Q, Xie S, Fu C, Li J, Tian C, Li X, Li C. LncRNA TCONS_00323213 Promotes Myogenic Differentiation by Interacting with PKNOX2 to Upregulate MyoG in Porcine Satellite Cells. Int J Mol Sci 2023; 24:ijms24076773. [PMID: 37047747 PMCID: PMC10094759 DOI: 10.3390/ijms24076773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Myogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA TCONS_00323213, which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis. We found that TCONS_00323213 affected the proliferation and differentiation of PSC in vitro. We performed quantitative polymerase chain reaction (qPCR), 5-ethynyl-20-deoxyuridine (EdU), western blotting, immunofluorescence staining, pull-down assays, and cleavage under targets and tagmentation (CUT and Tag) assays to clarify the effects and action mechanisms of TCONS_00323213. LncRNA TCONS_00323213 inhibited myoblast proliferation based on analyses of cell survival rates during PSC proliferation. Functional analyses revealed that TCONS_00323213 promotes cell differentiation and enhances myogenin (MyoG), myosin heavy chain (MyHC), and myocyte enhancer factor 2 (MEF2C) during myoblast differentiation. As determined by pull-down and RNA immunoprecipitation (RIP) assays, the lncRNA TCONS_00323213 interacted with PBX/Knotted Homeobox 2 (PKNOX2). CUT and Tag assays showed that PKNOX2 was significantly enriched on the MyoG promoter after lncRNA TCONS_00323213 knockdown. Our findings demonstrate that the interaction between lncRNA TCONS_00323213 and PKNOX2 relieves the inhibitory effect of PKNOX2 on the MyoG promoter, increases its expression, and promotes PSC differentiation. This novel role of lncRNA TCONS_00323213 sheds light on the molecular mechanisms by which lncRNAs regulate porcine myogenesis.
Collapse
Affiliation(s)
- Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Yan S, Pei Y, Li J, Tang Z, Yang Y. Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals. Biomolecules 2023; 13:biom13020314. [PMID: 36830683 PMCID: PMC9953704 DOI: 10.3390/biom13020314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.
Collapse
Affiliation(s)
- Shanying Yan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| |
Collapse
|
6
|
Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L, Wang L, Zhang Y, Fan X, Tang Y, Yuan P, Zhu M, Li Q, Zhang S, Chen Y, Wang B, He J, Lu D, Liachko I, Sullivan ST, Pang B, Chen Y, He X, Li K, Tang Z. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. GENETICS SELECTION EVOLUTION 2022; 54:62. [PMID: 36104777 PMCID: PMC9476355 DOI: 10.1186/s12711-022-00754-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.
Results
We obtained a high-resolution phased chromosome-scale reference genome with a contig N50 of 18.03 Mb for the Luchuan pig breed (a representative eastern breed) and profiled potential selective sweeps in eastern and western pigs by resequencing the genomes of 234 pigs. Multi-tissue transcriptome and chromatin accessibility analyses of these regions suggest that tissue-specific selection pressure is mediated by promoters and distal cis-regulatory elements. Promoter variants that are associated with increased expression of the lysozyme (LYZ) gene in the small intestine might enhance the immunity of the gastrointestinal tract and roughage tolerance in pigs. In skeletal muscle, an enhancer-modulating single-nucleotide polymorphism that is associated with up-regulation of the expression of the troponin C1, slow skeletal and cardiac type (TNNC1) gene might increase the proportion of slow muscle fibers and affect meat quality.
Conclusions
Our work sheds light on the molecular mechanisms by which non-coding variants shape phenotypic differences in pigs and provides valuable resources and novel perspectives to dissect the role of gene regulatory evolution in animal domestication and breeding.
Collapse
|
7
|
Li S, Wang J, Li J, Yue M, Liu C, Ma L, Liu Y. Integrative analysis of transcriptome complexity in pig granulosa cells by long-read isoform sequencing. PeerJ 2022; 10:e13446. [PMID: 35637716 PMCID: PMC9147391 DOI: 10.7717/peerj.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 01/14/2023] Open
Abstract
Background In intensive and large-scale farms, abnormal estradiol levels in sows can cause reproductive disorders. The high incidence rate of reproductive disturbance will induce the elimination of productive sows in large quantities, and the poor management will bring great losses to the pig farms. The change in estradiol level has an important effect on follicular development and estrus of sows. To solve this practical problem and improve the productive capacity of sows, it is significant to further clarify the regulatory mechanism of estradiol synthesis in porcine granulosa cells (GCs). The most important function of granulosa cells is to synthesize estradiol. Thus, the studies about the complex transcriptome in porcine GCs are significant. As for precursor-messenger RNAs (pre-mRNAs), their post-transcriptional modification, such as alternative polyadenylation (APA) and alternative splicing (AS), together with long non-coding RNAs (lncRNAs), may regulate the functions of granulosa cells. However, the above modification events and their function are unclear within pig granulosa cells. Methods Combined PacBio long-read isoform sequencing (Iso-Seq) was conducted in this work for generating porcine granulosa cells' transcriptomic data. We discovered new transcripts and possible gene loci via comparison against reference genome. Later, combined Iso-Seq data were adopted to uncover those post-transcriptional modifications such as APA or AS, together with lncRNA within porcine granulosa cells. For confirming that the Iso-Seq data were reliable, we chose four AS genes and analyzed them through RT-PCR. Results The present article illustrated that pig GCs had a complex transcriptome, which gave rise to 8,793 APA, 3,465 AS events, 703 candidate new gene loci, as well as 92 lncRNAs. The results of this study revealed the complex transcriptome in pig GCs. It provided a basis for the interpretation of the molecular mechanism in GCs.
Collapse
Affiliation(s)
- Shuxin Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Jiarui Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Jiale Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Meihong Yue
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Ying Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
8
|
Mumtaz PT, Bhat B, Ibeagha-Awemu EM, Taban Q, Wang M, Dar MA, Bhat SA, Shabir N, Shah RA, Ganie NA, Velayutham D, Haq ZU, Ahmad SM. Mammary epithelial cell transcriptome reveals potential roles of lncRNAs in regulating milk synthesis pathways in Jersey and Kashmiri cattle. BMC Genomics 2022; 23:176. [PMID: 35246027 PMCID: PMC8896326 DOI: 10.1186/s12864-022-08406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. Results To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. Conclusions Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08406-x.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.,Department of Biochemistry, School of Life Sciences Jaipur National University, Jaipur, India
| | - Basharat Bhat
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Jammu, India
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nazir A Ganie
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | | | - Zulfqar Ul Haq
- Division of Livestock Production and Management, SKUAST-K, Srinagar, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.
| |
Collapse
|
9
|
Pandey A, Malla WA, Sahu AR, Wani SA, Khan RIN, Saxena S, Ramteke PW, Praharaj MR, Kumar A, Rajak KK, Mishra B, Muthuchelvan D, Sajjanar B, Mishra BP, Singh RK, Gandham RK. Differential expression of long non-coding RNAs under Peste des petits ruminants virus (PPRV) infection in goats. Virulence 2022; 13:310-322. [PMID: 35129076 PMCID: PMC8824212 DOI: 10.1080/21505594.2022.2026564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peste des petits ruminants (PPR) characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, is an acute, highly contagious viral disease of sheep and goats. The role of long non-coding RNAs (lncRNAs) in PPRV infection has not been explored to date. In this study, the transcriptome profiles of virulent Peste des petits ruminants virus (PPRV) infected goat tissues – lung and spleen were analyzed to identify the role of lncRNAs in PPRV infection. A total of 13,928 lncRNA transcripts were identified, out of which 170 were known lncRNAs. Intergenic lncRNAs (7625) formed the major chunk of the novel lncRNA transcripts. Differential expression analysis revealed that 15 lncRNAs (11 downregulated and 4 upregulated) in the PPRV infected spleen samples and 16 lncRNAs (13 downregulated and 3 upregulated) in PPRV infected lung samples were differentially expressed as compared to control. The differentially expressed lncRNAs (DElncRNAs) possibly regulate various immunological processes related to natural killer cell activation, antigen processing and presentation, and B cell activity, by regulating the expression of mRNAs through the cis- or trans-regulatory mechanism. Functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) revealed enrichment of immune pathways and biological processes in concordance with the pathways in which correlated lncRNA-neighboring genes were enriched. The results suggest that a coordinated immune response is raised in both lung and spleen tissues of the goat through mRNA-lncRNA crosstalk.
