1
|
Manchanda P, Kaur H, Khan F, Sidhu GS, Hunjan MS, Chhuneja P, Bains NS. RETRACTED ARTICLE: Agroinfiltration-based transient genome editing for targeting phytoene desaturase gene in kinnow mandarin (C. reticulata Blanco). Mol Biotechnol 2025; 67:91. [PMID: 38041775 DOI: 10.1007/s12033-023-00980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Pooja Manchanda
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Harleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Faishal Khan
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mandeep S Hunjan
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Navtej S Bains
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
2
|
Sebiani-Calvo A, Hernández-Soto A, Hensel G, Gatica-Arias A. Crop genome editing through tissue-culture-independent transformation methods. Front Genome Ed 2024; 6:1490295. [PMID: 39703881 PMCID: PMC11655202 DOI: 10.3389/fgeed.2024.1490295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel in vitro tissue culture methodologies for efficient plant genetic transformation. In-planta methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement. The in-planta transformation methods can be categorized under the definition of means of plant genetic transformation with no or minimal tissue culture steps meeting the conditions for minimal steps: short duration with a limited number of transfers, high technical simplicity, limited list of hormones, and that the regeneration does not undergo callus development. In this review, we analyzed over 250 articles. We identified studies that follow an in-planta transformation methodology for delivering CRISPR/Cas9 components focusing on crop plants, as model species have been previously reviewed in detail. This approach has been successfully applied for genome editing in crop plants: camelina, cotton, lemon, melon, orange, peanut, rice, soybean, and wheat. Overall, this study underscores the importance of in-planta methodologies in overcoming the limitations of tissue culture and advancing the field of plant genome editing.
Collapse
Affiliation(s)
- Alejandro Sebiani-Calvo
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Alejandro Hernández-Soto
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Cartago, Costa Rica
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute for Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrés Gatica-Arias
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
3
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Yin K, Chung MY, Lan B, Du FK, Chung MG. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol 2024; 25:279. [PMID: 39449103 PMCID: PMC11515576 DOI: 10.1186/s13059-024-03399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous plant taxa are threatened by habitat destruction or overexploitation. To overcome these threats, new methods are urgently needed for rescuing threatened and endangered plant species. Here, we review the genetic consequences of threats to species populations. We highlight potential advantages of genome editing for mitigating negative effects caused by new pathogens and pests or climate change where other approaches have failed. We propose solutions to protect threatened plants using genome editing technology unless absolutely necessary. We further discuss the challenges associated with genome editing in plant conservation to mitigate the decline of plant diversity.
Collapse
Affiliation(s)
- Kangquan Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Bo Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Myong Gi Chung
- Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
5
|
Saleem MS, Khan SH, Ahmad A, Rana IA, Naveed ZA, Khan AI. The 4Fs of cotton: genome editing of cotton for fiber, food, feed, and fuel to achieve zero hunger. Front Genome Ed 2024; 6:1401088. [PMID: 39328243 PMCID: PMC11424549 DOI: 10.3389/fgeed.2024.1401088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cotton is globally known for its high-priority cellulose-rich natural fiber. In addition to providing fiber for the textile industry, it is an important source material for edible oil, livestock feed, and fuel products. Global warming and the growing population are the major challenges to the world's agriculture and the potential risks to food security. In this context, improving output traits in cotton is necessary to achieve sustainable cotton production. During the last few years, high throughput omics techniques have aided in identifying crucial genes associated with traits of cotton fiber, seed, and plant architecture which could be targeted with more precision and efficiency through the CIRPSR/Cas-mediated genome editing technique. The various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/nCas9, and CRISPR/Cas12a have been employed to edit cotton genes associated with a wide range of traits including fiber length, flowering, leaf colour, rooting, seed oil, plant architecture, gossypol content, somatic embryogenesis, and biotic and abiotic stresses tolerance, highlighting its effectiveness in editing the cotton genome. Thus, CRISPR/Cas-mediated genome editing has emerged as a technique of choice to tailor crop phenotypes for better yield potential and environmental resilience. The review covers a comprehensive analysis of cotton phenotypic traits and their improvement with the help of the latest genome editing tools to improve fiber, food, feed, and fuel-associated genes of cotton to ensure food security.
Collapse
Affiliation(s)
- Muhammad Sulyman Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zunaira Afzal Naveed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azeem Iqbal Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Wang P, Abbas M, He J, Zhou L, Cheng H, Guo H. Advances in genome sequencing and artificially induced mutation provides new avenues for cotton breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1400201. [PMID: 39015293 PMCID: PMC11250495 DOI: 10.3389/fpls.2024.1400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Cotton production faces challenges in fluctuating environmental conditions due to limited genetic variation in cultivated cotton species. To enhance the genetic diversity crucial for this primary fiber crop, it is essential to augment current germplasm resources. High-throughput sequencing has significantly impacted cotton functional genomics, enabling the creation of diverse mutant libraries and the identification of mutant functional genes and new germplasm resources. Artificial mutation, established through physical or chemical methods, stands as a highly efficient strategy to enrich cotton germplasm resources, yielding stable and high-quality raw materials. In this paper, we discuss the good foundation laid by high-throughput sequencing of cotton genome for mutant identification and functional genome, and focus on the construction methods of mutant libraries and diverse sequencing strategies based on mutants. In addition, the important functional genes identified by the cotton mutant library have greatly enriched the germplasm resources and promoted the development of functional genomes. Finally, an innovative strategy for constructing a cotton CRISPR mutant library was proposed, and the possibility of high-throughput screening of cotton mutants based on a UAV phenotyping platform was discussed. The aim of this review was to expand cotton germplasm resources, mine functional genes, and develop adaptable materials in a variety of complex environments.
Collapse
Affiliation(s)
- Peilin Wang
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhan He
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Lili Zhou
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiming Guo
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, Zainuddin Z, Samsulrizal NH. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice. Mol Biol Rep 2023; 50:9353-9366. [PMID: 37819494 DOI: 10.1007/s11033-023-08842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming. METHODS AND RESULTS In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants. CONCLUSION This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.
