1
|
Brueggeman L, Pottschmidt N, Koomar T, Thomas T, Michaelson JJ. Genomic dissection of sleep archetypes in a large autism cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.04.25325272. [PMID: 40236407 PMCID: PMC11998819 DOI: 10.1101/2025.04.04.25325272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Poor sleep is a major concern among individuals with autism and their caregivers. To better characterize the genetic and phenotypic heterogeneity of poor sleep in autism, we recruited 5,686 families from SPARK, a nationwide genetic study of autism, who described their sleep experiences using the Children's Sleep Health Questionnaire (CSHQ) and other self-report items. The collective experiences from this large sample allowed us to discover eight distinct archetypes of sleep in autism. Membership in some of these archetypes showed significant SNP-heritability (0.50 - 0.65, 95% confidence interval = 0.08 - 1), and polygenic estimates of educational attainment, BMI, and ADHD risk contributed extensively to the genetic signatures of these sleep archetypes. Surprisingly, polygenic estimates of general population sleep phenotypes showed sparser and more modest associations, perhaps suggesting that the genetic drivers of disordered sleep in autism may be distinct from those encountered in the general population. GWAS on archetype membership yielded no genome-wide significant loci, however, the most significant gene for the most severe archetype was the nitric oxide (NO) signaling gene NOS1AP, which was previously linked to sleep disruption in schizophrenia. Finally, the eight sleep archetypes showed specific signatures of treatment response across five major categories of sleep aid, pointing to the potential of treatment plans that are tailored to the nature of the sleep problem. These findings provide critical new insight into the comorbidities, subtypes, and genetic risk factors associated with disordered sleep in autism.
Collapse
Affiliation(s)
- Leo Brueggeman
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | | - Tanner Koomar
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Taylor Thomas
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | |
Collapse
|
2
|
Mishra A, Lin H, Singla R, Le N, Oraebosi M, Liu D, Cao R. Circadian desynchrony in early life leads to enduring autistic-like behavioral changes in adulthood. Commun Biol 2024; 7:1485. [PMID: 39528720 PMCID: PMC11555041 DOI: 10.1038/s42003-024-07131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Circadian rhythm regulates a variety of biological processes in almost all living organisms. Modern lifestyles, e.g. transmeridian travel, night shift, light at night, etc., frequently disrupt people's regular sleep-wake cycles and create a misalignment (circadian desynchrony) between the natural environment and the endogenous body clock, and between different circadian oscillators within the body. The long-term consequences of circadian desynchrony on neurodevelopment and adult behavior remain elusive. Increasing clinical evidence supports a correlation between the disruption of the circadian system and neurodevelopmental disorders, such as autism spectrum disorders. Despite clinical correlations, experimental evidence is yet to establish a link between circadian disturbance in early life and adult behavioral changes. Here, using a "short day" (SD) mouse model, in which mice were exposed to an 8 h/8 h light/dark (LD) cycle mimicking a "shift work" schedule from gestation day 1 to postnatal day 21, we performed a battery of behavioral tests to assess changes in adult behaviors, including sociability, affective behaviors, stereotypy, cognition and locomotor functions. In contrast to the control mice kept in a 12 h/12 h LD cycle, the adult SD mice entrained to the 8 h/8 h LD cycle, but their free running rhythms remained normal in constant darkness. Interestingly, however, the SD mice displayed diminished sociability, a reduced preference for social novelty, excessive repetitive behaviors, and compromised cognitive functions, all of which resemble characteristics of autism-like behavioral alterations. In addition, the SD mice exhibited significant anxiety- and depressive-like behaviors and impaired motor functions. By western blotting and immunostaining analyses, hyperactivation of the mTORC1/S6K1 pathway was detected in multiple forebrain regions of SD mice. These findings underscore the enduring impact of early-life circadian disruption on neurochemical signaling and behavioral patterns into adulthood, highlighting a pivotal role for circadian regulation in neurodevelopment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Lin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Rubal Singla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Michael Oraebosi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Estes A, Hillman A, Chen ML. Sleep and Autism: Current Research, Clinical Assessment, and Treatment Strategies. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:162-169. [PMID: 38680972 PMCID: PMC11046719 DOI: 10.1176/appi.focus.20230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder is associated with a high rate of sleep problems, affecting over 80% of autistic individuals. Sleep problems have pervasive negative effects on health, behavior, mood, and cognition but are underrecognized in autistic children. Problems initiating and maintaining sleep-hallmarks of insomnia-are common. Sleep-disordered breathing and restless legs syndrome have also been described in autism at a higher prevalence than in community populations. The authors describe current research on sleep in autistic children and potential pathophysiologic mechanisms. They describe practical approaches to sleep assessment and synthesize approaches to addressing sleep problems in autistic children.
