1
|
Su J, Zhang Y, Wang X, Hu X, Zhou K, Zhu H, Liu E, Liu S. Huangkui capsules regulate tryptophan metabolism to improve diabetic nephropathy through the Keap1/Nrf2/HO-1 pathway. Front Pharmacol 2025; 16:1535352. [PMID: 40371325 PMCID: PMC12075421 DOI: 10.3389/fphar.2025.1535352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Background Diabetic nephropathy (DN) is a serious complication of diabetes and one of the leading causes of end-stage renal disease. Huangkui capsule (HKC), a traditional Chinese patent medicine, is widely used in clinical practice for the treatment of chronic glomerulonephritis. However, the therapeutic effects and underlying mechanisms of HKC in DN remain poorly understood. Methods DN was induced in db/db mice, which were randomly divided into the DN, HKC-L, HKC-H and IRB groups, and db/m mice served as the Control group. Biochemical indices of blood and urine samples from the mice were measured, and HE staining, Masson staining and PAS staining were used to verify the anti-DN effect of HKC. The levels of ROS and the expression of Nrf2 pathway-related proteins and mRNAs were detected. Metabonomic analysis was used to investigate the role of tryptophan metabolism in the regulation of DN by HKC. HK-2 cells were used to establish a model of high-glucose (HG) injury in vitro, and HKC treatment was given for supplementary verification. Sarpogrelate hydrochloride (SH) combined with HKC, a 5-HT2AR inhibitor, was used to verify the effect of the 5-HT pathway in an in vitro model. Results Treatment with HKC significantly inhibited the increase in blood glucose and Urinary albumin/creatinine ratio (UACR), improved kidney injury signs in mice, reduced the level of ROS and improved oxidative stress injury through the Keap1/ Nrf2/HO-1 pathway. Metabonomic analysis revealed that tryptophan metabolism is involved in the process by which HKC improves DN, and HKC can regulate the 5-HT pathway to improve the renal injury by oxidative stress regulation. HKC treatment also significantly improved the renal and oxidative stress injuries in HG HK-2 cell model through the Nrf2 pathway in vitro. SH administration revealed that inhibiting 5-HT2AR could significantly inhibit the synthesis of 5-HT and improve the renal injury induced by HG. Conclusion Our study demonstrate that HKC can inhibit kidney injury and oxidative stress injury in db/db mice and HK-2 cells by regulating tryptophan metabolism and the Keap1/Nrf2/HO-1 pathway, which provides new insight for the clinical use of HKC for treatment of DN.
Collapse
Affiliation(s)
- Jiayu Su
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaochao Hu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Zhou
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ehu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Yang M, Ji B, Luo Q, Jiang T, Yang X. Laser axial scanning microdissection for high-efficiency dissection from uneven biological samples. BIOMEDICAL OPTICS EXPRESS 2024; 15:3795-3806. [PMID: 38867797 PMCID: PMC11166427 DOI: 10.1364/boe.523954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Fast and efficient separation of target samples is crucial for the application of laser-assisted microdissection in the molecular biology research field. Herein, we developed a laser axial scanning microdissection (LASM) system with an 8.6 times extended depth of focus by using an electrically tunable lens. We showed that the ablation quality of silicon wafers at different depths became homogenous after using our system. More importantly, for those uneven biological tissue sections within a height difference of no more than 19.2 µm, we have demonstrated that the targets with a size of microns at arbitrary positions can be dissected efficiently without additional focusing and dissection operations. Besides, dissection experiments on various biological samples with different embedding methods, which were widely adopted in biological experiments, also have shown the feasibility of our system.