Collapse
Affiliation(s)
- Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | | | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | | | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - P W Ramteke
- Department of Biological Sciences, SHUATS, Allahabad, India
| | - Manas Ranjan Praharaj
- Genomics and Bioinformatics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR-IVRI, Bareilly, India
| | | | - Bina Mishra
- Division of Biological Products, ICAR-IVRI, Bareilly, India
| | | | | | | | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India.,Genomics and Bioinformatics, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
10
|
Li M, Liu Y, Xie S, Ma L, Zhao Z, Gong H, Sun Y, Huang T. Transcriptome analysis reveals that long noncoding RNAs contribute to developmental differences between medium-sized ovarian follicles of Meishan and Duroc sows. Sci Rep 2021; 11:22510. [PMID: 34795345 PMCID: PMC8602415 DOI: 10.1038/s41598-021-01817-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ovulation rate is an extremely important factor affecting litter size in sows. It differs greatly among pig breeds with different genetic backgrounds. Long non-coding RNAs (lncRNAs) can regulate follicle development, granulosa cell growth, and hormone secretion, which in turn can affect sow litter size. In this study, we identified 3554 lncRNAs and 25,491 mRNAs in M2 follicles of Meishan and Duroc sows. The lncRNA sequence and open reading frame lengths were shorter than mRNAs, and lncRNAs had fewer exons, were less abundant, and more conserved than protein-coding RNAs. Furthermore, 201 lncRNAs were differentially expressed (DE) between breeds, and quantitative trait loci analysis of DE lncRNAs were performed. A total of 127 DE lncRNAs were identified in 119 reproduction trait-related loci. In addition, the potential target genes of lncRNAs in cis or trans configurations were predicted. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that some potential target genes were involved in follicular development and hormone secretion-related biological processes or pathways, such as progesterone biosynthetic process, estrogen metabolic process, ovarian steroidogenesis, and PI3K-Akt signaling pathway. Furthermore, we also screened 19 differentially expressed lncRNAs in the PI3K-Akt signaling pathway as candidates. This study provides new insights into the roles of lncRNAs in follicular growth and development in pigs.
Collapse
Affiliation(s)
- Mengxun Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Zhichao Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Guangxi Yangxiang Animal Husbandry Co. Ltd., Guangxi, Guigang, 537100, China
| | - Hongbin Gong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
11
|
Yang Y, Yan J, Fan X, Chen J, Wang Z, Liu X, Yi G, Liu Y, Niu Y, Zhang L, Wang L, Li S, Li K, Tang Z. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genet 2021; 17:e1009910. [PMID: 34780471 PMCID: PMC8629385 DOI: 10.1371/journal.pgen.1009910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/29/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Natural and artificial directional selections have resulted in significantly genetic and phenotypic differences across breeds in domestic animals. However, the molecular regulation of skeletal muscle diversity remains largely unknown. Here, we conducted transcriptome profiling of skeletal muscle across 27 time points, and performed whole-genome re-sequencing in Landrace (lean-type) and Tongcheng (obese-type) pigs. The transcription activity decreased with development, and the high-resolution transcriptome precisely captured the characterizations of skeletal muscle with distinct biological events in four developmental phases: Embryonic, Fetal, Neonatal, and Adult. A divergence in the developmental timing and asynchronous development between the two breeds was observed; Landrace showed a developmental lag and stronger abilities of myoblast proliferation and cell migration, whereas Tongcheng had higher ATP synthase activity in postnatal periods. The miR-24-3p driven network targeting insulin signaling pathway regulated glucose metabolism. Notably, integrated analysis suggested SATB2 and XLOC_036765 contributed to skeletal muscle diversity via regulating the myoblast migration and proliferation, respectively. Overall, our results provide insights into the molecular regulation of skeletal muscle development and diversity in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaxing Chen
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaoqin Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangxi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | | | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - ShuaiCheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
- * E-mail: (SCL); (KL); (ZLT)
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail: (SCL); (KL); (ZLT)
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- Guangxi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail: (SCL); (KL); (ZLT)
| |
Collapse
|
12
|
Cheng F, Liang J, Yang L, Lan G, Wang L, Wang L. Systematic Identification and Comparison of the Expressed Profiles of lncRNAs, miRNAs, circRNAs, and mRNAs with Associated Co-Expression Networks in Pigs with Low and High Intramuscular Fat. Animals (Basel) 2021; 11:ani11113212. [PMID: 34827944 PMCID: PMC8614448 DOI: 10.3390/ani11113212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF) content is a complex trait that affects meat quality and determines pork quality. In order to explore the potential mechanisms that affect the intramuscular fat content of pigs, a Large white × Min pigs F2 resource populations were constructed, then whole-transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals. In total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the longissimus dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these differentially expressed (DE) genes or potential target genes (PTGs) of DE regulatory RNAs (lncRNAs, miRNAs, and circRNAs) are mainly involved in cell differentiation, fatty acid synthesis, system development, muscle fiber development, and regulating lipid metabolism. In total, 274 PTGs were found to be differentially expressed between low- and high-IMF pigs, which indicated that some DE regulatory RNAs may contribute to the deposition/metabolism of IMF by regulating their PTGs. In addition, we analyzed the quantitative trait loci (QTLs) of DE RNAs co-located in high- and low-IMF groups. A total of 97 DE regulatory RNAs could be found located in the QTLs related to IMF. Co-expression networks among different types of RNA and competing endogenous RNA (ceRNA) regulatory networks were also constructed, and some genes involved in type I diabetes mellitus were found to play an important role in the complex molecular process of intramuscular fat deposition. This study identified and analyzed some differential RNAs, regulatory RNAs, and PTGs related to IMF, and provided new insights into the study of IMF formation at the level of the genome-wide landscape.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Liyu Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (G.L.)
| | - Lixian Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- Correspondence: (L.W.); (L.W.)
| | - Ligang Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.C.); (L.Y.)
- Correspondence: (L.W.); (L.W.)
| |
Collapse
|
13
|
Bhat B, Ganai NA, Singh A, Mir R, Ahmad SM, Majeed Zargar S, Malik F. Changthangi Pashmina Goat Genome: Sequencing, Assembly, and Annotation. Front Genet 2021; 12:695178. [PMID: 34354739 PMCID: PMC8329486 DOI: 10.3389/fgene.2021.695178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pashmina goats produce the world's finest and the most costly animal fiber (Pashmina) with an average fineness of 11-13 microns and have more evolved mechanisms than any known goat breed around the globe. Despite the repute of Pashmina goat for producing the finest and most sought-after animal fiber, meager information is available in the public domain about Pashmina genomics and transcriptomics. Here we present a 2.94 GB genome sequence from a male Changthangi white Pashmina goat. We generated 294.8 GB (>100X coverage) of the whole-genome sequence using the Illumina HiSeq 2500 sequencer. All cleaned reads were mapped to the goat reference genome (2,922,813,246 bp) which covers 97.84% of the genome. The Unaligned reads were used for de novo assembly resulting in a total of 882 MB non-reference contigs. De novo assembly analysis presented in this study provides important insight into the adaptation of Pashmina goats to cold stress and helps enhance our understanding of this complex phenomenon. A comparison of the Pashmina goat genome with a wild goat genome revealed a total of 2,823 high impact single nucleotide variations and small insertions and deletions, which may be associated with the evolution of Pashmina goats. The Pashmina goat genome sequence provided in this study may improve our understanding of complex traits found in Pashmina goats, such as annual fiber cycling, defense mechanism against hypoxic, survival secret in extremely cold conditions, and adaptation to a sparse diet. In addition, the genes identified from de novo assembly could be utilized in differentiating Pashmina fiber from other fibers to avoid falsification at marketing practices.
Collapse
Affiliation(s)
- Basharat Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Nazir A Ganai
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Ashutosh Singh
- Department of Life Science, Shiv Nadar University, Greater Noida, India
| | - Rakeeb Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences Technology of Kashmir, Srinagar, India
| | - Firdose Malik
- Division of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
14
|
Bouska MJ, Bai H. Long noncoding RNA regulation of spermatogenesis via the spectrin cytoskeleton in Drosophila. G3 (BETHESDA, MD.) 2021; 11:jkab080. [PMID: 33720346 PMCID: PMC8104941 DOI: 10.1093/g3journal/jkab080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/07/2021] [Indexed: 11/14/2022]
Abstract
The spectrin cytoskeleton has been shown to be critical in diverse processes such as axon development and degeneration, myoblast fusion, and spermatogenesis. Spectrin can be modulated in a tissue specific manner through junctional protein complexes, however, it has not been shown that long noncoding RNAs (lncRNAs) interact with and modulate spectrin. Here, we provide evidence of a lncRNA CR45362 that interacts with α-Spectrin, is required for spermatid nuclear bundling during Drosophila spermatogenesis. We observed that CR45362 showed high expression in the cyst cells at the basal testis, and CRISPR-mediated knockout of CR45362 led to sterile male, unbundled spermatid nuclei, and disrupted actin cones. Through chromatin isolation by RNA precipitation-mass spectrometry (ChIRP-MS), we identified actin-spectrin cytoskeletal components physically interact with the lncRNA CR45362. Genetic screening on identified cytoskeletal factors revealed that cyst cell-specific knockdown of α-Spectrin phenocopied CR45362 mutants and resulted in spermatid nuclear bundle defects. Consistently, CR45362 knockout disrupted the co-localization of α-Spectrin and spermatid nuclear bundles in the head cyst cells at the basal testis. Thus, we uncovered a novel lncRNA CR45362 that interacts with α-Spectrin to stabilize spermatid nuclear bundles during spermatid maturation.