Collapse
Affiliation(s)
- Annette Estes
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| | - Arianna Hillman
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| | - Maida Lynn Chen
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| |
Collapse
|
4
|
Earnhardt-San AL, Baker EC, Riley DG, Ghaffari N, Long CR, Cardoso RC, Randel RD, Welsh TH. Differential Expression of Circadian Clock Genes in the Bovine Neuroendocrine Adrenal System. Genes (Basel) 2023; 14:2082. [PMID: 38003025 PMCID: PMC10670998 DOI: 10.3390/genes14112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Ronald D. Randel
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| |
Collapse
|
5
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
6
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Singla R, Mishra A, Lin H, Lorsung E, Le N, Tin S, Jin VX, Cao R. Haploinsufficiency of a Circadian Clock Gene Bmal1 ( Arntl or Mop3) Causes Brain-Wide mTOR Hyperactivation and Autism-like Behavioral Phenotypes in Mice. Int J Mol Sci 2022; 23:6317. [PMID: 35682995 PMCID: PMC9181331 DOI: 10.3390/ijms23116317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 50-80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/-) reduced the Bmal1 protein levels by ~50-75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/- mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.
Collapse
Affiliation(s)
- Rubal Singla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Hao Lin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Su Tin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Victor X. Jin
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Hu Y, Li R, Chen H, Chen L, Zhou X, Liu L, Ju M, Chen K, Huang D. Comprehensive analysis of lncRNA-mRNAs co-expression network identifies potential lncRNA biomarkers in cutaneous squamous cell carcinoma. BMC Genomics 2022; 23:274. [PMID: 35392800 PMCID: PMC8988344 DOI: 10.1186/s12864-022-08481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the second most common type of skin cancer, the prognosis for patients with metastatic cSCC remains relatively poor. Thus, there is an urgent need to identify new diagnostic, prognostic, and therapeutic targets and pathways in cSCC. Results It detected a total of 37,507 lncRNA probes and 32,825 mRNA probes and found 3593 differentially expressed lncRNAs and 3236 differentially expressed mRNAs. It has been found that mRNAs ACY3, NR1D1, MZB1 has co-expression relationship with six lncRNAs, GXYLT1P3, LINC00348, LOC101928131, A-33-p3340852, A-21-p0003442 and LOC644838. Conclusions The aim of this study is to identify cSCC-specific lncRNAs and indicated that six unstudied lncRNAs may serve an important role in endoplasmic reticulum stress apoptosis, autophagy and the progression of cSCC by modulating ACY3, NR1D1 and MZB1. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08481-0.
Collapse
Affiliation(s)
- Yu Hu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Rong Li
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Hongyin Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Lihao Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Xuyue Zhou
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Linxi Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Mei Ju
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China.
| | - Dan Huang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 210042, Nanjing, China.,Department of Physiotherapy, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, 12 Jiangwangmiao St, 210042, Nanjing, China
| |
Collapse
|
9
|
Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010310. [PMID: 35008743 PMCID: PMC8745220 DOI: 10.3390/ijms23010310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.