Collapse
Affiliation(s)
- Minjun Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - BingQing Ji
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| |
Collapse
|
4
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Zuo C, Liu Y, Wang J, Yu W, Liu Y, Zhang Y, Xu J, Peng D, Peng C. CDCT-induced nephrotoxicity in rat by apoptosis via metabolic disturbance. J Appl Toxicol 2023; 43:1499-1510. [PMID: 37127545 DOI: 10.1002/jat.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Compound diclofenac sodium chlorphenamine maleate tablets (CDCT) are widely used for the cold in Asia. However, CDCT can cause hematuria symptoms in clinical, and the underlying mechanism is unknown. This study aims to investigate the CDCT-induced changes of morphology in kidney and metabolites and further explore the possible mechanisms of CDCT-induced nephrotoxicity. Sprague-Dawley rats were exposed to the CDCT at a clinical equivalent dose for 6 days. CDCT exposure can induce kidney injury and death. Pathological changes, including creatinine, urea nitrogen, and histopathology, were observed in rats. Furthermore, metabolomic-driven energy and glycerophospholipid metabolism pathway disorders, accompanied by remarkably changed key metabolites, such as succinate, leukotriene B4 (LTB4 ), and cardiolipin (CL), are observed in the CDCT-induced nephrotoxicity. Functionally, succinate accumulation leads to mitochondrial damage, as evidence by the imbalance of complex I and complex II and an increase in mitochondrial reactive oxygen species (mito SOX). Meanwhile, LTB4 activated the NF-κB signaling, as shown by increased protein of p65, phosphor-p65, and decreased protein of IκBα and phosphor-IκBα. Eventually, the apoptosis pathway was triggered in response to reduced CL, inflammation, and mito SOX, as demonstrated by the expression of cyt c, Bax, Bcl-2, caspase-3, and caspase-9. This study indicated that CDCT-induced metabolic disorders triggered nephrotoxicity and provided a comprehensive information to elucidate the mechanism of CDCT induced nephrotoxicity.
Collapse
Affiliation(s)
- Chijing Zuo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
6
|
Wang L, Li L, Wang Z, Zhang P, Zhang J. Gut Microbiota Combined with Metabolomics Reveal the Mechanisms of Sika Deer Antler Protein on Cisplatin-Induced Hepatorenal Injury in Mice. Molecules 2023; 28:6463. [PMID: 37764239 PMCID: PMC10537820 DOI: 10.3390/molecules28186463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin is a widely used antineoplastic drug, though its adverse effects, particularly its hepatorenal toxicity, limit its long-term application. Sika deer antler is a valuable traditional Chinese medicine (TCM) documented to possess the capacity for tonifying the kidney and regulating the liver, of which the sika deer antler protein is an important active ingredient. In this study, two protein fractions, SVPr1 and SVPr2, of sika deer antler were purified and administered to mice treated with cisplatin, and serum metabolome and fecal microbiota were measured using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and 16S rRNA gene sequencing. SVPr1 and SVPr2 significantly ameliorated cisplatin-induced liver and kidney injury and reduced mitochondrial dysfunction, oxidative stress, inflammatory response, and apoptosis. In addition, SVPr1 and SVPr2 impacted the gut microbiota structure of mice, significantly increasing the relative abundances of Lactobacillus, which deserves to be scrutinized. Moreover, SVPr1 and SVPr2 antagonism of cisplatin-induced hepatorenal injury may be related to the regulation of lysine degradation, tryptophan metabolism, and riboflavin metabolism pathways, significantly altering the levels of L-saccharopine, L-lysine, L-kynurenine, 3-methylindole, xanthurenic acid, riboflavin, and D-ribulose-5-phosphate. A correlation between the differential metabolites and Lactobacillus was identified. These findings increased the knowledge of the gut microbiota-metabolites axis mediated by SVPr1 and SVPr2, and may be able to contribute to the development of new therapeutic strategies for the simultaneous prevention and treatment of liver and kidney injury from cisplatin treatment.
Collapse
Affiliation(s)
- Lulu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
- School of Medicine, Changchun Sci-Tech University, Changchun 130600, China
| | - Lei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Zhenyi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Pu Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| |
Collapse
|
7
|
Comparison of Local Metabolic Changes in Diabetic Rodent Kidneys Using Mass Spectrometry Imaging. Metabolites 2023; 13:metabo13030324. [PMID: 36984764 PMCID: PMC10060001 DOI: 10.3390/metabo13030324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding the renal region-specific metabolic alteration in different animal models of diabetic nephropathy (DN) is critical for uncovering the underlying mechanisms and for developing effective treatments. In the present study, spatially resolved metabolomics based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) was used to compare the local metabolic changes in the kidneys of HFD/STZ-induced diabetic rats and db/db mice. As a result, a total of 67 and 59 discriminating metabolites were identified and visualized in the kidneys of the HFD/STZ-induced diabetic rats and db/db mice, respectively. The result showed that there were significant region-specific changes in the glycolysis, TCA cycle, lipid metabolism, carnitine metabolism, choline metabolism, and purine metabolism in both DN models. However, the regional levels of the ten metabolites, including glucose, AMP, eicosenoic acid, eicosapentaenoic acid, Phosphatidylserine (36:1), Phosphatidylserine (36:4), Phosphatidylethanolamine (34:1), Phosphatidylethanolamine (36:4), Phosphatidylcholine (34:2), Phosphatidylinositol (38:5) were changed in reversed directions, indicating significant differences in the local metabolic phenotypes of these two commonly used DN animal models. This study provides comprehensive and in-depth analysis of the differences in the tissue and molecular pathological features in diabetic kidney injury in HFD/STZ-induced diabetic rats and db/db mice.
