1
|
Chang J, Wang X, Li S, Zheng Z, Li G, Wang X, Kaplan DL. Tailoring Silk Fibroin-Based Hydrogels for Enhanced Corneal Epithelial Repair. ACS Biomater Sci Eng 2025. [PMID: 40340337 DOI: 10.1021/acsbiomaterials.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The therapeutic potential of silk fibroin (SF) and hyaluronic acid (HA) composite hydrogels for corneal epithelial wound healing was assessed, focusing on the molecular weight of SF related to outcomes. Initially, SF of varying molecular weights was analyzed, and a medium molecular weight (M-SF; 10-72 kDa, average 40 kDa) was identified as most effective in promoting cell proliferation, attachment, and migration in various assays. A hydrogel formulation, H-SF/HA gel@M-SF, was then developed by incorporating M-SF (10-72 kDa, average 40 kDa) into a base hydrogel composed of high molecular weight SF (H-SF; 18-100 kDa, average 60 kDa) and HA. The physicochemical properties of the hydrogels, including pH balance, extensibility, and swelling rate, were characterized. The biological functions of the hydrogels were evaluated by using human corneal epithelial (HCE-T) cells and a mouse corneal injury model. H-SF/HA gel@M-SF exhibited supported enhanced expression of key genes associated with corneal repair, such as NOTCH I, GSK3β, ACTG, and VCL when compared with a serum-free medium. In vivo studies using mice demonstrated that H-SF/HA gel@M-SF achieved complete wound closure within 48 h, outperforming the H-SF/HA gel. These results underscore the significance of the SF molecular weight and concentration in hydrogel design and highlight the potential of H-SF/HA gel@M-SF for ophthalmic applications.
Collapse
Affiliation(s)
- Jingjing Chang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xinyi Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Sijie Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Gong B, Liu Y, Li H, Ju X, Li D, Zou Y, Guo X, Dong K, Xiao J, Wu W, Chai R, Zhang R, Yu M. A Silk Fibroin Nanoparticle Hydrogel Loaded With NK1R Antagonist Has Synergistic Anti-Inflammatory and Reparative Effects on Dry Eye Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404835. [PMID: 39985258 PMCID: PMC12005769 DOI: 10.1002/advs.202404835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Dry eye disease (DED) is a multifactorial illness affecting tears and the ocular surface. The neurokinin 1 receptor (NK1R) is a target for controlling T helper 17 (Th17) and regulatory T cell (Treg) imbalances. This work creates a silk fibroin (SF) nanoparticle hydrogel that targets NK1R with CP-99,994 (CP). Combining CP and SF to generate stable nanoparticles while integrating a flexible hydrogel material results in a sustained-release ophthalmic drop formulation (SF@CP@Gel), which provides a long-lasting ocular formulation with anti-inflammatory and reparative properties. SF@CP@Gel could maintain a stable CP concentration for 25 h with detectable biological activity. The cell counting kit-8 and 2,7-DHL-DA results reveal that SF@CP@Gel has no cytotoxic effect on human corneal epithelial cells (HCECs) and decreases the reactive oxygen species level in oxidatively damaged HCECs. Cell scratch assays demonstrate that SF@CP@Gel can greatly increase HCEC migration and proliferation within 24 h. Furthermore, in vivo therapy with topical SF@CP@Gel twice daily markedly reduce clinical symptoms by reducing the amount of pathogenic Th17 cells while efficiently restoring Treg activity. In summary, this work reveals that SF@CP@Gel might attenuate DED by inhibiting NK1R-mediated SP signaling and thereby modulating the Th17/Treg ratio, a potential anti-inflammatory and repair treatment method for DED.