Collapse
Affiliation(s)
- Mark J Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| |
Collapse
|
15
|
Jaworska J, Ropka-Molik K, Piórkowska K, Szmatoła T, Kowalczyk-Zięba I, Wocławek-Potocka I, Siemieniuch M. Transcriptome Profiling of the Retained Fetal Membranes-An Insight in the Possible Pathogenesis of the Disease. Animals (Basel) 2021; 11:ani11030675. [PMID: 33802481 PMCID: PMC8000898 DOI: 10.3390/ani11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Retained fetal membranes (RFM) in mares is a disease of a multifactorial etiology with not fully understood pathogenesis. Profound analysis of genes expressed in the placenta may reveal pathways and processes which might be comprised in mares with this disease and hence help to explain the pathogenesis of RFM. This work employed RNA sequencing to identify and compare genes differentially expressed (DEGs) in the placenta of mares that retained fetal membranes and those that released them physiologically. Results showed that within DEGs genes important for apoptosis, inflammatory-related processes, and metabolism of extracellular matrix were identified. Abstract Retained fetal membranes (RFM) is one of the most common post-partum diseases of a complex etiology. Moreover, its pathogenesis is still not elucidated. Detailed transcriptomic analysis of physiological and retained placenta may bring profound insight in the pathogenesis of the disease. The aim of the study was to compare the transcriptome of the retained and physiologically released placenta as well as biological pathways and processes in order to determine the possible pathogenesis of the disease. Samples of the endometrium and the allantochorion were taken within 2 h after parturition from control mares (n = 3) and mares with RFM (n = 3). RNA sequencing was performed with the use of all samples and mRNA expression of chosen genes was validated with Real Time PCR. Analysis of RNA-seq identified 487 differentially expressed genes in the allantochorion and 261 in the endometrium of control and RFM mares (p < 0.0001). Within genes that may be important in the release of fetal membranes and were differentially expressed, our report pinpointed BGN, TIMP1, DRB, CD3E, C3, FCN3, CASP3, BCL2L1. Gene ontology analysis showed possible processes which were altered in RFM that are apoptosis, inflammatory-related processes, and extracellular matrix metabolism and might be involved in the pathogenesis of RFM. This is the first report on the transcriptome of RFM and physiologically released placenta in mares.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
- Correspondence:
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
- University Centre of Veterinary Medicine Krakow, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Ilona Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
| | - Marta Siemieniuch
- Research Station of the Institute of Reproduction and Food Research, Polish Academy of Sciences in Popielno, 12-220 Ruciane-Nida, Poland;
| |
Collapse
|
16
|
Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G. Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0008351. [PMID: 33481791 PMCID: PMC7872224 DOI: 10.1371/journal.pntd.0008351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/09/2021] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus. Ae. albopictus is an important vector of arboviruses such as dengue and Zika viruses. Studies on virus-host interaction at gene expression and molecular level are crucial especially in devising methods to inhibit virus replication in Aedes mosquitoes. Previous reports have shown that, besides protein-coding genes, noncoding RNAs such as lncRNAs are also involved in virus-host interaction. In this study, we report a comprehensive catalog of novel lncRNA transcripts in the genome of Ae. albopictus. We also show that the expression of lncRNAs was altered upon infection with dengue and Zika. Additionally, depletion of certain lncRNAs resulted in increased replication of dengue and Zika; hence, suggesting potential association of lncRNAs in virus infection. Results of this study provide a new avenue to the investigation of mosquito-virus interactions, especially in the aspect of noncoding genes.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sattam M. Obeidat
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- * E-mail:
| |
Collapse
|
17
|
Hu H, Fu Y, Zhou B, Li Z, Liu Z, Jia Q. Long non-coding RNA TCONS_00814106 regulates porcine granulosa cell proliferation and apoptosis by sponging miR-1343. Mol Cell Endocrinol 2021; 520:111064. [PMID: 33091558 DOI: 10.1016/j.mce.2020.111064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence shows that long non-coding RNAs (lncRNAs), a class of non-coding RNAs, are involved in the regulation of reproductive processes. In this study, we identified a lncRNA, TCONS_00814106, that was upregulated in high-fecundity sow ovarian tissues and influenced by reproductive hormones. Bioinformatics analyses and luciferase reporter assays showed that TCONS_00814106 is a miR-1343 target. Cell counting kit (CCK)-8 and apoptosis assays showed that TCONS_00814106 promotes proliferation and inhibits apoptosis in porcine granulosa cells (GCs), and that this could be reversed by miR-1343. Also, we observed that transforming growth factor-β receptor type I (TGFBR1) is a functional target of miR-1343 in GCs. TCONS_00814106 serves as a competing endogenous RNA to regulate TGFBR1 expression by sponging miR-1343, thereby exerting regulatory functions in GCs. Overall, these results provide new insights into the biological function of the lncRNA TCONS_00814106.
Collapse
Affiliation(s)
- Huiyan Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yanfang Fu
- Hebei Provincial Animal Husbandry Station, Shijiazhuang, 050000, China
| | - Bo Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiqiang Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhongwu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Qing Jia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China; Hebei Technology Innovation Center for Agriculture in Mountainous Areas, Baoding, 071000, China.
| |
Collapse
|
18
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Chang ZX, Ajayi OE, Guo DY, Wu QF. Genome-wide characterization and developmental expression profiling of long non-coding RNAs in Sogatella furcifera. INSECT SCIENCE 2020; 27:987-997. [PMID: 31264303 DOI: 10.1111/1744-7917.12707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The genome-wide characterization of long non-coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in-depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein-coding genes. More up-regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome-wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Wang Y, Sun X. The functions of LncRNA in the heart. Diabetes Res Clin Pract 2020; 168:108249. [PMID: 32531328 DOI: 10.1016/j.diabres.2020.108249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease is a major cause of death and disability worldwide. Recently, increasing evidence has demonstrated that various lncRNAs play critical roles in the pathogenesis of cardiovascular diseases, including myocardial ischemia and reperfusion (I/R) injury. LncRNAs are transcripts longer than 200 nucleotides. They are considered a class of dynamic noncoding RNAs known to be involved in physiological and pathological conditions with regulatory and structural roles in numerous biological processes, including genomic imprinting, epigenetic regulation, cell proliferation, development, aging and apoptosis. They are emerging as potential key regulators of a variety of cardiovascular diseases. However, the roles of lncRNAs in the heart function remain largely unknown. The purpose of this review was to summarize the functions of lncRNAs in the heart and discuss the challenges and possible strategies of lncRNA research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
21
|
Hu H, Jia Q, Xi J, Zhou B, Li Z. Integrated analysis of lncRNA, miRNA and mRNA reveals novel insights into the fertility regulation of large white sows. BMC Genomics 2020; 21:636. [PMID: 32928107 PMCID: PMC7490888 DOI: 10.1186/s12864-020-07055-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/06/2020] [Indexed: 01/20/2023] Open
Abstract
Background Improving sow fertility is extremely important as it can lead to increased reproductive efficiency and thus profitability for swine producers. There are considerable differences in fertility rates among individual animals, but the underlying molecular mechanisms remain unclear. In this study, by using different types of RNA libraries, we investigated the complete transcriptome of ovarian tissue during the luteal (L) and follicular (F) phases of the estrous cycle in Large White pigs with high (H) and low (L) fecundity, and performed a comprehensive analysis of long noncoding RNAs (lncRNAs), mRNAs and micro RNAs (miRNAs) from 16 samples by combining RNA sequencing (RNA-seq) with bioinformatics. Results In total, 24,447 lncRNAs, 27,370 mRNAs, and 216 known miRNAs were identified in ovarian tissues. The genomic features of lncRNAs, such as length distribution and number of exons, were further analyzed. We selected a threshold of P < 0.05 and |log2 (fold change)| ≥ 1 to obtain the differentially expressed lncRNAs, miRNAs and mRNAs by pairwise comparison (LH vs. LL, FH vs. FL). Bioinformatics analysis of these differentially expressed RNAs revealed multiple significantly enriched pathways (P < 0.05) that were closely involved in the reproductive process, such as ovarian steroidogenesis, lysosome, steroid biosynthesis, and the estrogen and GnRH signaling pathways. Moreover, bioinformatics screening of differentially expressed miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets were performed. Finally, we constructed lncRNA–miRNA–mRNA regulation networks. The key genes in these networks were verified by Reverse Transcription Real-time Quantitative PCR (RT-qRCR), which were consistent with the results from RNA-Seq data. Conclusions These results provide further insights into the fertility of pigs andcan contribute to further experimental investigation of the functions of these genes.