Collapse
Affiliation(s)
- Amin-Asyraf Tamizi
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Anis Afuza Md-Yusof
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
| | - Nurul Asyikin Mohd-Zim
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
- FGV R&D Sdn. Bhd, FGV Innovation Centre, PT 23417 Lengkuk Teknologi, 71760, Bandar Enstek, Negeri Sembilan, Malaysia
| | - Nazrul Hisham Nazaruddin
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Rogayah Sekeli
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia.
| | - Zarina Zainuddin
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
- Plant Productivity and Sustainable Resource Unit, Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia
| | - Nurul Hidayah Samsulrizal
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia.
- Plant Productivity and Sustainable Resource Unit, Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200, Kuantan, Pahang, Malaysia.
| |
Collapse
|
8
|
Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K, Zlatković M, Hensel G, Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. TRENDS IN PLANT SCIENCE 2023; 28:1144-1165. [PMID: 37331842 DOI: 10.1016/j.tplants.2023.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Biosciences and Bioresources (IBBR), Portici, Italy; CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jana Murovec
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Justyna Boniecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon E Bull
- Molecular Plant Breeding, Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland; Plant Biochemistry, Institute of Molecular Plant Biology, ETH, Zurich, Switzerland
| | - Tom Eeckhaut
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium
| | | | - Vladislava Galovic
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Anna Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tjaša Lukan
- National Institute of Biology, Department of Biotechnology and Systems Biology, Ljubljana, Slovenia
| | - Isabel Mafra
- Rede de Química e Tecnologia (REQUIMTE) Laboratório Associado para a Química Verde (LAQV), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute, National Research Institute, Błonie, Poland
| | - Musa Kavas
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Alessandro Nicolia
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Justyna Nowakowska
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Laszlo Sági
- Centre for Agricultural Research, Loránd Eötvös Research Network, Martonvásár, Hungary
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Milica Zlatković
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Goetz Hensel
- Heinrich-Heine-University, Institute of Plant Biochemistry, Centre for Plant Genome Engineering, Düsseldorf, Germany; Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katrijn Van Laere
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium.
| |
Collapse
|
9
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Mainkar P, Manape TK, Satheesh V, Anandhan S. CRISPR/Cas9-mediated editing of PHYTOENE DESATURASE gene in onion ( Allium cepa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1226911. [PMID: 37701798 PMCID: PMC10494252 DOI: 10.3389/fpls.2023.1226911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023]
Abstract
Introduction Clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) is a precise genome editing tool used to introduce genetic modifications in a wide range of crop species. Thus far, there is no report of CRISPR/Cas9-mediated genome editing in onions (Allium cepa L.). Methods In the present study, we targeted two exons of the gene coding for Phytoene desaturase (AcPDS) in onion cv. Bhima Super. The sgRNA-carrying constructs were co-cultivated with 8-week-old embryogenic calli using an Agrobacterium-mediated transformation protocol and incubated on the media without hygromycin B selection. Results and discussion Out of the total 617 co-cultivated calli, 21 (3.4%) regenerated shoots exhibited three distinct phenotypes: albino, chimeric, and pale green; in comparison to the wild-type non-transformed regenerated shoots. Total chlorophyll content was drastically reduced in albino shoots and significantly decreased in chimeric shoots. Out of the six Cas9 gene PCR-confirmed regenerated shoots, two exhibited the albino phenotype due to insertions/deletions (InDels) and substitution-based mutations in and around the AcPDS target sites. Deep amplicon sequencing revealed a significantly variable InDel frequency between two sgRNAs, ranging from 1.2% to 63.4%, along with a 53.4% substitution frequency. The mutation of the AcPDS gene generated a visually detectable albino phenotype, thus confirming the successful editing of the AcPDS gene. This is the first time a CRISPR/Cas9-mediated genome editing protocol has been successfully established in onion, with the AcPDS gene serving as an example. This study will provide the necessary momentum for researchers to further basic and applied research on onions.
Collapse
Affiliation(s)
- Pawan Mainkar
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | | | - Viswanathan Satheesh
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
11
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
12
|
Das J, Kumar S, Mishra DC, Chaturvedi KK, Paul RK, Kairi A. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system. Front Genet 2023; 13:1085332. [PMID: 36699447 PMCID: PMC9868961 DOI: 10.3389/fgene.2022.1085332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
CRISPR-Cas9 system is one of the recent most used genome editing techniques. Despite having a high capacity to alter the precise target genes and genomic regions that the planned guide RNA (or sgRNA) complements, the off-target effect still exists. But there are already machine learning algorithms for people, animals, and a few plant species. In this paper, an effort has been made to create models based on three machine learning-based techniques [namely, artificial neural networks (ANN), support vector machines (SVM), and random forests (RF)] for the prediction of the CRISPR-Cas9 cleavage sites that will be cleaved by a particular sgRNA. The plant dataset was the sole source of inspiration for all of these machine learning-based algorithms. 70% of the on-target and off-target dataset of various plant species that was gathered was used to train the models. The remaining 30% of the data set was used to evaluate the model's performance using a variety of evaluation metrics, including specificity, sensitivity, accuracy, precision, F1 score, F2 score, and AUC. Based on the aforementioned machine learning techniques, eleven models in all were developed. Comparative analysis of these produced models suggests that the model based on the random forest technique performs better. The accuracy of the Random Forest model is 96.27%, while the AUC value was found to be 99.21%. The SVM-Linear, SVM-Polynomial, SVM-Gaussian, and SVM-Sigmoid models were trained, making a total of six ANN-based models (ANN1-Logistic, ANN1-Tanh, ANN1-ReLU, ANN2-Logistic, ANN2-Tanh, and ANN-ReLU) and Support Vector Machine models (SVM-Linear, SVM-Polynomial, SVM-Gaussian However, the overall performance of Random Forest is better among all other ML techniques. ANN1-ReLU and SVM-Linear model performance were shown to be better among Artificial Neural Network and Support Vector Machine-based models, respectively.