Collapse
Affiliation(s)
- Bo Gong
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Yi Liu
- Department of OphthalmologyDeyang People's HospitalDeyang618000China
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Huan Li
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Department of OphthalmologyDeyang People's HospitalDeyang618000China
| | - Xueming Ju
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Dongfeng Li
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Yuhao Zou
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Xiaoxin Guo
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Kai Dong
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Jialing Xiao
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Weijia Wu
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of Medicine, Advanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Ruifan Zhang
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Man Yu
- Department of OphthalmologySichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| |
Collapse
|
3
|
Lawrence BD, Karpecki PM, Infanger DW, Levy B. Silk-Derived Protein-4 Versus Vehicle Control in Treating Patients With Moderate to Severe Dry Eye Disease: A Randomized Clinical Trial. Am J Ophthalmol 2025; 269:315-326. [PMID: 39218389 DOI: 10.1016/j.ajo.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE In this study the safety and efficacy of silk-derived protein 4 (SDP-4), also known as amlisimod, eye drops against a vehicle control formulation in patients with moderate to severe dry eye disease (DED) was assessed. SDP-4 is a novel, naturally derived, anti-inflammatory wetting agent that enhances coating on the ocular surface. DESIGN Exploratory Phase 2, 12- and 8-week, serial cohort, multicenter, double-masked, randomized, vehicle-controlled study. METHODS In the first cohort (N = 305), patients were randomized 1:1:1:1 to SDP-4 (0.1%, 1%, 3% wt./wt.) or vehicle control and dosed 2 times per day (BID), while in the second cohort patients were randomized 1:1 with 1% wt./wt. SDP-4, the best performing formulation from the first cohort, or vehicle control BID (N = 151). Diagnosed DED patients were treated in the United States between April 2019 and May 2021. The first cohort of subjects had moderate to severe baseline symptoms, while the second cohort had moderate baseline symptoms to study the impact of baseline symptoms on SDP-4 performance. Key sign and symptom end points were mean change from baseline in TBUT and total SANDE score (0-100 visual analog scale) throughout the study. RESULTS SDP-4 (1%) significantly increased TBUT vs the vehicle control (P < .05) at days 28 and 56 in the first cohort, and patient symptomatology from baseline was reduced by 46% based on subject reported SANDE VAS scores at day 84. Patients with more severe baseline DED symptoms experienced a significantly greater amount of relief than when compared to patients with moderate DED (P < .05). All treatment groups were well tolerated with a 2.6% total discontinuation rate. CONCLUSIONS To the best of our knowledge, this was the first-in-human use of SDP-4 in a clinical trial. SDP-4 is a first-in-class protein ingredient that offers a safe and multi-modal treatment approach for alleviating severe DED symptoms within a novel formulation.
Collapse
Affiliation(s)
- Brian D Lawrence
- From the Silk Technologies, Ltd. (B.D.L., D.W.I.), Maple Grove, Minnesota, USA.
| | | | - David W Infanger
- From the Silk Technologies, Ltd. (B.D.L., D.W.I.), Maple Grove, Minnesota, USA
| | - Brian Levy
- University of Rochester Medical Center (B.L.), Rochester, New York, USA
| |
Collapse
|
4
|
Zhu J, Du Y, Backman LJ, Chen J, Ouyang H, Zhang W. Cellular Interactions and Biological Effects of Silk Fibroin: Implications for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409739. [PMID: 39668424 DOI: 10.1002/smll.202409739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Silk fibroin (SF), the core structural protein derived from Bombyx mori silk, is extensively employed in tissue engineering and regenerative medicine due to its exceptional mechanical properties, favorable biocompatibility, tunable biodegradability, and versatile processing capabilities. Despite these advantages, current research predominantly focuses on SF biomaterials as structural scaffolds or drug carriers, often overlooking their potential role in modulating cellular behavior and tissue regeneration. This review aims to present a comprehensive overview of the inherent biological effects of SF biomaterials, independent of any exogenous biomolecules, and their implications for various tissue regeneration. It will cover in vitro cellular interactions of SF with various cell types, including stem cells and functional tissue cells such as osteoblasts, chondrocytes, keratinocytes, endothelial cells, fibroblasts, and epithelial cells. Moreover, it will summarize in vivo immune responses, cellular responses, and tissue regeneration following SF implantation, specifically focusing on vascular, bone, skin, cartilage, ocular, and tendon/ligament regeneration. Furthermore, it will address current limitations and future perspectives in the design of bioactive SF biomaterials. A comprehensive understanding of these cellular interactions and the biological effects of SF is crucial for predicting regenerative outcomes with precision and for designing SF-based biomaterials tailored to specific properties, enabling broader applications in regenerative medicine.