Collapse
Affiliation(s)
- Huiyan Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street No. 2596, Baoding, 071000, Hebei, China
| | - Qing Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street No. 2596, Baoding, 071000, Hebei, China. .,Engineering Research Center for Agriculture in Hebei Mountainous Areas, Baoding, 071000, Hebei, China.
| | - Jianzhong Xi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street No. 2596, Baoding, 071000, Hebei, China
| | - Bo Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street No. 2596, Baoding, 071000, Hebei, China
| | - Zhiqiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street No. 2596, Baoding, 071000, Hebei, China
| |
Collapse
|
22
|
Shi T, Hu W, Hou H, Zhao Z, Shang M, Zhang L. Identification and Comparative Analysis of Long Non-Coding RNA in the Skeletal Muscle of Two Dezhou Donkey Strains. Genes (Basel) 2020; 11:E508. [PMID: 32375413 PMCID: PMC7288655 DOI: 10.3390/genes11050508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) has been extensively studied in many livestock. However, compared with other livestock breeds, there is less research regarding donkey lncRNA function. It has been reported that lncRNA plays an important role in the timing control of development, aging, and death of livestock. Therefore, the study of donkey skeletal muscle lncRNA is of great significance for exploring donkey meat production performance. In this study, RNA-Seq was used to perform high-throughput sequencing of skeletal muscle (longissimus dorsi and gluteus) of two Dezhou donkey strains (SanFen and WuTou). The differentially expressed lncRNAs were screened between different strains and tissues. Then candidate genes for conjoint analysis were screened based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the accuracy of the sequencing data was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Herein, we identified 3869 novel lncRNAs and 73 differentially expressed lncRNAs. Through the comparison between groups, the specific expression of lncRNAs were found in different strains and muscle tissues. Importantly, we constructed the lncRNA-miRNA-mRNA interaction network and found three important candidate lncRNAs (MSTRG.9787.1, MSTRG.3144.1, and MSTRG.9886.1) and four candidate genes (ACTN1, CDON, FMOD, and BMPR1B). Analysis of the KEGG pathway indicates that the TGF-β signaling pathway plays a pivotal role in the growth and development of skeletal muscle in Dezhou donkey strains.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.S.); (W.H.); (H.H.); (Z.Z.); (M.S.)
| |
Collapse
|
23
|
Abstract
Long non-coding RNAs (lncRNAs) represent a major fraction of the transcriptome in multicellular organisms. Although a handful of well-studied lncRNAs are broadly recognized as biologically meaningful, the fraction of such transcripts out of the entire collection of lncRNAs remains a subject of vigorous debate. Here we review the evidence for and against biological functionalities of lncRNAs and attempt to arrive at potential modes of lncRNA functionality that would reconcile the contradictory conclusions. Finally, we discuss different strategies of phenotypic analyses that could be used to investigate such modes of lncRNA functionality.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| | - Dongyang Xu
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
24
|
Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, Zhang J, Wang S, Wang Y, Carmichael GG, Yang L, Chen LL. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell 2020; 181:621-636.e22. [PMID: 32259487 DOI: 10.1016/j.cell.2020.03.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/05/2020] [Accepted: 03/05/2020] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
Collapse
Affiliation(s)
- Chun-Jie Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yu-Hang Xing
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chuan-Chuan Zheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi-Feng Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shaohua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871 Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871 Beijing, China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, CT 06030, USA
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
25
|
Kim HC, Khalil AM, Jolly ER. LncRNAs in molluscan and mammalian stages of parasitic schistosomes are developmentally-regulated and coordinately expressed with protein-coding genes. RNA Biol 2020; 17:805-815. [PMID: 32131676 PMCID: PMC7549628 DOI: 10.1080/15476286.2020.1729594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the low level expression of some long noncoding RNAs (lncRNAs), the differential expression of specific lncRNAs plays important roles during the development of many organisms. Schistosomes, parasitic flatworms that are responsible for schistosomiasis, infects over 200 million people resulting in chronic disease and hundreds of thousands of deaths. Schistosomes have a complex life cycle that transitions between molluscan and mammalian hosts. In a molluscan snail host, the sporocyst stage develops over 5 weeks undergoing asexual reproduction to give rise to free-swimming and infectious cercariae that penetrate human skin and eventually mature into egg producing worms in mammals. The tight integration of the sporocyst to the snail host hepatopancreas hinders the -omics study in the molluscan stage, so the sporocyst transcriptome has only been examined for lncRNAs in immature in vitro samples. Here we analyzed the in vivo mature sporocyst transcriptome to identify 4,930 total lncRNAs between the molluscan and mammalian stages of the parasite. We further demonstrate that the lncRNAs are differentially expressed in a development-dependent manner. In addition, we constructed a co-expression correlation network between lncRNAs and protein-coding (PC) genes that was used to identify clusters of lncRNA transcripts with potential functional relevance. We also describe lncRNA-lncRNA and lncRNA-kinome correlations that identify lncRNAs with prospective roles in gene regulation. Finally, our results show clear differential expression patterns of lncRNAs in host-dependent development stages of S. mansoni and ascribe potential functional roles in development based on predicted intracellular interaction.
Collapse
Affiliation(s)
- Hyung Chul Kim
- Department of Biology, Case Western Reserve University , Cleveland, OH, USA
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University , Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, OH, USA
| | - Emmitt R Jolly
- Department of Biology, Case Western Reserve University , Cleveland, OH, USA.,Center for Global Health and Disease, Case Western Reserve University , Cleveland, OH, USA
| |
Collapse
|
26
|
Transcriptome Analysis Reveals Long Intergenic Non-Coding RNAs Contributed to Intramuscular Fat Content Differences between Yorkshire and Wei Pigs. Int J Mol Sci 2020; 21:ijms21051732. [PMID: 32138348 PMCID: PMC7084294 DOI: 10.3390/ijms21051732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) content is closely related to various meat traits, such as tenderness, juiciness, and flavor. The IMF content varies considerably among pig breeds with different genetic backgrounds. Long intergenic non-coding RNAs (lincRNAs) have been widely identified in many species and found to be an important class of regulators that can participate in multiple biological processes. However, the mechanism behind lincRNAs regulation of pig IMF content remains unknown and requires further study. In our study, we identified a total of 156 lincRNAs in the longissimus dorsi muscle of Wei (fat-type) and Yorkshire (lean-type) pigs using previously published data. These identified lincRNAs have shorter transcript length, longer exon length, lower exon number, and lower expression level as compared with protein-coding transcripts. We predicted potential target genes (PTGs) that are potentially regulated by lincRNAs in cis or trans regulation. Gene ontology and pathway analyses indicated that many potential lincRNAs target genes are involved in IMF-related processes or pathways, such as fatty acid catabolic process and adipocytokine signaling pathway. In addition, we analyzed quantitative trait locus (QTL) sites that differentially expressed lincRNAs (DE lincRNAs) between Wei and Yorkshire pigs co-localized. The QTL sites where DE lincRNAs co-localize are mostly related to IMF content. Furthermore, we constructed a co-expressed network between DE lincRNAs and their differentially expressed PTGs (DEPTGs). On the basis of their expression levels, we suggest that many DE lincRNAs can affect IMF development by positively or negatively regulating their PTGs. This study identified and analyzed some lincRNAs- and PTGs-related IMF development of the two pig breeds and provided new insight into research on the roles of lincRNAs in the two types of breeds.