Collapse
Affiliation(s)
- Jutan Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sanjeev Kumar,
| | | | | | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amit Kairi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Zhou L, Wang Y, Wang P, Wang C, Wang J, Wang X, Cheng H. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1059404. [PMID: 36643290 PMCID: PMC9832336 DOI: 10.3389/fpls.2022.1059404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
CRIPSR/Cas9 gene editing system is an effective tool for genome modification in plants. Multiple target sites are usually designed and the effective target sites are selected for editing. Upland cotton (Gossypium hirsutum L., hereafter cotton) is allotetraploid and is commonly considered as difficult and inefficient to transform, it is important to select the effective target sites that could result in the ideal transgenic plants with the CRISPR-induced mutations. In this study, Agrobacterium rhizogenes-mediated hairy root method was optimized to detect the feasibility of the target sites designed in cotton phytoene desaturase (GhPDS) gene. A. rhizogenes showed the highest hairy root induction (30%) when the bacteria were cultured until OD600 reached to 0.8. This procedure was successfully applied to induce hairy roots in the other three cultivars (TM-1, Lumian-21, Zhongmian-49) and the mutations were detected in GhPDS induced by CRISPR/Cas9 system. Different degrees of base deletions at two sgRNAs (sgRNA5 and sgRNA10) designed in GhPDS were detected in R15 hairy roots. Furthermore, we obtained an albino transgenic cotton seeding containing CRISPR/Cas9-induced gene editing mutations in sgRNA10. The hairy root transformation system established in this study is sufficient for selecting sgRNAs in cotton, providing a technical basis for functional genomics research of cotton.
Collapse
Affiliation(s)
- Lili Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiamin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
14
|
Lei J, Li Y, Dai P, Liu C, Zhao Y, You Y, Qu Y, Chen Q, Liu X. Efficient virus-mediated genome editing in cotton using the CRISPR/Cas9 system. FRONTIERS IN PLANT SCIENCE 2022; 13:1032799. [PMID: 36466231 PMCID: PMC9709312 DOI: 10.3389/fpls.2022.1032799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Plant virus-mediated sgRNA delivery and expression have great advantages; sgRNA expression can rapidly expand and accumulate along with virus replication and movement, resulting in efficient gene editing efficiency. In this study, a VIGE system based on cotton leaf crumple virus (CLCrV) was established using cotton overexpressing Cas9 (Cas9-OE) as the VIGE receptor. CLCrV-mediated VIGE could not only target and knock out the GhMAPKKK2, GhCLA1 and GhPDS genes subgroup A and D genome sequences but also achieve double mutation of GhCLA1 and GhPDS genes at the same time. These results verified the effectiveness and efficiency of this system. In addition, the off-target effect assay demonstrated that the CLCrV-mediated VIGE system not only has high gene editing efficiency but also high gene editing specificity in cotton. We further explored whether the FT-sgRNA strategy could transport sgRNA to cotton apical meristem (SAM) over long distances to avoid using tissue culture to obtain stable genetic mutants. The results showed that the sgRNA fused with FT mRNA at the 5' end could also efficiently achieve targeted editing of endogenous genes in cotton, but it was difficult to detect heritable mutant progeny. The above results showed that the CLCrV-mediated VIGE system provided an accurate and rapid validation tool for screening effective sgRNAs in cotton.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, Urumqi, China
| | - Yue Li
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Peihong Dai
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Chao Liu
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yi Zhao
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yangzi You
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, Urumqi, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, Urumqi, China
| | - Xiaodong Liu
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
15
|
Zhao Z, Qi Y, Yang Z, Cheng L, Sharif R, Raza A, Chen P, Hou D, Li Y. Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.). Mol Biol Rep 2022; 49:11481-11490. [PMID: 36057005 DOI: 10.1007/s11033-022-07558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUNDS The narrow genetic basis of cucumber makes breeding of this species difficult. CRISPR/Cas9 system is characteristic of simple design, low cost and high efficiency, which has opened a new path for cucumber functional genetics and the development of cucumber mocular breeding. However, the immature genetic transformation system is the main limiting factor for applying this technology in cucumber. METHODS AND RESULTS In this study, a Histochemical β-glucuronidase (GUS) assay was used to analyze the effect of various parameters, including slight scratch of explants, pre-culture time, acetosyringone (AS) concentration, infection time in Agrobacterium solution, and co-culture period on the transformation efficiency. The results showed that the explants slightly scratched after cutting, pre-cultured for 1 day, Agrobacterium bacterial solution containing AS, and 20 min length of infection could significantly increase the GUS staining rate of explants. On this basis, two sequences with high specificity (sgRNA-1 and sgRNA-2) targeted different loci of gene CsGCN5 were designed. The corresponding vectors Cas9-sgRNA-1 and Cas9-sgRNA-2 were constructed and transformed using the above-optimized cucumber genetic transformation system, and three and two PCR positive lines were obtained from 210 and 207 explants, respectively. No sequence mutation at target loci of CsGCN5 was detected in the Cas9-sgRNA-1 transformed three PCR positive lines. However, one mutant line with targeted homozygous change was recognized from the Cas9-sgRNA-2 transformed two PCR positive lines. CONCLUSION In this study, 2.4‰ of total explants had directed mutation in the CsGCN5 gene. The results in the present study would be beneficial to further optimize and improve the efficiency of the genetic transformation of cucumber.
Collapse
Affiliation(s)
- Ziyao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaguang Qi
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhimin Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liyu Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
17
|
Miladinovic D, Antunes D, Yildirim K, Bakhsh A, Cvejić S, Kondić-Špika A, Marjanovic Jeromela A, Opsahl-Sorteberg HG, Zambounis A, Hilioti Z. Targeted plant improvement through genome editing: from laboratory to field. PLANT CELL REPORTS 2021; 40:935-951. [PMID: 33475781 PMCID: PMC8184711 DOI: 10.1007/s00299-020-02655-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/20/2020] [Indexed: 05/19/2023]
Abstract
This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.