Collapse
Affiliation(s)
- Jialin Zhu
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Yan Du
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, 90187, Sweden
| | - Jialin Chen
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| | - Hongwei Ouyang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Zhang
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| |
Collapse
|
5
|
Majumder N, Bhattacharjee M, Spagnoli GC, Ghosh S. Immune response profiles induced by silk-based biomaterials: a journey from 'immunogenicity' towards 'immuno-compatibility. J Mater Chem B 2024; 12:9508-9523. [PMID: 39225012 DOI: 10.1039/d4tb01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Silk is a widely accepted biomaterial for tissue regeneration owing to its tunable biomechanical properties and ease of chemical modification. However, a number of aspects associated with its clinical use are still debated. Indeed, to achieve clinical success, a biomaterial must favorably interact with host tissues without evoking local or systemic immuno-inflammatory responses. The analysis of immune responses associated with silk under in vitro and in vivo conditions provides useful insights, improving the understanding of the functional characteristics of silk biomaterials and further promoting their clinical application. Silk evokes moderate immune responses upon implantation in vivo, depending on the material structure, fabrication method, degradation time, and implantation in soft or hard tissue sites, which rapidly subside within a few days/weeks. In vitro studies indicate that its immune-stimulatory properties are largely due to inherent protein conformation and differential processing parameters. Strategically controlled levels of immune responses in vivo with marginal immunogenicity of silk-based biomaterials may contribute to matrix remodeling and replacement by native tissue matrix around the implanted site. Therefore, immunomodulatory strategies should be developed to promote the use of silk-based biomaterials as promising candidates for numerous clinical applications.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Maumita Bhattacharjee
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Giulio C Spagnoli
- National Research Council Institute of Translational Pharmacology, Rome, Italy
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
6
|
Rana I, Deepa, Aslam M, Ranjan KR, Singh P, Kumari K. A review on the use of composites of a natural protein, silk fibroin with Mxene/carbonaceous materials in biomedical science. Int J Biol Macromol 2024; 278:135101. [PMID: 39227275 DOI: 10.1016/j.ijbiomac.2024.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.
Collapse
Affiliation(s)
- Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Deepa
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
7
|
Egan G, Hannah AJ, Donnelly S, Connolly P, Seib FP. The Biologically Active Biopolymer Silk: The Antibacterial Effects of Solubilized Bombyx mori Silk Fibroin with Common Wound Pathogens. Adv Biol (Weinh) 2024; 8:e2300115. [PMID: 38411381 DOI: 10.1002/adbi.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 12/22/2023] [Indexed: 02/28/2024]
Abstract
Antibacterial properties are desirable in wound dressings. Silks, among many material formats, have been investigated for use in wound care. However, the antibacterial properties of liquid silk are poorly understood. The aim of this study is to investigate the inherent antibacterial properties of a Bombyx mori silk fibroin solution. Silk fibroin solutions containing ≥ 4% w/v silk fibroin do not support the growth of two common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. When liquid silk is added to a wound pad and placed on inoculated culture plates mimicking wound fluid, silk is bacteriostatic. Viability tests of the bacterial cells in the presence of liquid silk show that cells remain intact within the silk but could not be cultured. Liquid silk appears to provide a hostile environment for S. aureus and P. aeruginosa and inhibits growth without disrupting the cell membrane. This effect can be beneficial for wound healing and supports future healthcare applications for silk. This observation also indicates that liquid silk stored prior to processing is unlikely to experience microbial spoilage.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Aiden J Hannah
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Sean Donnelly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Branch Bioresources, Fraunhofer Institute for Molecular Biology & Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
- Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| |
Collapse
|
8
|
