1
|
Wang X, Frühn L, Li P, Shi X, Wang N, Feng Y, Prinz J, Liu H, Prokosch V. Comparative proteomic analysis of regenerative mechanisms in mouse retina to identify markers for neuro-regeneration in glaucoma. Sci Rep 2024; 14:23118. [PMID: 39366989 PMCID: PMC11452382 DOI: 10.1038/s41598-024-72378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
The retina is part of the central nervous system (CNS). Neurons in the CNS and retinal ganglion cells lack the ability to regenerate axons spontaneously after injury. The intrinsic axonal growth regulators, their interaction and roles that enable or inhibit axon growth are still largely unknown. This study endeavored to characterize the molecular characteristics under neurodegenerative and regenerative conditions. Data-Independent Acquisition Mass Spectrometry was used to map the comprehensive proteome of the regenerative retina from 14-day-old mice (Reg-P14) and adult mice after lens injury (Reg-LI) both showing regrowing axons in vitro, untreated adult mice, and retina from adult mice subjected to two weeks of elevated intraocular pressure showing degeneration. A total of 5750 proteins were identified (false discovery rate < 1%). Proteins identified in both Reg-P14 and Reg-LI groups were correlated to thyroid hormone, Notch, Wnt, and VEGF signaling pathways. Common interactors comprising E1A binding protein P300 (EP300), CREB binding protein (CBP), calcium/calmodulin dependent protein kinase II alpha (CaMKIIα) and sirtuin 1 (SIRT1) were found in both Reg-P14 and Reg-LI retinas. Proteins identified in both regenerating and degenerative groups were correlated to thyroid hormone, Notch, mRNA surveillance and measles signaling pathways, along with PD-L1 expression and the PD-1 checkpoint pathway. Common interactors across regenerative and degenerative retinas comprising NF-kappa-B p65 subunit (RELA), RNA-binding protein with serine-rich domain 1 (RNPS1), EP300 and SIN3 transcription regulator family member A (SIN3A). The findings from our study provide the first mapping of regenerative mechanisms across postnatal, mature and degenerative mouse retinas, revealing potential biomarkers that could facilitate neuro-regeneration in glaucoma.
Collapse
Affiliation(s)
- Xiaosha Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Layla Frühn
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Xin Shi
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Nini Wang
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Yuan Feng
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Julia Prinz
- Department of Ophthalmology, RWTH Aachen University, 52074, Aachen, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
2
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
4
|
Mitchell DM, Stenkamp DL. Generating Widespread and Scalable Retinal Lesions in Adult Zebrafish by Intraocular Injection of Ouabain. Methods Mol Biol 2023; 2636:221-235. [PMID: 36881303 PMCID: PMC12068065 DOI: 10.1007/978-1-0716-3012-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Zebrafish regenerate functional retinal neurons after injury. Regeneration takes place following photic, chemical, mechanical, surgical, or cryogenic lesions, as well as after lesions that selectively target specific neuronal cell populations. An advantage of chemical retinal lesion for studying the process of regeneration is that the lesion is topographically widespread. This results in the loss of visual function as well as a regenerative response that engages nearly all stem cells (Müller glia). Such lesions can therefore be used to further our understanding of the process and mechanisms underlying re-establishment of neuronal wiring patterns, retinal function, and visually mediated behaviors. Widespread chemical lesions also permit the quantitative analysis of gene expression throughout the retina during the period of initial damage and over the duration of regeneration, as well as the study of growth and targeting of axons of regenerated retinal ganglion cells. The neurotoxic Na+/K+ ATPase inhibitor ouabain specifically offers a further advantage over other types of chemical lesions in that it is scalable; the extent of damage can be targeted to include only inner retinal neurons, or all retinal neurons, simply by adjusting the intraocular concentration of ouabain that is used. Here we describe the procedure through which these "selective" vs. "extensive" retinal lesions can be generated.