Collapse
Affiliation(s)
| | | | - Kubilay Yildirim
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuzmayıs University, Samsun, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | | | | | | - Antonios Zambounis
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Naoussa, Greece
| | - Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.
| |
Collapse
|
18
|
Numan M, Serba DD, Ligaba-Osena A. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Genes (Basel) 2021; 12:genes12050739. [PMID: 34068886 PMCID: PMC8156724 DOI: 10.3390/genes12050739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Millets are important cereal crops cultivated in arid and semiarid regions of the world, particularly Africa and southeast Asia. Climate change has triggered multiple abiotic stresses in plants that are the main causes of crop loss worldwide, reducing average yield for most crops by more than 50%. Although millets are tolerant to most abiotic stresses including drought and high temperatures, further improvement is needed to make them more resilient to unprecedented effects of climate change and associated environmental stresses. Incorporation of stress tolerance traits in millets will improve their productivity in marginal environments and will help in overcoming future food shortage due to climate change. Recently, approaches such as application of plant growth-promoting rhizobacteria (PGPRs) have been used to improve growth and development, as well as stress tolerance of crops. Moreover, with the advance of next-generation sequencing technology, genome editing, using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system are increasingly used to develop stress tolerant varieties in different crops. In this paper, the innate ability of millets to tolerate abiotic stresses and alternative approaches to boost stress resistance were thoroughly reviewed. Moreover, several stress-resistant genes were identified in related monocots such as rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), and other related species for which orthologs in millets could be manipulated by CRISPR/Cas9 and related genome-editing techniques to improve stress resilience and productivity. These cutting-edge alternative strategies are expected to bring this group of orphan crops at the forefront of scientific research for their potential contribution to global food security.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
| | - Desalegn D. Serba
- USDA-ARS, U. S. Arid-Land Agricultural Research Center, 21881 N Cardon Ln., Maricopa, AZ 85138, USA;
| | - Ayalew Ligaba-Osena
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
- Correspondence:
| |
Collapse
|
19
|
Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, Shah DA, Rahman H, Ahmed T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol Biotechnol 2021; 63:557-568. [PMID: 33893996 DOI: 10.1007/s12033-021-00328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan.
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Karim Gul
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Daud Ali Shah
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. PLANT METHODS 2021; 17:20. [PMID: 33596981 PMCID: PMC7890912 DOI: 10.1186/s13007-021-00719-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The virus-induced genome editing (VIGE) system can be used to quickly identify gene functions and generate knock-out libraries as an alternative to the virus-induced gene silencing (VIGS). Although plant virus-mediated VIGE has been shown to have great application prospects, edited genes cannot be transferred to the next generations using this system, as viruses cannot enter into shoot apical meristem (SAM) in plants. RESULTS We developed a novel cotton leaf crumple virus (CLCrV)-mediated VIGE system designed to target BRI1, GL2, PDS genes, and GUS transgene in A. thaliana by transforming Cas9 overexpression (Cas9-OE) A. thaliana. Given the deficiency of the VIGE system, ProYao::Cas9 and Pro35S::Cas9 A. thaliana were transformed by fusing 102 bp FT mRNAs with sgRNAs so as to explore the function of Flowering Locus T (FT) gene in delivering sgRNAs into SAM, thus avoiding tissue culture and stably acquiring heritable mutant offspring. Our results showed that sgRNAs fused with FT mRNA at the 5' end (FT strategy) effectively enabled gene editing in infected plants and allowed the acquisition of mutations heritable by the next generation, with an efficiency of 4.35-8.79%. In addition, gene-edited offspring by FT-sgRNAs did not contain any components of the CLCrV genome. CONCLUSIONS FT strategy can be used to acquire heritable mutant offspring avoiding tissue culture and stable transformation based on the CLCrV-mediated VIGE system in A. thaliana.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Peihong Dai
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Yue Li
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Wanqi Zhang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Guantong Zhou
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Chao Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Xiaodong Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China.
| |
Collapse
|
21
|
Zhang Y, Restall J, Crisp P, Godwin I, Liu G. Current status and prospects of plant genome editing in Australia. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2021; 57:574-583. [PMID: 34054265 PMCID: PMC8143062 DOI: 10.1007/s11627-021-10188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 05/22/2023]
Abstract
Plant genome editing, particularly CRISPR-Cas biotechnologies, has rapidly evolved and drawn enormous attention all around the world in the last decade. The cutting-edge technologies have had substantial impact on precise genome editing for manipulating gene expression, stacking gene mutations, and improving crop agronomic traits. Following the global trends, investigations on CRISPR-Cas have been thriving in Australia, especially in agriculture sciences. Importantly, CRISPR-edited plants, classified as SDN-1 organisms (SDN: site-directed nuclease), have been given a green light in Australia, with regulatory bodies indicating they will not be classified as a genetically modified organism (GMO) if no foreign DNA is present in an edited plant. As a result, genome-edited products would not attract the onerous regulation required for the introduction of a GMO, which could mean more rapid deployment of new varieties and products that could be traded freely in Australia, and potentially to export markets. In the present review, we discuss the current status and prospects of plant genome editing in Australia by highlighting several species of interest. Using these species as case studies, we discuss the priorities and potential of plant genome editing, as well as the remaining challenges.
Collapse
Affiliation(s)
- Yan Zhang
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Jemma Restall
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Peter Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ian Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
22
|
Abstract
Energy security and climate change have cascading effects on the world's burgeoning population in terms of food security, environment, and sustainability. Due to depletion of fossil fuels and undesirable changes of climatic conditions, increase in air and water pollution, mankind started exploring alternate and sustainable means of meeting growing energy needs. One of the options is to use renewable sources of fuel-biofuel. In this chapter the authors have reviewed and presented sustainability impact on production of biofuels. Authors further reviewed state-of-the-art gene editing technologies toward improvement of biofuel crops. The authors recommend a phased transition from first-generation biofuel, and an acceleration toward use of technology to drive adoption of second-generation biofuels. Key aspects of technology and application of resource management models will enable these crops to bridge the global energy demand before we can completely transition to a more sustainable biofuel economy.