Evaluation of the effect of process parameters on the protein content of silk fibroin. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Wani SUD, Masoodi MH, Gautam SP, Shivakumar HG, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers (Basel) 2022; 14:5475. [PMID: 36559842 PMCID: PMC9788421 DOI: 10.3390/polym14245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Silk is a wonderful biopolymer that has a long history of medical applications. Surgical cords and medically authorised human analogues made of silk have a long history of use in management. We describe the use of silk in the treatment of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes. During this ancient art endeavour, a reduced engineering project that employed silk as a platform for medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this study explores the present usage of silk in ocular-based drug delivery. This paper also examines emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases and degenerations are developed, the trans-scleral route of drug delivery holds great promise for the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk are unveiled. This article finishes with a discussion on potential silk power, which adds to better ideas and enhanced ocular medicine delivery.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, Faculty of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Faculty of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | | | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Silk Fibroin-Induced Gadolinium-Functionalized Gold Nanoparticles for MR/CT Dual-Modal Imaging-Guided Photothermal Therapy. J Funct Biomater 2022; 13:jfb13030087. [PMID: 35893455 PMCID: PMC9326592 DOI: 10.3390/jfb13030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
The development of multifunction nanoplatforms integrating accurate diagnosis and efficient therapy is of great significance for the precise treatment of tumors. Gold nanoparticles (AuNPs) possessing hallmark features of computed tomography (CT) imaging and photothermal conversion capability hold great potential in tumor theranostics. In this study, taking the advantages of outstanding biocompatibility, interesting anti-inflammatory and immunomodulatory properties, and abundant amino acid residues of silk fibroin (SF), a multifunctional Gd-hybridized AuNP nanoplatform was constructed using SF as a stabilizer and reductant via a facile one-pot biomimetic method, denoted as Gd:AuNPs@SF. The obtained Gd:AuNPs@SF possessed fascinating biocompatibility and excellent photothermal conversion efficiency. Functionalized with Gd, Gd:AuNPs@SF exhibited super tumor-contrasted imaging performance in magnetic resonance (MR) and CT imaging modalities. Moreover, Gd:AuNPs@SF, with strong NIR absorbance, demonstrated that it could effectively kill tumor cells in vitro, and was also proved to successfully ablate tumor tissues through MR/CT imaging-guided photothermal therapy (PTT) without systemic toxicity in Pan02 xenograft C57BL/6 mouse models. We successfully synthesized Gd:AuNPs@SF for MR/CT dual-mode imaging-guided PTT via a facile one-pot biomimetic method, and this biomimetic strategy can also be used for the construction of other multifunction nanoplatforms, which is promising for precise tumor theranostics.
Collapse
|
11
|
Egan G, Phuagkhaopong S, Matthew SAL, Connolly P, Seib FP. Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro response. Sci Rep 2022; 12:3729. [PMID: 35260610 PMCID: PMC8904773 DOI: 10.1038/s41598-022-07437-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Silk can be processed into a broad spectrum of material formats and is explored for a wide range of medical applications, including hydrogels for wound care. The current paradigm is that solution-stable silk fibroin in the hydrogels is responsible for their therapeutic response in wound healing. Here, we generated physically cross-linked silk fibroin hydrogels with tuned secondary structure and examined their ability to influence their biological response by leaching silk fibroin. Significantly more silk fibroin leached from hydrogels with an amorphous silk fibroin structure than with a beta sheet-rich silk fibroin structure, although all hydrogels leached silk fibroin. The leached silk was biologically active, as it induced vitro chemokinesis and faster scratch assay wound healing by activating receptor tyrosine kinases. Overall, these effects are desirable for wound management and show the promise of silk fibroin and hydrogel leaching in the wider healthcare setting.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
12
|