Collapse
Affiliation(s)
- Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
5
|
Maricic N, Schwermer M, Schramm A, Morosan-Puopolo G, Ketteler P, Brand-Saberi B. Zebrafish as an Orthotopic Tumor Model for Retinoblastoma Mimicking Routes of Human Metastasis. Cancers (Basel) 2022; 14:cancers14235814. [PMID: 36497295 PMCID: PMC9736091 DOI: 10.3390/cancers14235814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Retinoblastoma (RB) is the most common eye cancer in children that has a high mortality rate when left untreated. Mouse models for retinoblastoma have been established but are time- and cost-intensive. The aim of this work was to evaluate an orthotopic transplantation model of retinoblastoma in zebrafish that also allows for tracking migratory routes and to explore advantages and disadvantages with respect to drug testing. METHODS Three fluorescence-labeled retinoblastoma cell lines (RB355, WERI-RB-1, Y79) were injected into the left eye of two-day-old zebrafish, while the un-injected right eye served as control. The migratory trajectories of injected retinoblastoma cells were observed until 8 days post injection (dpi), both in lateral and dorsal view, and measuring fluorescence intensity of injected cells was done for RB355 cells. RESULTS Time until the onset of migration and routes for all three retinoblastoma cell lines were comparable and resulted in migration into the brain and ventricles of the forebrain, midbrain and hindbrain. Involvement of the optic nerve was observed in 10% of injections with the RB355 cell line, 15% with Y79 cells and 5% with WERI-RB-1 cells. Fluorescence intensity of injected RB355 cells showed an initial increase until five dpi, but then decreased with high variability until the end of observation. CONCLUSION The zebrafish eye is well suited for the analysis of migratory routes in retinoblastoma and closely mirrors patterns of retinoblastoma metastases in humans.
Collapse
Affiliation(s)
- Nenad Maricic
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
- Institute of Anatomy and Molecular Neurobiology, Westfälische-Wilhelms University, D-48149 Münster, Germany
| | - Melanie Schwermer
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, D-45147 Essen, Germany
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, D-45147 Essen, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
| | - Petra Ketteler
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, D-45147 Essen, Germany
- Correspondence: (P.K.); (B.B.-S.); Tel.: +49-(0)201-72-32003 (P.K.); +49-(0)234-32-27780 (B.B.-S.)
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
- Correspondence: (P.K.); (B.B.-S.); Tel.: +49-(0)201-72-32003 (P.K.); +49-(0)234-32-27780 (B.B.-S.)
| |
Collapse
|
6
|
Martins RR, Zamzam M, Tracey-White D, Moosajee M, Thummel R, Henriques CM, MacDonald RB. Müller Glia maintain their regenerative potential despite degeneration in the aged zebrafish retina. Aging Cell 2022; 21:e13597. [PMID: 35315590 PMCID: PMC9009236 DOI: 10.1111/acel.13597] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ageing is a significant risk factor for degeneration of the retina. Müller glia cells (MG) are key for neuronal regeneration, so harnessing the regenerative capacity of MG in the retina offers great promise for the treatment of age-associated blinding conditions. Yet, the impact of ageing on MG regenerative capacity is unclear. Here, we show that the zebrafish retina undergoes telomerase-independent, age-related neurodegeneration but that this is insufficient to stimulate MG proliferation and regeneration. Instead, age-related neurodegeneration is accompanied by MG morphological aberrations and loss of vision. Mechanistically, yes-associated protein (Yap), part of the Hippo signalling, has been shown to be critical for the regenerative response in the damaged retina, and we show that Yap expression levels decline with ageing. Despite this, morphologically and molecularly altered aged MG retain the capacity to regenerate neurons after acute light damage, therefore, highlighting key differences in the MG response to high-intensity acute damage versus chronic neuronal loss in the zebrafish retina.