Collapse
|
23
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
24
|
Hernández-Hernández V, Benítez M, Boudaoud A. Interplay between turgor pressure and plasmodesmata during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:768-777. [PMID: 31563945 DOI: 10.1093/jxb/erz434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Plasmodesmata traverse cell walls, generating connections between neighboring cells. They allow intercellular movement of molecules such as transcription factors, hormones, and sugars, and thus create a symplasmic continuity within a tissue. One important factor that determines plasmodesmal permeability is their aperture, which is regulated during developmental and physiological processes. Regulation of aperture has been shown to affect developmental events such as vascular differentiation in the root, initiation of lateral roots, or transition to flowering. Extensive research has unraveled molecular factors involved in the regulation of plasmodesmal permeability. Nevertheless, many plant developmental processes appear to involve feedbacks mediated by mechanical forces, raising the question of whether mechanical forces and plasmodesmal permeability affect each other. Here, we review experimental data on how one of these forces, turgor pressure, and plasmodesmal permeability may mutually influence each other during plant development, and we discuss the questions raised by these data. Addressing such questions will improve our knowledge of how cellular patterns emerge during development, shedding light on the evolution of complex multicellular plants.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología & Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| |
Collapse
|
25
|
Zlobin NE, Lebedeva MV, Taranov VV. CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020; 40:153-168. [PMID: 31903793 DOI: 10.1080/07388551.2019.1709795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the application of CRISPR/Cas9 plant genome editing using alternative transformation methods is discussed. Genome editing by the CRISPR/Cas9 system is usually implemented via the generation of transgenic plants carrying Cas9 and sgRNA genes in the genome. Transgenic plants are usually developed by in vitro regeneration from single transformed cells, which requires using different in vitro culture-based methods. Despite their common application, these methods have some disadvantages and limitations. Thus, some methods of plant transformation that do not depend on in vitro regeneration have been developed. These methods are known as "in planta" transformation. The main focus of this review is the so-called floral dip in planta transformation method, although other approaches are also described. The main features of in planta transformation in the context of CRISPR/Cas9 genome editing are discussed. Furthermore, multiple ways to increase the effectiveness of this approach and to broaden its use in different plant species are considered.
Collapse
Affiliation(s)
- Nikolay E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| |
Collapse
|
26
|
Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:45-56. [PMID: 31116473 PMCID: PMC6920158 DOI: 10.1111/pbi.13168] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
The base-editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum-Base Editor 3 (GhBE3) base-editing system has been developed to create single-base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32-GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an 'editing window', approximately six-nucleotide windows of -17 to -12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off-target sites predicted by CRISPR-P and Cas-OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole-genome sequencing analyses on two GhCLA-edited and one wild-type plants with about 100× depth showed that no bona fide off-target mutations were detectable from 1500 predicted potential off-target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.
Collapse
Affiliation(s)
- Lei Qin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jianying Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Lin Sun
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Guanyin Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hangping Rui
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huimei Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tianliang Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
27
|
Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. TRENDS IN PLANT SCIENCE 2019; 24:1102-1125. [PMID: 31727474 DOI: 10.1016/j.tplants.2019.09.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 05/20/2023]
Abstract
Genome editing (GE) has revolutionized biological research through the new ability to precisely edit the genomes of living organisms. In recent years, various GE tools have been explored for editing simple and complex genomes. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has widely been used in GE due to its high efficiency, ease of use, and accuracy. It can be used to add desirable and remove undesirable alleles simultaneously in a single event. Here, we discuss various applications of CRISPR/Cas9 in a range of important crops, compare it with other GE tools, and review its mechanism, limitations, and future possibilities. Various newly emerging CRISPR/Cas systems, including base editing (BE), xCas9, and Cas12a (Cpf1), are also considered.
Collapse
Affiliation(s)
- Hakim Manghwar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.
| |
Collapse
|
28
|
Hooghvorst I, López-Cristoffanini C, Nogués S. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep 2019; 9:17077. [PMID: 31745156 PMCID: PMC6863862 DOI: 10.1038/s41598-019-53710-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9 system has been widely applied in many plant species to induce mutations in the genome for studying gene function and improving crops. However, to our knowledge, there is no report of CRISPR/Cas9-mediated genome editing in melon (Cucumis melo). In our study, phytoene desaturase gene of melon (CmPDS) was selected as target for the CRISPR/Cas9 system with two designed gRNAs, targeting exons 1 and 2. A construct (pHSE-CmPDS) carrying both gRNAs and the Cas9 protein was delivered by PEG-mediated transformation in protoplasts. Mutations were detected in protoplasts for both gRNAs. Subsequently, Agrobacterium-mediated transformation of cotyledonary explants was carried out, and fully albino and chimeric albino plants were successfully regenerated. A regeneration efficiency of 71% of transformed plants was achieved from cotyledonary explants, a 39% of genetic transformed plants were successful gene edited, and finally, a 42–45% of mutation rate was detected by Sanger analysis. In melon protoplasts and plants most mutations were substitutions (91%), followed by insertions (7%) and deletions (2%). We set up a CRISPR/Cas9-mediated genome editing protocol which is efficient and feasible in melon, generating multi-allelic mutations in both genomic target sites of the CmPDS gene showing an albino phenotype easily detectable after only few weeks after Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Isidre Hooghvorst
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, España. .,ROCALBA S.A., c/Barcelona 15, PO BOX 156, 17001, Girona, España.
| | - Camilo López-Cristoffanini
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, España
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028, Barcelona, España
| |
Collapse
|
29
|
Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 2019; 8:E1386. [PMID: 31689989 PMCID: PMC6912757 DOI: 10.3390/cells8111386] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-editing, a recent technological advancement in the field of life sciences, is one of the great examples of techniques used to explore the understanding of the biological phenomenon. Besides having different site-directed nucleases for genome editing over a decade ago, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) based genome editing approach has become a choice of technique due to its simplicity, ease of access, cost, and flexibility. In the present review, several CRISPR/Cas based approaches have been discussed, considering recent advances and challenges to implicate those in the crop improvement programs. Successful examples where CRISPR/Cas approach has been used to improve the biotic and abiotic stress tolerance, and traits related to yield and plant architecture have been discussed. The review highlights the challenges to implement the genome editing in polyploid crop plants like wheat, canola, and sugarcane. Challenges for plants difficult to transform and germline-specific gene expression have been discussed. We have also discussed the notable progress with multi-target editing approaches based on polycistronic tRNA processing, Csy4 endoribonuclease, intron processing, and Drosha ribonuclease. Potential to edit multiple targets simultaneously makes it possible to take up more challenging tasks required to engineer desired crop plants. Similarly, advances like precision gene editing, promoter bashing, and methylome-editing will also be discussed. The present review also provides a catalog of available computational tools and servers facilitating designing of guide-RNA targets, construct designs, and data analysis. The information provided here will be useful for the efficient exploration of technological advances in genome editing field for the crop improvement programs.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics University of Minnesota, St. Paul, MN 55108-6026, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics; Informatics Institute; Christopher S Bond Life Science Center, University of Missouri, Columbia, MO 65211-7310, USA.