Collapse
|
8
|
Liao JC, Li CY, Teng FM, Jian-Chen, Yu JY, Ju WZ, Zou JD. Integrated analysis of comprehensive metabolomics and network pharmacology to reveal the mechanisms of abelmoschus manihot (L.) medik. in the treatment of cisplatin-induced chronic kidney disease. Front Pharmacol 2022; 13:1064498. [DOI: 10.3389/fphar.2022.1064498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Abelmoschus manihot (L.) Medik (“Huangkui” in Chinese, HK) has been widely used for the treatment of kidney diseases. Nephrotoxicity is the side effect of cisplatin (CDDP), which greatly limits its clinical application. Therefore, CDDP could be used to establish the chronic kidney disease (CKD) model. However, the protective effects of HK on CDDP-induced CKD have not been investigated.Purpose: To explore the protective effect and underlying mechanisms of HK on multiple low-dose CDDP-induced CKD in rats by the integrated analysis of serum, kidney, and urine metabolomics and network pharmacology.Methods: The CKD model was induced by multiple low-dose CDDP. Body weight, organ index, serum biochemical, and kidney histology were examined to evaluate the effect of HK. Serum, kidney, and urine were collected and profiled by HILIC/RPLC-Q-TOF/MS-based metabolomics. Potential biomarkers (PBs) were screened according to the criteria of VIP >1, p < 0.01, and FC > 2, and then identified or assigned. The pathway analysis and PBs enrichment were conducted by MetaboAnalyst and ChemRICH. Furthermore, network pharmacology was adopted to dig out the active components and targets. Finally, the results from metabolomics and network pharmacology were integrated to confirm each other.Results: HK could recover the CDDP-induced abnormal pharmacological and metabolic profile changes. A total of 187 PBs were screened and identified from the serum, kidney, and urine metabolomics. Pathway analysis showed that multiple metabolic pathways, mainly related to amino acid and lipid metabolisms, were involved in the nephroprotective effect of HK, and especially, HK could significantly alleviate the disorder of tryptophan metabolism pathway in serum, kidney, and urine. Meanwhile, network pharmacology analysis revealed that 5 components in HK and 4 key genes could be responsible for the nephroprotection of HK, which also indicated that the metabolism of tryptophan played an important role in HK against CKD.Conclusion: HK has a nephroprotection on CDDP-induced CKD, mainly by restoring the dysregulation of tryptophan metabolism. Integrated analysis of serum, kidney, and urine metabolomics and network pharmacology was a powerful method for exploring pharmacological mechanisms and screening active components and targets of traditional Chinese medicine.
Collapse
|
9
|
Abstract
Altered lipid metabolism is a characteristic feature and potential driving factor of acute kidney injury (AKI). Of the lipids that accumulate in injured renal tissues, ceramides are potent regulators of metabolism and cell fate. Up-regulation of ceramide synthesis is a common feature shared across several AKI etiologies in vitro and in vivo. Furthermore, ceramide accumulation is an early event in the natural history of AKI that precedes cell death and organ dysfunction. Emerging evidence suggests that inhibition of ceramide accumulation may improve renal outcomes in several models of AKI. This review examines the landscape of ceramide metabolism and regulation in the healthy and injured kidney. Furthermore, we discuss the body of literature regarding ceramides as therapeutic targets for AKI and consider potential mechanisms by which ceramides drive kidney pathogenesis.