Rahman MM, Kim DH, Park CK, Kim YH. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. Int J Mol Sci 2021; 22:12102. [PMID: 34830010 PMCID: PMC8622350 DOI: 10.3390/ijms222212102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Dry eye disease (DED) is one of the major ophthalmological healthcare challenges worldwide. DED is a multifactorial disease characterized by a loss of homeostasis of the tear film, and its main pathogenesis is chronic ocular surface inflammation related with various cellular and molecular signaling cascades. The animal model is a reliable and effective tool for understanding the various pathological mechanisms and molecular cascades in DED. Considerable experimental research has focused on developing new strategies for the prevention and treatment of DED. Several experimental models of DED have been developed, and different animal species such as rats, mice, rabbits, dogs, and primates have been used for these models. Although the basic mechanisms of DED in animals are nearly identical to those in humans, proper knowledge about the induction of animal models is necessary to obtain better and more reliable results. Various experimental models (in vitro and in vivo DED models) were briefly discussed in this review, along with pathologic features, analytical approaches, and common measurements, which will help investigators to use the appropriate cell lines, animal, methods, and evaluation parameters depending on their study design.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Dong Hyun Kim
- Gil Medical Center, Department of Ophthalmology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| |
Collapse
|
13
|
Zhang R, Pandzic E, Park M, Wakefield D, Di Girolamo N. Inducing dry eye disease using a custom engineered desiccation system: Impact on the ocular surface including keratin-14-positive limbal epithelial stem cells. Ocul Surf 2021; 21:145-159. [PMID: 33930539 DOI: 10.1016/j.jtos.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Dry eye disease (DED) is characterized by loss of tear film stability that becomes self-sustaining in a vicious cycle of pathophysiological events. Currently, desiccation stress (DS) is the dominant procedure for inducing DED in mice, however its' effect on limbal epithelial stem cells (LESCs) has been overlooked. This study aimed to establish a DS model via the use of a novel hardware to investigate the impact on the ocular surface including LESCs. METHODS A mouse transporter unit was customized to generate a dehumidified environment. C57BL/6J mice were exposed to mild DS and injected with scopolamine hydrobromide (SH) or remained untreated (UT) under standard vivarium conditions for 10 consecutive days (n = 28/group). Clinical assessments included phenol red tear-thread test, fluorescein staining and optical coherence tomography assessments. Histopathological and immunofluorescence was used to evaluate tissue architecture, goblet cell (GC) status, lacrimal gland (LG) inflammation and epithelial phenotype on the ocular surface. Whole flat-mounted corneas were immunostained for keratin-14 (K14), then imaged by confocal microscopy and analyzed computationally to investigate the effect of DS on LESCs. RESULTS Custom modifications made to the animal transporter unit resulted in dehumidified cage relative humidity (RH) of 43.5 ± 4.79% compared to the vivarium 53.9 ± 1.8% (p = 0.0243). Under these conditions, aqueous tear production in mice was suppressed whilst corneal permeability and corneal irregularity significantly increased. H&E staining indicated stressed corneal basal epithelial cells and increased desquamation. DS-exposed mice had reduced GC density (41.0 ± 5.10 GC/mm vs 46.9 ± 3.88 GC/mm, p = 0.0482) and LGs from these mice exhibited elevated CD4+ cell infiltration compared to controls. DS elicited K14+ epithelial cell displacement, as indicated by increased fluorescence signal at a distance of 50-100 μm radially inwards from the limbus [0.63 ± 0.053% (DS) vs 0.54 ± 0.060% (UT), p = 0.0317]. CONCLUSIONS Application of mild DS using customized hardware and SH injections generated features of DED in mice. Following DS, ocular surface epithelial cell health decreased and LESCs appeared stressed. This suggested that potential downstream effects of DS on corneal homeostasis are present, a phenomenon that is currently under-investigated. The method used to induce DED in this study enables the development of a chronic model which more closely resembles disease seen in the clinic.
Collapse
Affiliation(s)
- Richard Zhang
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Denis Wakefield
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
14
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Pérez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Front Bioeng Biotechnol 2020; 8:549089. [PMID: 33224926 PMCID: PMC7670958 DOI: 10.3389/fbioe.2020.549089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V Guinea
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| |
Collapse
|
15
|
Madden PW, Klyubin I, Ahearne MJ. Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 2020; 5:e000510. [PMID: 33024827 PMCID: PMC7513638 DOI: 10.1136/bmjophth-2020-000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.