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| |
Collapse
|
30
|
Mallett DR, Chang M, Cheng X, Bezanilla M. Efficient and modular CRISPR-Cas9 vector system for Physcomitrella patens. PLANT DIRECT 2019; 3:e00168. [PMID: 31523744 PMCID: PMC6739617 DOI: 10.1002/pld3.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA-guided nuclease to initiate double-strand breaks. Until recently, classical RAD51-mediated homologous recombination has been a powerful tool for gene targeting in the moss Physcomitrella patens. However, CRISPR-Cas9-mediated genome editing in P. patens was shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR-Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR-Cas9 genome editing in P. patens, here we describe the generation and use of a flexible and modular CRISPR-Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology-directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5' and 3' ends of gene coding regions. With regard to homology-directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a "stop codon cassette" with downstream near-effortless genotyping.
Collapse
Affiliation(s)
- Darren R. Mallett
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | - Mingqin Chang
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Plant Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusetts
| | - Xiaohang Cheng
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | | |
Collapse
|
31
|
Ahmad N, Rahman M, Mukhtar Z, Zafar Y, Zhang B. A critical look on CRISPR‐based genome editing in plants. J Cell Physiol 2019; 235:666-682. [DOI: 10.1002/jcp.29052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/12/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Mehboob‐ur Rahman
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Yusuf Zafar
- Pakistan Agriculture Research Council Islamabad Pakistan
| | - Baohong Zhang
- Department of Biology East Carolina University Greenville North Caroline
| |
Collapse
|
32
|
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol Biotechnol 2019; 61:153-172. [PMID: 30600447 DOI: 10.1007/s12033-018-0144-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Johni Debbarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Banashree Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India.
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
33
|
Wu W, Yang Y, Lei H. Progress in the application of CRISPR: From gene to base editing. Med Res Rev 2019; 39:665-683. [PMID: 30171624 DOI: 10.1002/med.21537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonucleases (Cas) has been utilized for genome editing with great accuracy and high efficiency in generating gene knockout, knockin, and point mutations in eukaryotic genomes. However, traditional CRISPR/Cas9 technology introduces double-stranded DNA breaks (DSBs) at a target locus as the first step to make gene corrections, which easily results in undesired mutations. Thus, it is necessary to develop new methods for correcting the unwanted mutations. In this review, we summarize the recent developments and a new approach to genome and base editing by using CRISPR/Cas9. This methodology renders a conversion of one target base into another, for example, C to T (or G to A), and A to G (or T to C) without producing DSBs, requiring a donor DNA template, or generating excessive insertions and deletions. Furthermore, CRISPR/Cas9-derived base editing also improves efficiency in repairing point mutations in the genome.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts
| | - Yanhui Yang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hetian Lei
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts
| |
Collapse
|
34
|
Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:110. [PMID: 30800139 PMCID: PMC6376315 DOI: 10.3389/fpls.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Dae Kwan Ko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
35
|
al Amin N, Ahmad N, Wu N, Pu X, Ma T, Du Y, Bo X, Wang N, Sharif R, Wang P. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L). BMC Biotechnol 2019; 19:9. [PMID: 30691438 PMCID: PMC6350355 DOI: 10.1186/s12896-019-0501-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent innovation in the field of genome engineering encompasses numerous levels of plant genome engineering which attract the substantial excitement of plant biologist worldwide. RNA-guided CRISPR Cas9 system has appeared a promising tool in site-directed mutagenesis due to its innovative utilization in different branches of biology. CRISPR-Cas9 nuclease system have supersedes all previously existed strategies and their associated pitfalls encountered with site-specific mutagenesis. RESULTS Here we demonstrated an efficient sequence specific integration/mutation of FAD2-2 gene in soybean using CRISPR-Cas9 nuclease system. A single guided RNA sequence was designed with the help of a number of bioinformatics tools aimed to target distinct sites of FAD2-2 loci in soybean. The binary vector (pCas9-AtU6-sgRNA) has been successfully transformed into soybean cotyledon using Agrobacterium tumafacien. Taken together our findings complies soybean transgenic mutants subjected to targeted mutation were surprisingly detected in our target gene. Furthermore, the detection of Cas9 gene, BAR gene, and NOS terminator were carried out respectively. Southern blot analysis confirmed the stable transformation of Cas9 gene into soybean. Real time expression with qRT-PCR and Sanger sequencing analysis confirmed the efficient CRISPR-Cas9/sgRNA induced mutation within the target sequence of FAD2-2 loci. The integration of FAD2-2 target region in the form of substitution, deletions and insertions were achieved with notably high frequency and rare off-target mutagenesis. CONCLUSION High frequent mutation efficiency was recorded as 21% out of all transgenic soybean plants subjected to targeted mutagenesis. Furthermore, Near-infrared spectroscopy (NIR) indicates the entire fatty acid profiling obtained from the mutants seeds of soybean. A considerable modulation in oleic acid content up to (65.58%) whereas the least level of linoleic acid is (16.08%) were recorded. Based on these finding CRISPR-Cas9 system can possibly sum up recent development and future challenges in producing agronomically important crops.