Collapse
Affiliation(s)
- Chiara Scapoli
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Nicole Ziliotto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Erica Menegatti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, IRCCS of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy;
| | - Paolo Zamboni
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, 44124 Ferrara, Italy;
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
- Correspondence: ; Tel.: +39-0532-974425
| | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
10
|
Fang K, Liu D, Pathak SS, Yang B, Li J, Karthikeyan R, Chao OY, Yang YM, Jin VX, Cao R. Disruption of Circadian Rhythms by Ambient Light during Neurodevelopment Leads to Autistic-like Molecular and Behavioral Alterations in Adult Mice. Cells 2021; 10:3314. [PMID: 34943821 PMCID: PMC8699695 DOI: 10.3390/cells10123314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/01/2023] Open
Abstract
Although circadian rhythms are thought to be essential for maintaining body health, the effects of chronic circadian disruption during neurodevelopment remain elusive. Here, using the "Short Day" (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was applied from embryonic day 1 to postnatal day 42, we investigated the molecular and behavioral changes after circadian disruption in mice. Adult SD mice fully entrained to the 8 h/8 h LD cycle, and the circadian oscillations of the clock proteins, PERIOD1 and PERIOD2, were disrupted in the suprachiasmatic nucleus and the hippocampus of these mice. By RNA-seq widespread changes were identified in the hippocampal transcriptome, which are functionally associated with neurodevelopment, translational control, and autism. By western blotting and immunostaining hyperactivation of the mTOR and MAPK signaling pathways and enhanced global protein synthesis were found in the hippocampi of SD mice. Electrophysiological recording uncovered enhanced excitatory, but attenuated inhibitory, synaptic transmission in the hippocampal CA1 pyramidal neurons. These functional changes at synapses were corroborated by the immature morphology of the dendritic spines in these neurons. Lastly, autistic-like animal behavioral changes, including impaired social interaction and communication, increased repetitive behaviors, and impaired novel object recognition and location memory, were found in SD mice. Together, these results demonstrate molecular, cellular, and behavioral changes in SD mice, all of which resemble autistic-like phenotypes caused by circadian rhythm disruption. The findings highlight a critical role for circadian rhythms in neurodevelopment.
Collapse
Affiliation(s)
- Kun Fang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (K.F.); (B.Y.)
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
| | - Salil S. Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
| | - Bowen Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (K.F.); (B.Y.)
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
| | - Owen Y. Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Victor X. Jin
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (K.F.); (B.Y.)
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (D.L.); (S.S.P.); (J.L.); (R.K.); (O.Y.C.)
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Abdul F, Sreenivas N, Kommu JVS, Banerjee M, Berk M, Maes M, Leboyer M, Debnath M. Disruption of circadian rhythm and risk of autism spectrum disorder: role of immune-inflammatory, oxidative stress, metabolic and neurotransmitter pathways. Rev Neurosci 2021; 33:93-109. [PMID: 34047147 DOI: 10.1515/revneuro-2021-0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.
Collapse
Affiliation(s)
- Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - John Vijay Sagar Kommu
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Moinak Banerjee
- Human Molecular Genetics Division, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum, 695014, Kerala, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Michael Maes
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Pathum Wan, Pathum Wan District, Bangkok, 10330, Thailand.,Department of Psychiatry, Medical University of Plovdiv, bul. "Vasil Aprilov" 15A, 4002 Tsetar, Plovdiv, Bulgaria
| | - Marion Leboyer
- Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires "H. Mondor", DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, 8, rue du Général Sarrail, 94010, Creteil, France
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| |
Collapse
|
12
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
13
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
14
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
15
|
Pinato L, Galina Spilla CS, Markus RP, da Silveira Cruz-Machado S. Dysregulation of Circadian Rhythms in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4379-4393. [DOI: 10.2174/1381612825666191102170450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Background:
The alterations in neurological and neuroendocrine functions observed in the autism
spectrum disorder (ASD) involves environmentally dependent dysregulation of neurodevelopment, in interaction
with multiple coding gene defects. Disturbed sleep-wake patterns, as well as abnormal melatonin and glucocorticoid
secretion, show the relevance of an underlying impairment of the circadian timing system to the behavioral
phenotype of ASD. Thus, understanding the mechanisms involved in the circadian dysregulation in ASD could
help to identify early biomarkers to improve the diagnosis and therapeutics as well as providing a significant
impact on the lifelong prognosis.