Collapse
Affiliation(s)
- Raquel R Martins
- The Bateson Centre, Healthy Lifespan Institute, MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Mazen Zamzam
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,The Francis Crick Institute, London, UK
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Catarina M Henriques
- The Bateson Centre, Healthy Lifespan Institute, MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
Ulhaq ZS, Tse WKF. A Brief Analysis of Proteomic Profile Changes during Zebrafish Regeneration. Biomolecules 2021; 12:biom12010035. [PMID: 35053182 PMCID: PMC8773715 DOI: 10.3390/biom12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Unlike mammals, zebrafish are capable to regenerate many of their organs, however, the response of tissue damage varies across tissues. Understanding the molecular mechanism behind the robust regenerative capacity in a model organism may help to identify and develop novel treatment strategies for mammals (including humans). Hence, we systematically analyzed the current literature on the proteome profile collected from different regenerated zebrafish tissues. Our analyses underlining that several proteins and protein families responsible as a component of cytoskeleton and structure, protein synthesis and degradation, cell cycle control, and energy metabolism were frequently identified. Moreover, target proteins responsible for the initiation of the regeneration process, such as inflammation and immune response were less frequently detected. This highlights the limitation of previous proteomic analysis and suggested a more sensitive modern proteomics analysis is needed to unfold the mechanism. This brief report provides a list of target proteins with predicted functions that could be useful for further biological studies.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Batu 65144, Indonesia;
- National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|
8
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
9
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
10
|
Luis J, Eastlake K, Khaw PT, Limb GA. Galectins and their involvement in ocular disease and development. Exp Eye Res 2020; 197:108120. [PMID: 32565112 DOI: 10.1016/j.exer.2020.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Galectins are carbohydrate binding proteins with high affinity to ß-galactoside containing glycoconjugates. Understanding of the functions of galectins has grown steadily over the past decade, as a result of substantial advancements in the field of glycobiology. Galectins have been shown to be versatile molecules that participate in a range of important biological systems, including inflammation, neovascularisation and fibrosis. These processes are of particular importance in ocular tissues, where a major theme of recent research has been to divert diseases away from pathways which result in loss of function into pathways of repair and regeneration. This review summarises our current understanding of galectins in the context important ocular diseases, followed by an update on current clinical studies and future directions.
Collapse
Affiliation(s)
- Joshua Luis
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.
| | - Karen Eastlake
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
11
|
The Queen Conch (Lobatus gigas) Proteome: A Valuable Tool for Biological Studies in Marine Gastropods. Protein J 2020; 38:628-639. [PMID: 31399888 DOI: 10.1007/s10930-019-09857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Queen conch (Lobatus gigas) is a marine gastropod endemic to the Caribbean. This species is a cultural symbol, being a significant local food source and the second largest commercial fishery in the region. However, over-exploitation and natural habitat degradation have exerted high survival pressure on this species. This work aims to provide novel proteomic data to highlight the metabolism of the species and to provide an important tool for the understanding of queen conch biology and physiology. Herein, we profiled the whole proteome from 3 organs (gills, digestive gland and muscle) of L. gigas combining gel-free and gel-based techniques. Overall 420 clusters of proteins were identified corresponding to the minimum identification requirement of protein sequence redundancy. Gene ontology and KEGG analysis highlighted 59 metabolic pathways between identified proteins. The most relevant routes according to the number of sequences found per pathway were purine and thiamine metabolism, closely related to nucleotide and carbohydrate metabolism. We also emphasize the high number of proteins associated to the biosynthesis of antibiotics (93 proteins and a total of 28 enzymes), which were among the top-twenty pathways identified by KEGG analysis. The proteomics approach allowed the identification and description of putative markers of oxidative stress, xenobiotic metabolism, heat shock response and respiratory chain for the first time in the species, which could be extremely useful in future investigations for diagnosing and monitoring L. gigas population health.
Collapse
|
12
|
Galectins in Host-Pathogen Interactions: Structural, Functional and Evolutionary Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:169-196. [PMID: 32152947 DOI: 10.1007/978-981-15-1580-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.
Collapse
|
13
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
14
|
Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Front Immunol 2019; 10:1166. [PMID: 31231368 PMCID: PMC6558399 DOI: 10.3389/fimmu.2019.01166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins, consisting of 15 different types, each with a specific function. Galectins contribute to placentation by regulating trophoblast development, migration, and invasion during early pregnancy. In addition, galectins are critical players regulating maternal immune tolerance to the embedded embryo. Recently, the role of galectins in angiogenesis during decidualization and in placenta formation has gained attention. Altered expression of galectins is associated with abnormal pregnancies and infertility. This review focuses on the role of galectins in pregnancy-associated processes and discusses the relevance of galectin-glycan interactions as potential therapeutic targets in pregnancy disorders.