Collapse
Affiliation(s)
- Noor al Amin
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Naveed Ahmad
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical, Development Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Nan Wu
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Xiumin Pu
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Tong Ma
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yeyao Du
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Xiaoxue Bo
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Nan Wang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Rahat Sharif
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Piwu Wang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
36
|
Zhu S, Yu X, Li Y, Sun Y, Zhu Q, Sun J. Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System. Int J Mol Sci 2018; 19:E3000. [PMID: 30275376 PMCID: PMC6213220 DOI: 10.3390/ijms19103000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing system has been shown to be able to induce highly efficient mutagenesis in the targeted DNA of many plants, including cotton, and has become an important tool for investigation of gene function and crop improvement. Here, we developed a simple and easy to operate CRISPR/Cas9 system and demonstrated its high editing efficiency in cotton by targeting-ALARP, a gene encoding alanine-rich protein that is preferentially expressed in cotton fibers. Based on sequence analysis of the target site in the 10 transgenic cottons containing CRISPR/Cas9, we found that the mutation frequencies of GhALARP-A and GhALARP-D target sites were 71.4⁻100% and 92.9⁻100%, respectively. The most common editing event was deletion, but deletion together with large insertion was also observed. Mosaic mutation editing events were detected in most transgenic plants. No off-target mutation event was detected in any the 15 predicted sites analyzed. This study provided mutants for further study of the function of GhALARP in cotton fiber development. Our results further demonstrated the feasibility of use of CRISPR/Cas9 as a targeted mutagenesis tool in cotton, and provided an efficient tool for targeted mutagenesis and functional genomics in cotton.
Collapse
Affiliation(s)
- Shouhong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xiuli Yu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Yuqiang Sun
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310016, Zhejiang, China.
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
37
|
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, Ye W. Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na 2CO 3 Stress Tolerance. Sci Rep 2018; 8:13527. [PMID: 30202076 PMCID: PMC6131252 DOI: 10.1038/s41598-018-31668-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/23/2018] [Indexed: 11/29/2022] Open
Abstract
As an important source of fiber and edible oil, cotton has great economic value. In comparison to their individual studies, association and differentiation between salt and alkaline tolerance has not been focused yet by scientists. We have used next-generation RNA-Seq technique to analyze transcriptional changes under salt and alkaline stresses in cotton. Overall, 25,929 and 6,564 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Gene functional annotation showed that genes involving ionic homeostasis were significantly up-regulated under NaCl stress and Na2CO3 stress, and genes enriched in starch and sucrose metabolism were up-regulated under NaOH stress and Na2CO3 stress. Furthermore, a synergistic enhancing effect between NaCl and NaOH stress was also observed in this study. Likewise, our studies indicate further that genes related with starch and sucrose metabolism were regulated to respond to the high pH under Na2CO3 stress, inducing plant hormone signal transduction and key enzyme reactive oxygen species (ROS) activity to respond to ionic toxicity and intracellular ionic homeostasis. By analyzing the expression profiles of diverse tissues under different salt and alkaline stresses, this study provides valuable ideas for genetic improvements of cotton tolerance to salt-alkaline stress.
Collapse
Affiliation(s)
- Binglei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Xiaomin Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Anyang, 455000, Henan, China.
| |
Collapse
|
38
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018; 8:336. [PMID: 30073121 PMCID: PMC6056351 DOI: 10.1007/s13205-018-1355-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B. Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M. Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K. Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M. Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
39
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018. [PMID: 30073121 DOI: 10.1007/s13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
40
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018; 9:985. [PMID: 30065734 PMCID: PMC6056666 DOI: 10.3389/fpls.2018.00985] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | | | | | | | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
41
|
Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. MOLECULAR PLANT PATHOLOGY 2018; 19:1624-1638. [PMID: 29098751 PMCID: PMC6637994 DOI: 10.1111/mpp.12635] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/27/2017] [Indexed: 05/04/2023]
Abstract
Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xiaowen He
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong 271018China
| | - Yuzhen Li
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| |
Collapse
|
42
|
Khan MHU, Khan SU, Muhammad A, Hu L, Yang Y, Fan C. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. J Cell Physiol 2018; 233:4578-4594. [PMID: 29194606 DOI: 10.1002/jcp.26299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems.
Collapse
Affiliation(s)
| | - Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Muhammad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Limin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Zhang Z, Ge X, Luo X, Wang P, Fan Q, Hu G, Xiao J, Li F, Wu J. Simultaneous Editing of Two Copies of Gh14-3-3d Confers Enhanced Transgene-Clean Plant Defense Against Verticillium dahliae in Allotetraploid Upland Cotton. FRONTIERS IN PLANT SCIENCE 2018; 9:842. [PMID: 30013582 PMCID: PMC6036271 DOI: 10.3389/fpls.2018.00842] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
Gossypium hirsutum is an allotetraploid species, meaning that mutants that are difficult to be generated by classical approaches due to gene redundancy. The CRISPR/Cas9 genome editing system is a robust and highly efficient tool for generating target gene mutants, by which the genes of interest may be functionally dissected and applied through genotype-to-phenotype approaches. In this study, the CRISPR/Cas9 genome editing system was developed in G. hirsutum through editing the Gh14-3-3d gene. In T0 transgenic plants, lots of insertions and deletions (indels) in Gh14-3-3d at the expected target site were detected in the allotetraploid cotton At or Dt subgenomes. The results of the PCR, T7EI digestion and sequencing analyses showed that the indels in Gh14-3-3d gene can be stably transmitted to the next generation. Additionally, the indels in the At and Dt subgenomes were segregated in the T1 transgenic plants following Mendelian law, independing on the T-DNA segregation. Two homozygous Gh14-3-3d-edited plants free of T-DNA were chosen by PCR and sequencing assays in the T1 plants, which were called transgene-clean editing plants and were designated ce1 and ce2 in the T2 lines showed higher resistance to Verticillium dahliae infestation compared to the wild-type plants. Thus, the two transgene-clean edited lines can be used as a germplasm to breed disease-resistant cotton cultivars, possibly avoiding complex and expensive safety assessments of the transgenic plants.