Collapse
Affiliation(s)
- Peter W Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology Therapeutics, School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Mark J Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Holland C, Numata K, Rnjak‐Kovacina J, Seib FP. The Biomedical Use of Silk: Past, Present, Future. Adv Healthc Mater 2019; 8:e1800465. [PMID: 30238637 DOI: 10.1002/adhm.201800465] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/04/2018] [Indexed: 11/07/2022]
Abstract
Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure-function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use.
Collapse
Affiliation(s)
- Chris Holland
- Department of Materials Science and Engineering The University of Sheffield Sir Robert Hadfield Building, Mappin Street Sheffield South Yorkshire S1 3JD UK
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science 2‐1 Hirosawa Wako Saitama 351‐0198 Japan
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - F. Philipp Seib
- Leibniz Institute of Polymer Research Dresden Max Bergmann Center of Biomaterials Dresden Dresden 01069 Germany
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE UK
| |
Collapse
|
17
|
Moisenovich MM, Plotnikov EY, Moysenovich AM, Silachev DN, Danilina TI, Savchenko ES, Bobrova MM, Safonova LA, Tatarskiy VV, Kotliarova MS, Agapov II, Zorov DB. Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochem Res 2018; 44:2261-2272. [PMID: 30519983 DOI: 10.1007/s11064-018-2691-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is one of the leading causes of disability among the working-age population worldwide. Despite attempts to develop neuroprotective therapeutic approaches, including pharmacological or cellular technologies, significant advances in brain regeneration have not yet been achieved. Development of silk fibroin-based biomaterials represents a new frontier in neuroregenerative therapies after brain injury. In this study, we estimated the short and long-term effects of silk fibroin scaffold transplantation on traumatic brain injury and biocompatibility of this biomaterial within rat neuro-vascular cells. Silk fibroin microparticles were injected into a brain damage area 1 day after the injury. Silk fibroin affords neuroprotection as judged by diminished brain damage and recovery of long-term neurological functions. We did not detect considerable toxicity to neuro-vascular cells cultured on fibroin/fibroin-gelatin microparticles in vitro. Cultivation of primary cell cultures of neurons and astrocytes on silk fibroin matrices demonstrated their higher viability under oxygen-glucose deprivation compared to 2D conditions on plastic plates. Thus, we conclude that scaffolds based on silk fibroin can become the basis for the creation of constructs aimed to treat brain regeneration after injury.
Collapse
Affiliation(s)
- M M Moisenovich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - E Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A M Moysenovich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - D N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - T I Danilina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - E S Savchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - M M Bobrova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - L A Safonova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - V V Tatarskiy
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - M S Kotliarova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - I I Agapov
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - D B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
18
|
Tran SH, Wilson CG, Seib FP. A Review of the Emerging Role of Silk for the Treatment of the Eye. Pharm Res 2018; 35:248. [PMID: 30397820 PMCID: PMC6223815 DOI: 10.1007/s11095-018-2534-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Silk is a remarkable biopolymer with a long history of medical use. Silk fabrications have a robust track record for load-bearing applications, including surgical threads and meshes, which are clinically approved for use in humans. The progression of top-down and bottom-up engineering approaches using silk as the basis of a drug delivery or cell-loaded matrix helped to re-ignite interest in this ancient material. This review comprehensively summarises the current applications of silk for tissue engineering and drug delivery, with specific reference to the eye. Additionally, the review also covers emerging trends for the use of silk as a biologically active biopolymer for the treatment of eye disorders. The review concludes with future capabilities of silk to contribute to advanced, electronically-enhanced ocular drug delivery concepts.
Collapse
Affiliation(s)
- Simon H Tran
- 37D Biosystems, Inc., 2372 Morse Avenue, Suite 433, Irvine, California, 92614, USA
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany.