Collapse
Affiliation(s)
- Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - William L Holland
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT.
| |
Collapse
|
10
|
Black LM, Farrell ER, Barwinska D, Osis G, Zmijewska AA, Traylor AM, Esman SK, Bolisetty S, Whipple G, Kamocka MM, Winfree S, Spangler DR, Khan S, Zarjou A, El-Achkar TM, Agarwal A. VEGFR3 tyrosine kinase inhibition aggravates cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2021; 321:F675-F688. [PMID: 34658261 PMCID: PMC8714977 DOI: 10.1152/ajprenal.00186.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elisa R Farrell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Gunars Osis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Whipple
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Daryll R Spangler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
11
|
Moreno-Gordaliza E, Marazuela MD, Pastor Ó, Lázaro A, Gómez-Gómez MM. Lipidomics Reveals Cisplatin-Induced Renal Lipid Alterations during Acute Kidney Injury and Their Attenuation by Cilastatin. Int J Mol Sci 2021; 22:ijms222212521. [PMID: 34830406 PMCID: PMC8622622 DOI: 10.3390/ijms222212521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Nephrotoxicity is a major complication of cisplatin-based chemotherapy, leading to acute kidney injury in ca. 30% of patients, with no preventive intervention or treatment available for clinical use. Cilastatin has proved to exert a nephroprotective effect for cisplatin therapies in in vitro and in vivo models, having recently entered clinical trials. A deeper understanding at the molecular level of cisplatin-induced renal damage and the effect of potential protective agents could be key to develop successful nephroprotective therapies and to establish new biomarkers of renal damage and nephroprotection. A targeted lipidomics approach, using LC-MS/MS, was employed for the quantification of 108 lipid species (comprising phospholipids, sphingolipids, and free and esterified cholesterol) in kidney cortex and medulla extracts from rats treated with cisplatin and/or cilastatin. Up to 56 and 63 lipid species were found to be altered in the cortex and medulla, respectively, after cisplatin treatment. Co-treatment with cilastatin attenuated many of these lipid changes, either totally or partially with respect to control levels. Multivariate analysis revealed that lipid species can be used to discriminate renal damage and nephroprotection, with cholesterol esters being the most discriminating species, along with sulfatides and phospholipids. Potential diagnostic biomarkers of cisplatin-induced renal damage and cilastatin nephroprotection were also found.
Collapse
Affiliation(s)
- Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
- Correspondence:
| | - Maria Dolores Marazuela
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
| | - Óscar Pastor
- Servicio de Bioquímica Clínica, UCA-CCM, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
| |
Collapse
|
12
|
Determination of Renal Distribution of Zinc, Copper, Iron, and Platinum in Mouse Kidney Using LA-ICP-MS. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6800294. [PMID: 34746306 PMCID: PMC8564192 DOI: 10.1155/2021/6800294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The main dose-limiting side effect of cisplatin is nephrotoxicity. The utilization of cisplatin is an issue of balancing tumour toxicity versus platinum-induced nephrotoxicity. In this study, we focused on intraorgan distribution of common essential trace elements zinc, copper, and iron in healthy mouse kidneys and distribution of platinum after cisplatin treatment. Renal distribution in 12 nontreated Nu-Nu mice (males) was assessed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Furthermore, 9 Nu-Nu mice were treated with cisplatin. The order of elements concentration in kidneys was as follows: Fe > Zn > Cu. All three metals showed the higher concentrations at the cortex and medulla (28.60, 3.35, and 93.83 μg/g for Zn, Cu, and Fe, respectively) and lower concentration at the pelvis and the urinary tract (20.20, 1.93, and 62.48 μg/g for Zn, Cu, and Fe, respectively). No statistically significant difference between cortex and medulla was observed for these elements. After platinum treatment, the concentration of platinum in kidneys was enhanced more than 60-times, p < 0.001. Platinum significantly showed the highest accumulation in cortex (2.11 μg/g) with a gradient distribution. Platinum was less accumulated in medulla and pelvis than in cortex, and the lowest accumulation occurred in the urinary tract (1.13 μg/g). Image processing has been successfully utilized to colocalize metal distribution using LA-ICP-MS and histological samples images.