Collapse
|
27
|
Ma H, Ni A, Ge P, Li Y, Shi L, Wang P, Fan J, Isa AM, Sun Y, Chen J. Analysis of Long Non-Coding RNAs and mRNAs Associated with Lactation in the Crop of Pigeons ( Columba livia). Genes (Basel) 2020; 11:genes11020201. [PMID: 32079139 PMCID: PMC7073620 DOI: 10.3390/genes11020201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pigeons have the ability to produce milk and feed their squabs. The genetic mechanisms underlying milk production in the crops of 'lactating' pigeons are not fully understood. In this study, RNA sequencing was employed to profile the transcriptome of lncRNA and mRNA in lactating and non-'lactating' pigeon crops. We identified 7066 known and 17,085 novel lncRNAs. Of these lncRNAs, 6166 were differentially expressed. Among the 15,138 mRNAs detected, 6483 were differentially expressed, including many predominant genes with known functions in the milk production of mammals. A GO annotation analysis revealed that these genes were significantly enriched in 55, 65, and 30 pathways of biological processes, cellular components, and molecular functions, respectively. A KEGG pathway enrichment analysis revealed that 12 pathways (involving 544 genes), including the biosynthesis of amino acids, the propanoate metabolism, the carbon metabolism and the cell cycle, were significantly enriched. The results provide fundamental evidence for the better understanding of lncRNAs' and differentially expressed genes' (DEGs) regulatory role in the molecular pathways governing milk production in pigeon crops. To our knowledge, this is the first genome-wide investigation of the lncRNAs in pigeon crop associated with milk production. This study provided valuable resources for differentially expressed lncRNAs and mRNAs, improving our understanding of the molecular mechanism of pigeon milk production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-6281-6005
| |
Collapse
|
28
|
MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF. Cells 2020; 9:cells9020449. [PMID: 32075310 PMCID: PMC7072828 DOI: 10.3390/cells9020449] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis.
Collapse
|
29
|
Nolte W, Weikard R, Brunner RM, Albrecht E, Hammon HM, Reverter A, Kühn C. Biological Network Approach for the Identification of Regulatory Long Non-Coding RNAs Associated With Metabolic Efficiency in Cattle. Front Genet 2019; 10:1130. [PMID: 31824560 PMCID: PMC6883949 DOI: 10.3389/fgene.2019.01130] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Genomic regions associated with divergent livestock feed efficiency have been found predominantly outside protein coding sequences. Long non-coding RNAs (lncRNA) can modulate chromatin accessibility, gene expression and act as important metabolic regulators in mammals. By integrating phenotypic, transcriptomic, and metabolomic data with quantitative trait locus data in prioritizing co-expression network analyses, we aimed to identify and functionally characterize lncRNAs with a potential key regulatory role in metabolic efficiency in cattle. Materials and Methods: Crossbred animals (n = 48) of a Charolais x Holstein F2-population were allocated to groups of high or low metabolic efficiency based on residual feed intake in bulls, energy corrected milk in cows and intramuscular fat content in both genders. Tissue samples from jejunum, liver, skeletal muscle and rumen were subjected to global transcriptomic analysis via stranded total RNA sequencing (RNAseq) and blood plasma samples were used for profiling of 640 metabolites. To identify lncRNAs within the indicated tissues, a project-specific transcriptome annotation was established. Subsequently, novel transcripts were categorized for potential lncRNA status, yielding a total of 7,646 predicted lncRNA transcripts belonging to 3,287 loci. A regulatory impact factor approach highlighted 92, 55, 35, and 73 lncRNAs in jejunum, liver, muscle, and rumen, respectively. Their ensuing high regulatory impact factor scores indicated a potential regulatory key function in a gene set comprising loci displaying differential expression, tissue specificity and loci overlapping with quantitative trait locus regions for residual feed intake or milk production. These were subjected to a partial correlation and information theory analysis with the prioritized gene set. Results and Conclusions: Independent, significant and group-specific correlations (|r| > 0.8) were used to build a network for the high and the low metabolic efficiency group resulting in 1,522 and 1,732 nodes, respectively. Eight lncRNAs displayed a particularly high connectivity (>100 nodes). Metabolites and genes from the partial correlation and information theory networks, which each correlated significantly with the respective lncRNA, were included in an enrichment analysis indicating distinct affected pathways for the eight lncRNAs. LncRNAs associated with metabolic efficiency were classified to be functionally involved in hepatic amino acid metabolism and protein synthesis and in calcium signaling and neuronal nitric oxide synthase signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
30
|
Zhou B, Yang Y, Zhan J, Dou X, Wang J, Zhou Y. Predicting functional long non-coding RNAs validated by low throughput experiments. RNA Biol 2019; 16:1555-1564. [PMID: 31345106 PMCID: PMC6779387 DOI: 10.1080/15476286.2019.1644590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/17/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023] Open
Abstract
High-throughput techniques have uncovered hundreds and thousands of long non-coding RNAs (lncRNAs). Among them, only a tiny fraction has experimentally validated functions (EVlncRNAs) by low-throughput methods. What fraction of lncRNAs from high-throughput experiments (HTlncRNAs) is truly functional is an active subject of debate. Here, we developed the first method to distinguish EVlncRNAs from HTlncRNAs and mRNAs by using Support Vector Machines and found that EVlncRNAs can be well separated from HTlncRNAs and mRNAs with 0.6 for Matthews correlation coefficient, 64% for sensitivity, and 81% for precision for the independent human test set. The most useful features for classification are related to sequence conservations at RNA (for separating from HTlncRNAs) and protein (for separating from mRNA) levels. The method is found to be robust as the human-RNA-trained model is applicable to independent mouse RNAs with similar accuracy and to a lesser extent to plant RNAs. The method can recover newly discovered EVlncRNAs with high sensitivity. Its application to randomly selected 2000 human HTlncRNAs indicates that the majority of HTlncRNAs is probably non-functional but a large portion (nearly 30%) are likely functional. In other words, there is an ample number of lncRNAs whose specific biological roles are yet to be discovered. The method developed here is expected to speed up and reduce the cost of the discovery by prioritizing potentially functional lncRNAs prior to experimental validation. EVlncRNA-pred is available as a web server at http://biophy.dzu.edu.cn/lncrnapred/index.html . All datasets used in this study can be obtained from the same website.
Collapse
Affiliation(s)
- Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Yuedong Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Xianghua Dou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
31
|
Functions and Regulatory Mechanisms of lncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells 2019; 8:cells8091107. [PMID: 31546877 PMCID: PMC6769631 DOI: 10.3390/cells8091107] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myogenesis is a complex biological process, and understanding the regulatory network of skeletal myogenesis will contribute to the treatment of human muscle related diseases and improvement of agricultural animal meat production. Long noncoding RNAs (lncRNAs) serve as regulators in gene expression networks, and participate in various biological processes. Recent studies have identified functional lncRNAs involved in skeletal muscle development and disease. These lncRNAs regulate the proliferation, differentiation, and fusion of myoblasts through multiple mechanisms, such as chromatin modification, transcription regulation, and microRNA sponge activity. In this review, we presented the latest advances regarding the functions and regulatory activities of lncRNAs involved in muscle development, muscle disease, and meat production. Moreover, challenges and future perspectives related to the identification of functional lncRNAs were also discussed.
Collapse
|
32
|
Wang Z, Yang Y, Li S, Li K, Tang Z. Analysis and comparison of long non‐codingRNAs expressed in the ovaries of Meishan and Yorkshire pigs. Anim Genet 2019; 50:660-669. [DOI: 10.1111/age.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Z. Wang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Department of Computer Science City University of Hong Kong Kowloon 999077 Hong Kong
| | - Y. Yang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| | - S. Li
- Department of Computer Science City University of Hong Kong Kowloon 999077 Hong Kong
| | - K. Li
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| | - Z. Tang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| |
Collapse
|
33
|
Chen M, Yao YL, Yang Y, Zhu M, Tang Y, Liu S, Li K, Tang Z. Comprehensive Profiles of mRNAs and miRNAs Reveal Molecular Characteristics of Multiple Organ Physiologies and Development in Pigs. Front Genet 2019; 10:756. [PMID: 31552085 PMCID: PMC6737989 DOI: 10.3389/fgene.2019.00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
The pig (Sus scrofa) is not only an important livestock animal but also widely used as a biomedical model. However, the understanding of the molecular characteristics of organs and of the developmental skeletal muscle of the pig is severely limited. Here, we performed a comprehensive transcriptome profiling of mRNAs and miRNAs across nine tissues and three skeletal muscle developmental stages in the Guizhou miniature pig. The reproductive organs (ovary and testis) had greater transcriptome complexity and activity than other tissues, and the highest transcriptome similarity was between skeletal muscle and heart (R = 0.79). We identified 1,819 mRNAs and 96 miRNAs to be tissue-specific in nine organs. Testis had the largest number of tissue-specific mRNAs (992) and miRNAs (40). Only 15 genes and two miRNAs were specifically expressed in skeletal muscle and fat, respectively. During postnatal skeletal muscle development, the mRNAs associated with focal adhesion, Notch signaling, protein digestion, and absorption pathways were up-regulated from D0 to D30 and then down-regulated from D30 and D240, while genes with opposing expression patterns were significantly enriched in the oxidative phosphorylation and proteasome pathways. The miRNAs mainly regulated genes associated with insulin, Wnt, fatty acid biosynthesis, Notch, MAPK, TGF-beta, insulin secretion, ECM-receptor interaction, focal adhesion, and calcium signaling pathways. We also identified 37 new miRNA-mRNA interaction pairs involved in skeletal muscle development. Overall, our data not only provide a rich resource for understanding pig organ physiology and development but also aid the study of the molecular functions of mRNA and miRNA in mammals.