| |
Collapse
|
19
|
Kim CE, Kleinman HK, Sosne G, Ousler GW, Kim K, Kang S, Yang J. RGN-259 (thymosin β4) improves clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model. Sci Rep 2018; 8:10500. [PMID: 30002412 PMCID: PMC6043477 DOI: 10.1038/s41598-018-28861-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the clinical activity of RGN-259 (thymosin β4) in comparison with cyclosporine A (CsA), diquafosol (DQS), and lifitegrast (LFA) in a murine model of dry eye. The model was NOD.B10-H2b mice in a 30–40% humidified environment together with daily scopolamine hydrobromide injections for 10 days. After desiccation stress, all drugs were evaluated after 10 treatment days. RGN-259 increased tear production similar to that in the DQS- and LFA-treated mice while CsA was inactive. RGN-259 improved corneal smoothness and decreased fluorescein staining similar to that of LFA group while CsA and DQS were inactive. Corneal epithelial detachment was reduced by RGN-259, and DQS and LFA showed similar activity but the CsA was inactive. RGN-259 increased conjunctival goblet cells and mucin production comparable to that seen with CsA, while DQS and LFA were inactive. RGN-259 reduced the over-expression of inflammatory factors comparable to that with CsA and LFA, while DQS was inactive. RGN-259 increased mucin production comparable to that observed with CsA, while DQS and LFA were inactive. In conclusion, RGN-259 promoted recovery of mucins and goblet cells, improved corneal integrity, and reduced inflammation in a dry eye mouse model and was equal to or more effective than prescription treatments.
Collapse
Affiliation(s)
- Chae Eun Kim
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, 47392, Korea
| | - Hynda K Kleinman
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington D.C, USA.,ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Gabriel Sosne
- Departments of Ophthalmology and Anatomy/Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea.,ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Sinwook Kang
- ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Jaewook Yang
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, 47392, Korea. .,T2B infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, Busan, 47392, Korea.
| |
Collapse
|
20
|
Park YR, Sultan MT, Park HJ, Lee JM, Ju HW, Lee OJ, Lee DJ, Kaplan DL, Park CH. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 2018; 67:183-195. [PMID: 29242162 DOI: 10.1016/j.actbio.2017.12.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
Abstract
Silk fibroin (SF) is a well-studied biomaterial for tissue engineering applications including wound healing. However, the signaling mechanisms underlying the impact of SF on this phenomenon have not been determined. In this study, through microarray analysis, regulatory genes of NF-ĸB signaling were activated in SF-treated NIH3T3 cells along with other genes. Immunoblot analysis confirmed the activation of the NF-ĸB signaling pathway as SF induced protein expression levels of IKKα, IKKβ, p65, and the degradation of IκBα. The treatment of NIH3T3 cells with SF also increased the expression of cyclin D1, vimentin, fibronectin, and vascular endothelial growth factor (VEGF). The expression of these factors by SF treatment was abrogated when NF-ĸB was inhibited by a pharmacological inhibitor Bay 11-7082. Knockdown of NF-ĸB using siRNA of IKKα and IKKβ also inhibited the SF-induced wound healing response of the NIH3T3 cells in a wound scratch assay. Collectively, these results indicated that SF-induced wound healing through the canonical NF-κB signaling pathway via regulation of the expression of cyclin D1, vimentin, fibronectin, and VEGF by NIH3T3 cells. Using an in vivo study with a partial-thickness excision wound in rats we demonstrated that SF-induced wound healing via NF-κB regulated proteins including cyclin D1, fibronectin, and VEGF. The in vitro and in vivo data suggested that SF induced wound healing via modulation of NF-ĸB signaling regulated proteins. STATEMENT OF SIGNIFICANCE Silk fibroin has been effectively used as a dressing for wound treatment for more than a century. However, mechanistic insight into the basis for wound healing via silk fibroin has not been elucidated. Here we report a key mechanism involved in silk fibroin induced wound healing both in vitro and in vivo. Using genetic- and protein-level analyses, NF-κB signaling was found to regulate silk fibroin-induced wound healing by modulating target proteins. Thus, the NF-κB signaling pathway may be utilized as a therapeutic target during the formulation of silk fibroin-based biomaterials for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Ye Ri Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Hyun Jung Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Hyung Woo Ju
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Dong Jin Lee
- Department of Otolaryngology-Head and Neck Surgery, Ilsong Memorial Institute of Head and Neck Cancer, Hallym University College of Medicine, 150 Seongan-ro, Gangdong-gu, Seoul, South Korea
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon 200-702, South Korea.
| |
Collapse
|