Objective:
In this review, we discuss the organization of the circadian timing system and explore the connection
between neuroanatomic, molecular, and neuroendocrine responses of ASD and its clinical manifestations. Here
we propose interconnections between circadian dysregulation, inflammatory baseline and behavioral changes in
ASD. Taking into account, the high relevancy of melatonin in orchestrating both circadian timing and the maintenance
of physiological immune quiescence, we raise the hypothesis that melatonin or analogs should be considered
as a pharmacological approach to suppress inflammation and circadian misalignment in ASD patients.
Strategy:
This review provides a comprehensive update on the state-of-art of studies related to inflammatory
states and ASD with a special focus on the relationship with melatonin and clock genes. The hypothesis raised
above was analyzed according to the published data.
Conclusion:
Current evidence supports the existence of associations between ASD to circadian dysregulation,
behavior problems, increased inflammatory levels of cytokines, sleep disorders, as well as reduced circadian
neuroendocrine responses. Indeed, major effects may be related to a low melatonin rhythm. We propose that
maintaining the proper rhythm of the circadian timing system may be helpful to improve the health and to cope
with several behavioral changes observed in ASD subjects.
Collapse
Affiliation(s)
- Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Caio Sergio Galina Spilla
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Regina Pekelmann Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Ibaraki K, Hamada N, Iwamoto I, Ito H, Kawamura N, Morishita R, Tabata H, Nagata KI. Expression Analyses of POGZ, A Responsible Gene for Neurodevelopmental Disorders, during Mouse Brain Development. Dev Neurosci 2019; 41:139-148. [DOI: 10.1159/000502128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022] Open
Abstract
POGZ is a heterochromatin protein 1 α-binding protein and regulates gene expression. On the other hand, accumulating pieces of evidence indicate that the POGZ gene abnormalities are involved in various neurodevelopmental disorders. In this study, we prepared a specific antibody against POGZ, anti-POGZ, and carried out biochemical and morphological characterization with mouse brain tissues. Western blotting analyses revealed that POGZ is expressed strongly at embryonic day 13 and then gradually decreased throughout the brain development process. In immunohistochemical analyses, POGZ was found to be enriched in cerebrocortical and hippocampal neurons in the early developmental stage. The nuclear expression was also detected in Purkinje cells in cerebellum at postnatal day (P)7 and P15 but disappeared at P30. In primary cultured hippocampal neurons, while POGZ was distributed mainly in the nucleus, it was also visualized in axon and dendrites with partial localization at synapses in consistency with the results obtained in biochemical fractionation analyses. The obtained results suggest that POGZ takes part in the regulation of synaptic function as well as gene expression during brain development.
Collapse
|
17
|
Noda M, Iwamoto I, Tabata H, Yamagata T, Ito H, Nagata KI. Role of Per3, a circadian clock gene, in embryonic development of mouse cerebral cortex. Sci Rep 2019; 9:5874. [PMID: 30971765 PMCID: PMC6458147 DOI: 10.1038/s41598-019-42390-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/21/2019] [Indexed: 02/04/2023] Open
Abstract
Per3 is one of the primary components of circadian clock system. While circadian dysregulation is known to be involved in the pathogenesis of several neuropsychiatric diseases. It remains largely unknown whether they participate in embryonic brain development. Here, we examined the role of clock gene Per3 in the development of mouse cerebral cortex. In situ hybridization analysis revealed that Per3 is expressed in the developing mouse cortex. Acute knockdown of Per3 with in utero electroporation caused abnormal positioning of cortical neurons, which was rescued by RNAi-resistant Per3. Per3-deficient cells showed abnormal migration phenotypes, impaired axon extension and dendritic arbor formation. Taken together, Per3 was found to play a pivotal role in corticogenesis via regulation of excitatory neuron migration and synaptic network formation.