Collapse
Affiliation(s)
- Muya Chen
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Long Yao
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Azlan A, Obeidat SM, Yunus MA, Azzam G. Systematic identification and characterization of Aedes aegypti long noncoding RNAs (lncRNAs). Sci Rep 2019; 9:12147. [PMID: 31434910 PMCID: PMC6704130 DOI: 10.1038/s41598-019-47506-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play diverse roles in biological processes. Aedes aegypti (Ae. aegypti), a blood-sucking mosquito, is the principal vector responsible for replication and transmission of arboviruses including dengue, Zika, and Chikungunya virus. Systematic identification and developmental characterisation of Ae. aegypti lncRNAs are still limited. We performed genome-wide identification of lncRNAs, followed by developmental profiling of lncRNA in Ae. aegypti. We identified a total of 4,689 novel lncRNA transcripts, of which 2,064, 2,076, and 549 were intergenic, intronic, and antisense respectively. Ae. aegypti lncRNAs share many characteristics with other species including low expression, low GC content, short in length, and low conservation. Besides, the expression of Ae. aegypti lncRNAs tend to be correlated with neighbouring and antisense protein-coding genes. A subset of lncRNAs shows evidence of maternal inheritance; hence, suggesting potential role of lncRNAs in early-stage embryos. Additionally, lncRNAs show higher tendency to be expressed in developmental and temporal specific manner. The results from this study provide foundation for future investigation on the function of Ae. aegypti lncRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sattam M Obeidat
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
35
|
Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Res 2019; 26:261-272. [PMID: 31231762 PMCID: PMC6589548 DOI: 10.1093/dnares/dsz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/12/2019] [Indexed: 12/04/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing meditated by adenosine deaminases acting on RNA (ADARs) enzymes is a widespread post-transcriptional event in mammals. However, A-to-I editing in skeletal muscle remains poorly understood. By integrating strand-specific RNA-seq, whole genome bisulphite sequencing, and genome sequencing data, we comprehensively profiled the A-to-I editome in developing skeletal muscles across 27 prenatal and postnatal stages in pig, an important farm animal and biomedical model. We detected 198,892 A-to-I editing sites and found that they occurred more frequently at prenatal stages and showed low conservation among pig, human, and mouse. Both the editing level and frequency decreased during development and were positively correlated with ADAR enzymes expression. The hyper-edited genes were functionally related to the cell cycle and cell division. A co-editing module associated with myogenesis was identified. The developmentally differential editing sites were functionally enriched in genes associated with muscle development, their editing levels were highly correlated with expression of their host mRNAs, and they potentially influenced the gain/loss of miRNA binding sites. Finally, we developed a database to visualize the Sus scrofa RNA editome. Our study presents the first profile of the dynamic A-to-I editome in developing animal skeletal muscle and provides evidences that RNA editing is a vital regulator of myogenesis.
Collapse
Affiliation(s)
- Yalan Yang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyu Yan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
36
|
Li Q, Yu X, Chaudhary R, Slebos RJC, Chung CH, Wang X. lncDIFF: a novel quasi-likelihood method for differential expression analysis of non-coding RNA. BMC Genomics 2019; 20:539. [PMID: 31266446 PMCID: PMC6604377 DOI: 10.1186/s12864-019-5926-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) expression data have been increasingly used in finding diagnostic and prognostic biomarkers in cancer studies. Existing differential analysis tools for RNA sequencing do not effectively accommodate low abundant genes, as commonly observed in lncRNAs. RESULTS We investigated the statistical distribution of normalized counts for low expression genes in lncRNAs and mRNAs, and proposed a new tool lncDIFF based on the underlying distribution pattern to detect differentially expressed (DE) lncRNAs. lncDIFF adopts the generalized linear model with zero-inflated Exponential quasi-likelihood to estimate group effect on normalized counts, and employs the likelihood ratio test to detect differential expressed genes. The proposed method and tool are applicable to data processed with standard RNA-Seq preprocessing and normalization pipelines. Simulation results showed that lncDIFF was able to detect DE genes with more power and lower false discovery rate regardless of the data pattern, compared to DESeq2, edgeR, limma, zinbwave, DEsingle, and ShrinkBayes. In the analysis of a head and neck squamous cell carcinomas data, lncDIFF also appeared to have higher sensitivity in identifying novel lncRNA genes with relatively large fold change and prognostic value. CONCLUSIONS lncDIFF is a powerful differential analysis tool for low abundance non-coding RNA expression data. This method is compatible with various existing RNA-Seq quantification and normalization tools. lncDIFF is implemented in an R package available at https://github.com/qianli10000/lncDIFF .
Collapse
Affiliation(s)
- Qian Li
- Health Informatics Institute, University of South Florida, Tampa, FL 33612 USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Robbert J. C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612 USA
| |
Collapse
|
37
|
Transcriptome Analysis Reveals the Effect of Long Intergenic Noncoding RNAs on Pig Muscle Growth and Fat Deposition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2951427. [PMID: 31341893 PMCID: PMC6614983 DOI: 10.1155/2019/2951427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/01/2019] [Indexed: 01/09/2023]
Abstract
Muscle growth and fat deposition are the two important biological processes in the development of pigs which are closely related to the pig production performance. Long intergenic noncoding RNAs (lincRNAs), with lack of coding potential and the length of at least 200nt, have been extensively studied to play important roles in many biological processes. However, the importance and molecular regulation mechanism of lincRNAs in the process of muscle growth and fat deposition in pigs are still to be further studied comprehensively. In our study, we used the data, including liver, abdominal fat, and longissimus dorsi muscle of 240 days' age of two F2 full-sib female individuals from the white Duroc and Erhualian crossbreed, to identify 581 putative lincRNAs associated with pig muscle growth and fat deposition. The 581 putative lincRNAs shared many common features with other mammalian lincRNAs, such as fewer exons, lower expression levels, and shorter transcript lengths. Cross-tissue comparisons showed that many transcripts were tissue-specific and were involved in the important biological processes in their corresponding tissues. Gene ontology and pathway analysis revealed that many potential target genes (PTGs) of putative lincRNAs were involved in pig muscle growth and fat deposition-related processes, including muscle cell proliferation, lipid metabolism, and fatty acid degradation. In Quantitative Trait Locus (QTLs) analysis, some PTGs were screened from putative lincRNAs, MRPL12 is associated with muscle growth, GCGR and SLC25A10 were associated with fat deposition, and PPP3CA, DPYD, and FGGY were related not only to muscle growth but also to fat deposition. Therefore, it implied that these lincRNAs might participate in the biological processes related to muscle growth or fat deposition through homeostatic regulation of PTGs, but the detailed molecular regulatory mechanisms still needed to be further explored. This study lays the molecular foundation for the in-depth study of the role of lincRNAs in the pig muscle growth and fat deposition and further provides the new molecular markers for understanding the complex biological mechanisms of pig muscle growth and fat deposition.
Collapse
|
38
|
Yang Y, Zhou R, Li W, Liu Y, Zhang Y, Ao H, Li H, Li K. Dynamic Transcriptome Analysis Reveals Potential Long Non-coding RNAs Governing Postnatal Pineal Development in Pig. Front Genet 2019; 10:409. [PMID: 31130986 PMCID: PMC6510172 DOI: 10.3389/fgene.2019.00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal development and maturation of pineal gland is a highly dynamic period of tissue remodeling and phenotype maintenance, which is genetically controlled by programmed gene expression regulations. However, limited molecular characterization, particularly regarding long noncoding RNAs (lncRNA), is available for postnatal pineal at a whole transcriptome level. The present study first characterized the comprehensive pineal transcriptome profiles using strand-specific RNA-seq to illustrate the dynamic mRNA/lncRNA expression at three developmental stages (infancy, puberty, and adulthood). The results showed that 21,448 mRNAs and 8,166 novel lncRNAs were expressed in pig postnatal pineal gland. Among these genes, 3,573 mRNAs and 851 lncRNAs, including the 5-hydroxytryptamine receptors, exhibited significant dynamic regulation along maturation process, while the expression of homeobox genes didn't show significant differences. Gene Ontology analysis revealed that the differentially expressed genes (DEGs) were significantly enriched in ion transport and synaptic transmission, highlighting the critical role of calcium signaling in postnatal pineal development. Additionally, co-expression analysis revealed the DEGs could be grouped into 12 clusters with distinct expression patterns. Many differential lncRNAs were functionally enriched in co-expressed clusters of genes related to ion transport, transcription regulation, DNA binding, and visual perception. Our study first provided an overview of postnatal pineal transcriptome dynamics in pig and demonstrated that dynamic lncRNA regulation of developmental transitions impact pineal physiology.