Collapse
Affiliation(s)
- Zhennan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoli Luo
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Peng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiang Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang Hu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juanli Xiao
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, Jiahe Wu,
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fuguang Li, Jiahe Wu,
| |
Collapse
|
44
|
Li H, Li K, Guo Y, Guo J, Miao K, Botella JR, Song CP, Miao Y. A transient transformation system for gene characterization in upland cotton ( Gossypium hirsutum). PLANT METHODS 2018; 14:50. [PMID: 29977323 PMCID: PMC6013946 DOI: 10.1186/s13007-018-0319-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genetically modified cotton accounts for 64% of the world's cotton growing area (22.3 million hectares). The genome sequencing of the diploid cotton progenitors Gossypium raimondii and Gossypium arboreum as well as the cultivated Gossypium hirsutum has provided a wealth of genetic information that could be exploited for crop improvement. Unfortunately, gene functional characterization in cotton is lagging behind other economically important crops due to the low efficiency, lengthiness and technical complexity of the available stable transformation methods. We present here a simple, fast and efficient method for the transient transformation of G. hirsutum that can be used for gene characterization studies. RESULTS We developed a transient transformation system for gene characterization in upland cotton. Using β-glucuronidase as a reporter for Agrobacterium-mediated transformation assays, we evaluated multiple transformation parameters such as Agrobacterium strain, bacterial density, length of co-cultivation, chemicals and surfactants, which can affect transformation efficiency. After the initial characterization, the Agrobacterium EHA105 strain was selected and a number of binary constructs used to perform gene characterization studies. 7-days-old cotton seedlings were co-cultivated with Agrobacterium and transient gene expression was observed 5 days after infection of the plants. Transcript levels of two different transgenes under the control of the cauliflower mosaic virus (CaMV) 35S promoter were quantified by real-time reverse transcription PCR (qRT-PCR) showing a 3-10 times increase over the levels observed in non-infected controls. The expression patterns driven by the promoters of two G. hirsutum genes as well as the subcellular localization of their corresponding proteins were studied using the new transient expression system and our observations were consistent with previously published results using Arabidopsis as a heterologous system. CONCLUSIONS The Agrobacterium-mediated transient transformation method is a fast and easy transient expression system enabling high transient expression and transformation efficiency in upland cotton seedlings. Our method can be used for gene functional studies such as promoter characterization and protein subcellular localization in cotton, obviating the need to perform such studies in a heterologous system such as Arabidopsis.
Collapse
Affiliation(s)
- Haipeng Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yutao Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Kaiting Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Life Science, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Jose R. Botella
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD Australia
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001 China
| |
Collapse
|
45
|
Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR, Song CP. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. PLANT METHODS 2018; 14:85. [PMID: 30305839 PMCID: PMC6169012 DOI: 10.1186/s13007-018-0353-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND When developing CRISPR/Cas9 systems for crops, it is crucial to invest time characterizing the genome editing efficiency of the CRISPR/Cas9 cassettes, especially if the transformation system is difficult or time-consuming. Cotton is an important crop for the production of fiber, oil, and biofuel. However, the cotton stable transformation is usually performed using Agrobacterium tumefaciens taking between 8 and 12 months to generate T0 plants. Furthermore, cotton is a heterotetraploid and targeted mutagenesis is considered to be difficult as many genes are duplicated in this complex genome. The application of CRISPR/Cas9 in cotton is severely hampered by the long and technically challenging genetic transformation process, making it imperative to maximize its efficiency. RESULTS In this study, we provide a new system to evaluate and validate the efficiency of CRISPR/Cas9 cassettes in cotton using a transient expression system. By using this system, we could select the most effective CRISPR/Cas9 cassettes before the stable transformation. We have also optimized the existing cotton CRISPR/Cas9 system to achieve vastly improved mutagenesis efficiency by incorporating an endogenous GhU6 promoter that increases sgRNA expression levels over the Arabidopsis AtU6-29 promoter. The 300 bp GhU6.3 promoter was cloned and validated using the transient expression system. When sgRNAs were expressed under the control of the GhU6.3 promoter in CRISPR/Cas9 cassettes, expression levels were 6-7 times higher than those provided by the AtU6-29 promoter and CRISPR/Cas9-mediated mutation efficiency was improved 4-6 times. CONCLUSIONS This study provides essential improvements to maximize CRISPR/Cas9-mediated mutation efficiency by reducing risk and workload for the application of CRISPR/Cas9 approaches in the targeted mutagenesis of cotton.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Li-Pan Hou
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Yu-Chen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Jose Ramon Botella
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| |
Collapse
|
46
|
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. FRONTIERS IN PLANT SCIENCE 2018; 9:617. [PMID: 29868073 PMCID: PMC5952327 DOI: 10.3389/fpls.2018.00617] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 05/19/2023]
Abstract
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Collapse
Affiliation(s)
- Effi Haque
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Md. Mahmudul Hassan
- Division of Genetics, Genomics and Development School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Pankaj Bhowmik
- National Research Council of Canada, Saskatoon, SK, Canada
| | - M. Rezaul Karim
- Department of Biotechnology and Genetic Engineering Jahangirnagar University Savar, Dhaka, Bangladesh
| | - Magdalena Śmiech
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, United States
| | - Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Extension Service, West Virginia University, Morgantown, WV, United States
- *Correspondence: Tofazzal Islam
| |
Collapse
|
47
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30065734 DOI: 10.3389/fpls.2018.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Karthikeyan Ramasamy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
48
|
Genome sequencing brought Gossypium biology research into a new era. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1463-1466. [PMID: 29285713 DOI: 10.1007/s11427-017-9233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
|
49
|
Wu Z, Yang Y, Huang G, Lin J, Xia Y, Zhu Y. Cotton functional genomics reveals global insight into genome evolution and fiber development. J Genet Genomics 2017; 44:511-518. [PMID: 29169921 DOI: 10.1016/j.jgg.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
Due to the economic value of natural textile fiber, cotton has attracted much research attention, which has led to the publication of two diploid genomes and two tetraploid genomes. These big data facilitate functional genomic study in cotton, and allow researchers to investigate cotton genome structure, gene expression, and protein function on the global scale using high-throughput methods. In this review, we summarized recent studies of cotton genomes. Population genomic analyses revealed the domestication history of cultivated upland cotton and the roles of transposable elements in cotton genome evolution. Alternative splicing of cotton transcriptomes was evaluated genome-widely. Several important gene families like MYC, NAC, Sus and GhPLDα1 were systematically identified and classified based on genetic structure and biological function. High-throughput proteomics also unraveled the key functional proteins correlated with fiber development. Functional genomic studies have provided unprecedented insights into global-scale methods for cotton research.
Collapse
Affiliation(s)
- Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Yang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Lin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuying Xia
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
50
|
Arora L, Narula A. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2017; 8:1932. [PMID: 29167680 PMCID: PMC5682324 DOI: 10.3389/fpls.2017.01932] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.
Collapse
Affiliation(s)
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| |
Collapse
|