Collapse
Affiliation(s)
- Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
18
|
Sema3A - mediated modulation of NR1D1 expression may be involved in the regulation of axonal guidance signaling by the microbiota. Life Sci 2019; 223:54-61. [DOI: 10.1016/j.lfs.2019.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 01/13/2023]
|
19
|
Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, Dell'Osso L. Systematic Review of Sleep Disturbances and Circadian Sleep Desynchronization in Autism Spectrum Disorder: Toward an Integrative Model of a Self-Reinforcing Loop. Front Psychiatry 2019; 10:366. [PMID: 31244687 PMCID: PMC6581070 DOI: 10.3389/fpsyt.2019.00366] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background: A compelling number of studies, conducted in both children and adults, have reported an association between sleep disturbances/circadian sleep alterations and autism spectrum disorder (ASD); however, the data are sparse and the nature of this link is still unclear. The present review aimed to systematically collect the literature data relevant on sleep disturbances and circadian sleep dysrhythmicity related to ASD across all ages and to provide an integrative theoretical framework of their association. Methods: A systematic review of the MEDLINE, PubMed, and Cochrane databases was conducted from November 2018 to February 2019. The search strategies used were MeSH headings and keywords for "sleep-wake circadian rhythms" OR "circadian sleep disorders" OR "sleep-wake pattern" OR "sleep disorders" OR "melatonin" AND "autism spectrum disorder" OR "autism". Results: One hundred and three studies were identified, 15 regarded circadian sleep dysrhythmicity, 74 regarded sleep disturbances, and 17 regarded melatonin alterations in children and adults with ASD. Our findings suggested that autistic subjects frequently present sleep disturbances in particular short sleep duration, low sleep quality/efficiency, and circadian sleep desynchronization such as delayed phases and/or eveningness. Sleep disturbances and circadian sleep alterations have been related to the severity of autistic symptoms. Genetic studies have shown polymorphisms in circadian CLOCK genes and in genes involved in melatonin pathways in subjects with ASD. Conclusions: Sleep disturbances and circadian sleep alterations are frequent in subjects with autistic symptoms. These subjects have shown polymorphisms in clock genes expression and in genes involved in melatonin production. The impairment of circadian sleep regulation may increase the individual's vulnerability to develop symptoms of ASD by altering the sleep regulation in toto, which plays a key role in normal brain development. Even though controversies and "research gaps" are present in literature at this point, we may hypothesize a bidirectional relation between circadian sleep dysfunction and ASD. In particular, circadian sleep dysrhythmicity may predispose to develop ASD symptoms and vice versa within a self-reinforcing feedback loop. By targeting sleep disturbances and circadian sleep dysrhythmicity, we may improve treatment strategies for both children and adults with ASD.