Collapse
Affiliation(s)
- Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentong Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Ao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Predicting miRNA-lncRNA interactions and recognizing their regulatory roles in stress response of plants. Math Biosci 2019; 312:67-76. [PMID: 31034845 DOI: 10.1016/j.mbs.2019.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/28/2019] [Accepted: 04/23/2019] [Indexed: 02/02/2023]
Abstract
It has been found that each non-coding RNA (ncRNA) can act not only through its target gene, but also interact with each other to act on biological traits, and this interaction is more common. Many studies focus mainly on the analysis of microRNA(miRNA) and message RNA (mRNA) interactions. In this study, we investigated miRNA and long non-coding RNA (lncRNA) interactions using support vector regression (SVR) for prediction of new target genes in Arabidopsis thaliana and identify some regulatory roles in stress response. The networks of miRNA-mRNA, miRNA-lncRNA and miRNA-mRNA-lncRNA were constructed. They were further analyzed and interpreted in R. We showed that miRNA with low sequence number, targeted lncRNA with high sequence number and miRNA with high sequence number targeted lncRNA with low sequence number. The experimental results showed that there is a regulatory relationship between miRNA-lncRNA. New RNA targets were predicted using SVR with new gene expression mechanism and the stress related functions were annotated.
Collapse
|
40
|
Liu X, Wei S, Deng S, Li D, Liu K, Shan B, Shao Y, Wei W, Chen J, Zhang L. Genome-wide identification and comparison of mRNAs, lncRNAs and circRNAs in porcine intramuscular, subcutaneous, retroperitoneal and mesenteric adipose tissues. Anim Genet 2019; 50:228-241. [PMID: 30982992 DOI: 10.1111/age.12781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
Many types of RNAs, including messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play crucial roles in regulating fat cell differentiation and tissue development. However, the expression profiles of these RNAs in different adipose tissues are still largely unknown. To shed light on this issue, we performed a transcriptome analysis of mRNAs, lncRNAs and circRNAs obtained from intramuscular adipose tissue, subcutaneous adipose tissue, retroperitoneal adipose tissue and mesenteric adipose tissue of Chinese Erhualian pigs. A number of differentially expressed mRNAs, lncRNAs and circRNAs were identified among the four adipose tissues. Tissue-specific analysis indicated that circRNAs exhibited the highest tissue specificity among mRNAs, lncRNAs and circRNAs, whereas intramuscular adipose tissue had the most tissue-specific genes among the four adipose tissues. Gene Ontology analysis showed that differentially expressed mRNAs among groups were involved mainly in lipid metabolism and immune inflammatory response processes. Furthermore, the co-expression network construction of mRNAs-lncRNAs revealed that several important lncRNAs, such as MSTRG.426159 and MSTRG.604206, might associate with lipid metabolic process. Taken together, these data provide a genome-wide resource of mRNAs, lncRNAs and circRNAs potentially involved in porcine fat metabolism, thus improving understanding of their function in diverse adipose tissues.
Collapse
Affiliation(s)
- X Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - D Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - K Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - B Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y Shao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - W Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Shi G, Chen L, Chen G, Zou C, Li J, Li M, Fang C, Li C. Identification and Functional Prediction of Long Intergenic Non-coding RNAs Related to Subcutaneous Adipose Development in Pigs. Front Genet 2019; 10:160. [PMID: 30886630 PMCID: PMC6409335 DOI: 10.3389/fgene.2019.00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have shown that long intergenic non-coding RNAs (lincRNAs) are a very important class of non-coding RNAs that plays a vital role in many biological processes. Adipose tissue is an important place for storing energy, but few studies on lincRNAs were related to pig subcutaneous fat development. Here, we used published RNA-seq data from subcutaneous adipose tissue of Italian Large White pigs and identified 252 putative lincRNAs, wherein 34 were unannotated. These lincRNAs had relatively shorter length, lower number of exons, and lower expression level compared with protein-coding transcripts. Gene ontology and pathway analysis indicated that the adjacent genes of lincRNAs were involved in lipid metabolism. In addition, differentially expressed lincRNAs (DELs) between low and high backfat thickness pigs were identified. Through the detection of quantitative trait locus (QTL), DELs were mainly located in QTLs related to adipose development. Based on the expression correlation of DEL genes and their differentially expressed potential target genes, we constructed a co-expression network and a potential pathway of DEL's effect on lipid metabolism. Our study identified and analyzed lincRNAs in subcutaneous adipose tissue, and results suggested that lincRNAs may be involved in the regulation of subcutaneous fat development. Our findings provided new insights into the biological function of porcine lincRNAs.
Collapse
Affiliation(s)
- Gaoli Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
42
|
Liu Y, Yang Y, Li W, Ao H, Zhang Y, Zhou R, Li K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. J Pineal Res 2019; 66:e12546. [PMID: 30586196 DOI: 10.1111/jpi.12546] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
The interaction of granulosa cells (GCs) with oocytes is important to regulate follicle development. The exogenous melatonin promoting the maturation of oocytes by GCs has been approved in pig, however, the transcriptome profile and the functions of the genes regulated by melatonin in GCs have not yet to be fully characterized. In this study, we found melatonin could stimulate the synthesis of estradiol in pig GCs. The RNA-seq was used to explore the effects of melatonin on gene expression, a total of 89 differentially expressed genes (DEGs) were identified. Gene ontology analysis showed DEGs which associated with regulation of cell proliferation, cell cycle, and anti-apoptosis were significantly enriched. The functions of two DEGs, NOTCH2 and FILIP1L, were studied in pig GCs. The results showed that NOTCH2 inhibited the synthesis of estradiol, but FILIP1L promoted the synthesis of estradiol. Furthermore, inhibiting NOTCH2 in granulosa cells cocultured with cumulus-oocyte-complexes had no obvious effect on the maturation of pig oocyte, but could upregulate the cleavage rate of oocyte. We proved that FILIP1L had no effect on the maturation and cleavage of pig oocytes. Our work deepens the understanding of melatonin's effects on GCs and oocyte. The DEGs we found will be beneficial to reveal mechanisms of melatonin acting on GCs and oocytes and design the pharmacological interventions.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wentong Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hong Ao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmin Zhang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Pant T, Dhanasekaran A, Fang J, Bai X, Bosnjak ZJ, Liang M, Ge ZD. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 2018; 18:197. [PMID: 30342478 PMCID: PMC6196023 DOI: 10.1186/s12872-018-0939-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous RNA transcripts longer than 200 nucleotides which regulate epigenetically the expression of genes but do not have protein-coding potential. They are emerging as potential key regulators of diabetes mellitus and a variety of cardiovascular diseases. Diabetic cardiomyopathy (DCM) refers to diabetes mellitus-elicited structural and functional abnormalities of the myocardium, beyond that caused by ischemia or hypertension. The purpose of this review was to summarize current status of lncRNA research for DCM and discuss the challenges and possible strategies of lncRNA research for DCM. A systemic search was performed using PubMed and Google Scholar databases. Major conference proceedings of diabetes mellitus and cardiovascular disease occurring between January, 2014 to August, 2018 were also searched to identify unpublished studies that may be potentially eligible. The pathogenesis of DCM involves elevated oxidative stress, myocardial inflammation, apoptosis, and autophagy due to metabolic disturbances. Thousands of lncRNAs are aberrantly regulated in DCM. Manipulating the expression of specific lncRNAs, such as H19, metastasis-associated lung adenocarcinoma transcript 1, and myocardial infarction-associated transcript, with genetic approaches regulates potently oxidative stress, myocardial inflammation, apoptosis, and autophagy and ameliorates DCM in experimental animals. The detail data regarding the regulation and function of individual lncRNAs in DCM are limited. However, lncRNAs have been considered as potential diagnostic and therapeutic targets for DCM. Overexpression of protective lncRNAs and knockdown of detrimental lncRNAs in the heart are crucial for defining the role and function of lncRNAs of interest in DCM, however, they are technically challenging due to the length, short life, and location of lncRNAs. Gene delivery vectors can provide exogenous sources of cardioprotective lncRNAs to ameliorate DCM, and CRISPR–Cas9 genome editing technology may be used to knockdown specific lncRNAs in DCM. In summary, current data indicate that LncRNAs are a vital regulator of DCM and act as the promising diagnostic and therapeutic targets for DCM.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhi-Dong Ge
- Department of Ophthalmology, Stanford School of Medicine, 1651 Page Mill Road, Stanford, CA, 94304, USA.