Collapse
Affiliation(s)
- Sandra M Blois
- Reproductive Medicine Research Group, Division of General Internal and Psychosomatic Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, UMB, Baltimore, MD, United States
| | - Nancy Freitag
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Véronique Blanchard
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Paredes LC, Olsen Saraiva Camara N, Braga TT. Understanding the Metabolic Profile of Macrophages During the Regenerative Process in Zebrafish. Front Physiol 2019; 10:617. [PMID: 31178754 PMCID: PMC6543010 DOI: 10.3389/fphys.2019.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
In contrast to mammals, lower vertebrates, including zebrafish (Danio rerio), have the ability to regenerate damaged or lost tissues, such as the caudal fin, which makes them an ideal model for tissue and organ regeneration studies. Since several diseases involve the process of transition between fibrosis and tissue regeneration, it is necessary to attain a better understanding of these processes. It is known that the cells of the immune system, especially macrophages, play essential roles in regeneration by participating in the removal of cellular debris, release of pro- and anti-inflammatory factors, remodeling of components of the extracellular matrix and alteration of oxidative patterns during proliferation and angiogenesis. Immune cells undergo phenotypical and functional alterations throughout the healing process due to growth factors and cytokines that are produced in the tissue microenvironment. However, some aspects of the molecular mechanisms through which macrophages orchestrate the formation and regeneration of the blastema remain unclear. In the present review, we outline how macrophages orchestrate the regenerative process in zebrafish and give special attention to the redox balance in the context of tail regeneration.
Collapse
Affiliation(s)
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil.,Renal Pathophysiology Laboratory, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. Regeneration associated transcriptional signature of retinal microglia and macrophages. Sci Rep 2019; 9:4768. [PMID: 30886241 PMCID: PMC6423051 DOI: 10.1038/s41598-019-41298-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Zebrafish have the remarkable capacity to regenerate retinal neurons following a variety of damage paradigms. Following initial tissue insult and a period of cell death, a proliferative phase ensues that generates neuronal progenitors, which ultimately regenerate damaged neurons. Recent work has revealed that Müller glia are the source of regenerated neurons in zebrafish. However, the roles of another important class of glia present in the retina, microglia, during this regenerative phase remain elusive. Here, we examine retinal tissue and perform QuantSeq. 3'mRNA sequencing/transcriptome analysis to reveal localization and putative functions, respectively, of mpeg1 expressing cells (microglia/macrophages) during Müller glia-mediated regeneration, corresponding to a time of progenitor proliferation and production of new neurons. Our results indicate that in this regenerative state, mpeg1-expressing cells are located in regions containing regenerative Müller glia and are likely engaged in active vesicle trafficking. Further, mpeg1+ cells congregate at and around the optic nerve head. Our transcriptome analysis reveals several novel genes not previously described in microglia. This dataset represents the first report, to our knowledge, to use RNA sequencing to probe the microglial transcriptome in such context, and therefore provides a resource towards understanding microglia/macrophage function during successful retinal (and central nervous tissue) regeneration.
Collapse
Affiliation(s)
- Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
- Ophthalmology, Washington University in St. Louis, 4523 Clayton Ave St. Louis, Missouri, 63110, USA
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Daniel D New
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
17
|
Prospects and modalities for the treatment of genetic ocular anomalies. Hum Genet 2019; 138:1019-1026. [DOI: 10.1007/s00439-018-01968-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
|
18
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
19
|
Campbell LJ, Hyde DR. Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research. Front Cell Dev Biol 2017; 5:99. [PMID: 29218308 PMCID: PMC5703712 DOI: 10.3389/fcell.2017.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
While retinal degeneration and disease results in permanent damage and vision loss in humans, the severely damaged zebrafish retina has a high capacity to regenerate lost neurons and restore visual behaviors. Advancements in understanding the molecular and cellular basis of this regeneration response give hope that strategies and therapeutics may be developed to restore sight to blind and visually-impaired individuals. Our current understanding has been facilitated by the amenability of zebrafish to molecular tools, imaging techniques, and forward and reverse genetic approaches. Accordingly, the zebrafish research community has developed a diverse array of research tools for use in developing and adult animals, including toolkits for facilitating the generation of transgenic animals, systems for inducible, cell-specific transgene expression, and the creation of knockout alleles for nearly every protein coding gene. As CRISPR/Cas9 genome editing has begun to revolutionize molecular biology research, the zebrafish community has responded in stride by developing CRISPR/Cas9 techniques for the zebrafish as well as incorporating CRISPR/Cas9 into available toolsets. The application of CRISPR/Cas9 to retinal regeneration research will undoubtedly bring us closer to understanding the mechanisms underlying retinal repair and vision restoration in the zebrafish, as well as developing therapeutic approaches that will restore vision to blind and visually-impaired individuals. This review focuses on how CRISPR/Cas9 has been integrated into zebrafish research toolsets and how this new tool will revolutionize the field of retinal regeneration research.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|