Collapse
Affiliation(s)
- Claudia Carmassi
- Department of Clinical and Experimental Medicine, Psychiatry Division, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Psychiatry Division, University of Pisa, Pisa, Italy
| | - Danila Caruso
- Department of Clinical and Experimental Medicine, Psychiatry Division, University of Pisa, Pisa, Italy
| | - Isabella Masci
- Department of Clinical and Experimental Medicine, Psychiatry Division, University of Pisa, Pisa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genova, Italy.,Department of Neuroscience-Rehabilitation-Ophthalmology-Genetics-Child and Maternal Health (DINOGMI), University of Genova, Genova, Italy
| | - Antonio Vita
- Psychiatry Division, Department of Clinical and Experimental Medicine, University of Brescia, Brescia, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Psychiatry Division, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Zhao C, Gammie SC. The circadian gene Nr1d1 in the mouse nucleus accumbens modulates sociability and anxiety-related behaviour. Eur J Neurosci 2018; 48:1924-1943. [PMID: 30028550 DOI: 10.1111/ejn.14066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Nuclear receptor subfamily 1, group D, member 1 (Nr1d1) (also known as Rev-erb alpha) has been linked to circadian rhythm regulation, mood-related behaviour and disorders associated with social deficits. Recent work from our laboratory found striking decreases in Nr1d1 in the nucleus accumbens (NAc) in the maternal condition and indirect evidence that Nr1d1 was interacting with numerous addiction and reward-related genes to modulate social reward. In this study, we applied our insights from the maternal state to nonparental adult mice to determine whether decreases in Nr1d1 expression in the NAc via adeno-associated viral (AAV) vectors and short hairpin RNA (shRNA)-mediated gene knockdown were sufficient to modulate social behaviours and mood-related behaviours. Knockdown of Nr1d1 in the NAc enhanced sociability and reduced anxiety, but did not affect depressive-like traits in female mice. In male mice, Nr1d1 knockdown had no significant behavioural effects. Microarray analysis of Nr1d1 knockdown in females identified changes in circadian rhythm and histone deacetylase genes and suggested possible drugs, including histone deacetylase inhibitors, that could mimic actions of Nr1d1 knockdown. Quantitative real-time PCR (qPCR) analysis confirmed expression upregulation of gene period circadian clock 1 (Per1) and period circadian clock 2 (Per2) with Nr1d1 knockdown. The evidence for roles for opioid-related genes opioid receptor, delta 1 (Oprd1) and preproenkephalin (Penk) was also found. Together, these results suggest that Nr1d1 in the NAc modulates sociability and anxiety-related behaviour in a sex-specific manner, and circadian, histone deacetylase and opioid-related genes may be involved in the expression of these behavioural phenotypes.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
21
|
Berto S, Nowick K. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex. Genome Biol Evol 2018; 10:2023-2036. [PMID: 30059966 PMCID: PMC6105097 DOI: 10.1093/gbe/evy149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
The human prefrontal cortex (PFC) differs from that of other primates with respect to size, histology, and functional abilities. Here, we analyzed genome-wide expression data of humans, chimpanzees, and rhesus macaques to discover evolutionary changes in transcription factor (TF) networks that may underlie these phenotypic differences. We determined the co-expression networks of all TFs with species-specific expression including their potential target genes and interaction partners in the PFC of all three species. Integrating these networks allowed us inferring an ancestral network for all three species. This ancestral network as well as the networks for each species is enriched for genes involved in forebrain development, axonogenesis, and synaptic transmission. Our analysis allows us to directly compare the networks of each species to determine which links have been gained or lost during evolution. Interestingly, we detected that most links were gained on the human lineage, indicating increase TF cooperativity in humans. By comparing network changes between different tissues, we discovered that in brain tissues, but not in the other tissues, the human networks always had the highest connectivity. To pinpoint molecular changes underlying species-specific phenotypes, we analyzed the sub-networks of TFs derived only from genes with species-specific expression changes in the PFC. These sub-networks differed significantly in structure and function between the human and chimpanzee. For example, the human-specific sub-network is enriched for TFs implicated in cognitive disorders and for genes involved in synaptic plasticity and cognitive functions. Our results suggest evolutionary changes in TF networks that might have shaped morphological and functional differences between primate brains, in particular in the human PFC.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany.,Faculty for Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
22
|
Torres M, Becquet D, Franc JL, François-Bellan AM. Circadian processes in the RNA life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1467. [PMID: 29424086 DOI: 10.1002/wrna.1467] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Manon Torres
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Denis Becquet
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Franc
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
23
|
Fontenot MR, Berto S, Liu Y, Werthmann G, Douglas C, Usui N, Gleason K, Tamminga CA, Takahashi JS, Konopka G. Novel transcriptional networks regulated by CLOCK in human neurons. Genes Dev 2017; 31:2121-2135. [PMID: 29196536 PMCID: PMC5749161 DOI: 10.1101/gad.305813.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Fontenot et al. show that CLOCK regulates the expression of genes involved in neuronal migration. Dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function.