| |
Collapse
|
44
|
Ruszkowska M, Nynca A, Paukszto L, Sadowska A, Swigonska S, Orlowska K, Molcan T, Jastrzebski JP, Ciereszko RE. Identification and characterization of long non-coding RNAs in porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo- p-dioxin. J Anim Sci Biotechnol 2018; 9:72. [PMID: 30338064 PMCID: PMC6180664 DOI: 10.1186/s40104-018-0288-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) may regulate gene expression in numerous biological processes including cellular response to xenobiotics. The exposure of living organisms to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, results in reproductive defects in many species including pigs. The aims of the study were to identify and characterize lncRNAs in porcine granulosa cells as well as to examine the effects of TCDD on the lncRNA expression profile in the cells. Results One thousand six hundred sixty-six lncRNAs were identified and characterized in porcine granulosa cells. The identified lncRNAs were found to be shorter than mRNAs. In addition, the number of exons was lower in lncRNAs than in mRNAs and their exons were longer. TCDD affected the expression of 22 lncRNAs (differentially expressed lncRNAs [DELs]; log2 fold change ≥ 1, P-adjusted < 0.05) in the examined cells. Potential functions of DELs were indirectly predicted via searching their target cis- and trans-regulated protein-coding genes. The co-expression analysis revealed that DELs may influence the expression of numerous genes, including those involved in cellular response to xenobiotics, dioxin metabolism, endoplasmic reticulum stress and cell proliferation. Aryl hydrocarbon receptor (AhR) and cytochrome P450 1A1 (CYP1A1) were found among the trans-regulated genes. Conclusions These findings indicate that the identified lncRNAs may constitute a part of the regulatory mechanism of TCDD action in granulosa cells. To our knowledge, this is the first study describing lncRNAs in porcine granulosa cells as well as TCDD effects on the lncRNA expression profile. These results may trigger new research directions leading to better understanding of molecular processes induced by xenobiotics in the ovary.
Collapse
Affiliation(s)
- Monika Ruszkowska
- 1Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Anna Nynca
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland
| | - Lukasz Paukszto
- 3Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Sadowska
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland
| | - Sylwia Swigonska
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland
| | - Karina Orlowska
- 1Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tomasz Molcan
- 1Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan P Jastrzebski
- 3Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Renata E Ciereszko
- 1Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.,2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720 Olsztyn, Poland
| |
Collapse
|
45
|
Yu X, Wang Z, Sun H, Yang Y, Li K, Tang Z. Long non-coding MEG3 is a marker for skeletal muscle development and meat production traits in pigs. Anim Genet 2018; 49:571-578. [PMID: 30294799 DOI: 10.1111/age.12712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Long non-coding RNAmaternally expressed gene 3 (lncRNAMEG3) plays an important role in mammalian muscle development. Our previous transcriptome study showed that lncRNAMEG3 is differentially expressed during postnatal skeletal muscle development in pigs. The objective of the present study was to analyse the role of lncRNAMEG3 in prenatal and postnatal skeletal muscle development and investigate the association of MEG3 with meat production traits in pigs. We investigated the sequence conservation and temporal-spatial expression of lncRNAMEG3 and identified its core promoter and single nucleotide polymorphisms (SNPs). Our results show that MEG3 is conserved among pig, human and mouse and is expressed in a tissue-specific manner with high expression levels in kidney and leg and dorsal muscles. In addition, MEG3 is more abundant in prenatal muscle compared to postnatal muscle, and its expression peaks at gestational day 60. Notably, we observed almost no expression 40 days after birth. The core promoter of MEG3 is located upstream of the transcription initiation site between -447 and -40 bp. In our SNP linkage disequilibrium and association analyses, four of the 10 potential polymorphism sites were found to be associated with corrected back fat thickness and age to reach 100 kg (rs325797437, rs344501106, rs81286029 and rs318656749). In addition, three haplotypes were found to be associated with differences in corrected age to reach 100 kg (AAAT, AAAT/GGGC, GAAT/GGGC). Our results indicate that MEG3 regulates skeletal muscle development and is a candidate gene for improving meat production traits in pigs.
Collapse
Affiliation(s)
- X Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Group of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Z Wang
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - H Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - K Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Z Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Group of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
46
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, Majewski MK. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int J Mol Sci 2018; 19:ijms19071894. [PMID: 29954144 PMCID: PMC6073670 DOI: 10.3390/ijms19071894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
47
|
Zou C, Li L, Cheng X, Li C, Fu Y, Fang C, Li C. Identification and Functional Analysis of Long Intergenic Non-coding RNAs Underlying Intramuscular Fat Content in Pigs. Front Genet 2018; 9:102. [PMID: 29662503 PMCID: PMC5890112 DOI: 10.3389/fgene.2018.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) content is an important trait that can affect pork quality. Previous studies have identified many genes that can regulate IMF. Long intergenic non-coding RNAs (lincRNAs) are emerging as key regulators in various biological processes. However, lincRNAs related to IMF in pig are largely unknown, and the mechanisms by which they regulate IMF are yet to be elucidated. Here we reconstructed 105,687 transcripts and identified 1,032 lincRNAs in pig longissimus dorsi muscle (LDM) of four stages with different IMF contents based on published RNA-seq. These lincRNAs show typical characteristics such as shorter length and lower expression compared with protein-coding genes. Combined with methylation data, we found that both the promoter and genebody methylation of lincRNAs can negatively regulate lincRNA expression. We found that lincRNAs exhibit high correlation with their protein-coding neighbors in expression. Co-expression network analysis resulted in eight stage-specific modules, gene ontology and pathway analysis of them suggested that some lincRNAs were involved in IMF-related processes, such as fatty acid metabolism and peroxisome proliferator-activated receptor signaling pathway. Furthermore, we identified hub lincRNAs and found six of them may play important roles in IMF development. This work detailed some lincRNAs which may affect of IMF development in pig, and facilitated future research on these lincRNAs and molecular assisted breeding for pig.
Collapse
Affiliation(s)
- Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cencen Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
48
|
Abstract
Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.
Collapse
|
49
|
He Q, Liu Y, Sun W. Statistical analysis of non-coding RNA data. Cancer Lett 2018; 417:161-167. [PMID: 29306017 DOI: 10.1016/j.canlet.2017.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
With rapid progress in high-throughput genome technology, the study of noncoding RNA has arisen as a highly popular topic in biomedical research. Noncoding RNA plays fundamental roles in cell proliferation, cell differentiation and epigenetic regulation, and the study of noncoding RNA will yield novel insights into gene regulation and provide new clues for disease treatment. However, due to the large volume and diverse functions of noncoding RNAs, the analysis of these RNAs has proved to be a challenging task. In this review, we review the commonly used computational tools for the identification of noncoding RNAs, and discuss popular statistical tools for their analysis. Due to the large body of noncoding RNA classes, we focus on the analysis of microRNA and long noncoding RNA, two of the most widely studied classes of noncoding RNAs. Specific examples are provided to show the context of the analysis. This review aims to provide up-to-date information on existing tools and methods for identifying and analyzing noncoding RNA.
Collapse
Affiliation(s)
- Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Yang Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
50
|
Systematic Identification and Molecular Characteristics of Long Noncoding RNAs in Pig Tissues. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6152582. [PMID: 29062838 PMCID: PMC5618743 DOI: 10.1155/2017/6152582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding RNAs that are involved in a variety of biological processes. The pig is an important farm animal and an ideal biomedical model. In this study, we performed a genome-wide scan for lncRNAs in multiple tissue types from pigs. A total of 118 million paired-end 90 nt clean reads were obtained via strand-specific RNA sequencing, 80.4% of which were aligned to the pig reference genome. We developed a stringent bioinformatics pipeline to identify 2,139 high-quality multiexonic lncRNAs. The characteristic analysis revealed that the novel lncRNAs showed relatively shorter transcript length, fewer exons, and lower expression levels in comparison with protein-coding genes (PCGs). The guanine-cytosine (GC) content of the protein-coding exons and introns was significantly higher than that of the lncRNAs. Moreover, the single nucleotide polymorphism (SNP) density of lncRNAs was significantly higher than that of PCGs. Conservation analysis revealed that most lncRNAs were evolutionarily conserved among pigs, humans, and mice, such as CUFF.253988.1, which shares homology with human long noncoding RNA MALAT1. The findings of our study significantly increase the number of known lncRNAs in pigs.
Collapse
|