Collapse
Affiliation(s)
- Miles R Fontenot
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gordon Werthmann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Connor Douglas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
24
|
Hamada N, Iwamoto I, Tabata H, Nagata KI. MUNC18-1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun 2017; 5:92. [PMID: 29191246 PMCID: PMC5709915 DOI: 10.1186/s40478-017-0498-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/19/2017] [Indexed: 12/03/2022] Open
Abstract
While Munc18–1 interacts with Syntaxin1 and controls the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex to regulate presynaptic vesicle fusion in developed neurons, this molecule is likely to be involved in brain development since its gene abnormalities cause early infantile epileptic encephalopathy with suppression-burst (Ohtahara syndrome), neonatal epileptic encephalopathy and other neurodevelopmental disorders. We thus analyzed physiological significance of Munc18–1 during cortical development. Munc18–1-knockdown impaired cortical neuron positioning during mouse corticogenesis. Time-lapse imaging revealed that the mispositioning was attributable to defects in radial migration in the intermediate zone and cortical plate. Notably, Syntaxin1A was critical for radial migration downstream of Munc18–1. As for the underlying mechanism, Munc18–1-knockdown in cortical neurons hampered post-Golgi vesicle trafficking and subsequent vesicle fusion at the plasma membrane in vivo and in vitro, respectively. Notably, Syntaxin1A-silencing did not affect the post-Golgi vesicle trafficking. Taken together, Munc18–1 was suggested to regulate radial migration by modulating not only vesicle fusion at the plasma membrane to distribute various proteins on the cell surface for interaction with radial fibers, but also preceding vesicle transport from Golgi to the plasma membrane. Although knockdown experiments suggested that Syntaxin1A does not participate in the vesicle trafficking, it was supposed to regulate subsequent vesicle fusion under the control of Munc18–1. These observations may shed light on the mechanism governing radial migration of cortical neurons. Disruption of Munc18–1 function may result in the abnormal corticogenesis, leading to neurodevelopmental disorders with MUNC18–1 gene abnormalities.
Collapse
|
25
|
Geoffray MM, Nicolas A, Speranza M, Georgieff N. Are circadian rhythms new pathways to understand Autism Spectrum Disorder? ACTA ACUST UNITED AC 2017. [PMID: 28625682 DOI: 10.1016/j.jphysparis.2017.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes.
Collapse
Affiliation(s)
- M-M Geoffray
- Department of Child and Adolescent Psychiatry, Centre Hospitalier le Vinatier, Lyon, France.
| | - A Nicolas
- Unité d'exploration Hypnologique, Service Hospitalo-Universitaire de Psychiatrie, Centre Hospitalier spécialisé Le Vinatier, Lyon, France
| | - M Speranza
- Department of Child and Adolescent Psychiatry, Hospital of Versailles, France
| | - N Georgieff
- Department of Child and Adolescent Psychiatry, Centre Hospitalier le Vinatier, Lyon, France
| |
Collapse
|
26
|
Autism spectrum disorder-associated genes and the development of dentate granule cells. Med Mol Morphol 2017; 50:123-129. [PMID: 28534217 DOI: 10.1007/s00795-017-0161-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe clinical symptoms such as the deficiency of the social communication, repetitive and stereotyped behaviors, and restricted interests. Although complex genetic and environmental factors are thought to contribute to the development of ASD, the precise etiologies are largely unknown. Neuroanatomical observations have been made of developmental abnormalities in different brain regions, including dentate gyrus of hippocampus, which is widely accepted as the center for learning and memory. However, little is known about what roles ASD-associated genes play in the development of hippocampal dentate granule cells. In this article, we summarized functions and pathophysiological significance of 6 representative ASD-associated genes, SEMA5A, PTEN, NLGN, EN-2, FMR1, and MECP2, by focusing on the development of dentate gyrus. We then introduced a recently developed gene transfer method directed to neonatal dentate granule cells. This new method will be useful for elucidating physiological as well as pathophysiological significance of ASD-associated genes in the development of hippocampal formation.
Collapse
|