Collapse
|
13
|
Hou X, Zhang P, Du H, Chu W, Sun R, Qin S, Tian Y, Zhang Z, Xu F. Akkermansia Muciniphila Potentiates the Antitumor Efficacy of FOLFOX in Colon Cancer. Front Pharmacol 2021; 12:725583. [PMID: 34603035 PMCID: PMC8484791 DOI: 10.3389/fphar.2021.725583] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
FOLFOX (oxaliplatin, fluorouracil and calcium folinate) is the first-line chemotherapy regimen for colon cancer therapy in the clinic. It provides superior efficacy than oxaliplatin alone, but the underlying mechanism remains unclear. In the present study, pharmacomicrobiomics integrated with metabolomics was conducted to uncover the role of the gut microbiome behind this. First, in vivo study demonstrated that FOLFOX exhibited better efficacy than oxaliplatin alone in colon cancer animal models. Second, 16S rDNA gene sequencing analysis showed that the abundance of Akkermansia muciniphila (A. muciniphila) remarkably increased in the FOLFOX treated individuals and positively correlated with the therapeutic effect. Third, further exploration confirmed A. muciniphila colonization significantly enhanced the anti-cancer efficacy of FOLFOX. Last, metabolomics analysis suggested dipeptides containing branched-chain amino acid (BCAA) might be responsible for gut bacteria mediated FOLFOX efficacy. In conclusion, our study revealed the key role of A. muciniphila in mediating FOLFOX efficacy, and manipulating A. muciniphila might serve as a novel strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Xiaoying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Weihua Chu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiqi Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Tan B, Chen J, Qin S, Liao C, Zhang Y, Wang D, Li S, Zhang Z, Zhang P, Xu F. Tryptophan Pathway-Targeted Metabolomics Study on the Mechanism and Intervention of Cisplatin-Induced Acute Kidney Injury in Rats. Chem Res Toxicol 2021; 34:1759-1768. [PMID: 34110802 DOI: 10.1021/acs.chemrestox.1c00110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cisplatin is a chemotherapeutic agent widely employed in the treatment of various solid tumors. However, its use is often restricted by acute kidney injury (AKI) which is the dose-limiting adverse effect of cisplatin. While numerous studies aiming to alleviate the AKI have been conducted, there are no effective remedies in clinical practice. In this paper, a targeted metabolomics study was performed to reveal the potential relationship between tryptophan metabolism and cisplatin-induced AKI. A chemical derivatization integrated liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) approach was utilized to quantify 29 metabolites in the tryptophan pathway in rat kidney medulla and cortex after cisplatin administration. Results showed that tryptophan metabolism was remarkably disturbed both in the medulla and cortex after cisplatin administration. We also found that the tryptophan pathway in the medulla was more sensitive to cisplatin exposure compared with the cortex. Among these metabolites, indoxyl sulfate was focused for further study because it accumulated most significantly in the kidney cortex and medulla in a dose-dependent manner. A function verification study proved that chlormethiazole, a widely used CYP2E1 inhibitor, could reduce the production of indoxyl sulfate in the liver and attenuate cisplatin-induced AKI in rats. In conclusion, our study depicted the tryptophan pathway in cisplatin-induced AKI for the first time and demonstrated tryptophan metabolism is closely associated with the renal toxicity caused by cisplatin, which can be of great use for the discovery of renal toxicity attenuating remedies.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jie Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Chuyao Liao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Ying Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
15
|
Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batista de Carvalho ALM, Marques MPM, Gil AM. Novel Insights into Mice Multi-Organ Metabolism upon Exposure to a Potential Anticancer Pd(II)-Agent. Metabolites 2021; 11:metabo11020114. [PMID: 33671194 PMCID: PMC7922283 DOI: 10.3390/metabo11020114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pd(II)-compounds are presently regarded as promising anticancer drugs, as an alternative to Pt(II)-based drugs (e.g., cisplatin), which typically trigger severe side-effects and acquired resistance. Dinuclear Pd(II) complexes with biogenic polyamines such as spermine (Pd2Spm) have exhibited particularly beneficial cytotoxic properties, hence unveiling the importance of understanding their impact on organism metabolism. The present study reports the first nuclear magnetic resonance (NMR)-based metabolomics study to assess the in vivo impact of Pd2Spm on the metabolism of healthy mice, to identify metabolic markers with possible relation to biotoxicity/side-effects and their dynamics. The changes in the metabolic profiles of both aqueous and lipophilic extracts of mice kidney, liver, and breast tissues were evaluated, as a function of drug-exposure time, using cisplatin as a reference drug. A putative interpretation was advanced for the metabolic deviations specifically triggered by Pd2Spm, this compound generally inducing faster metabolic response and recovery to control levels for all organs tested, compared to cisplatin (except for kidney lipid metabolism). These results constitute encouraging preliminary metabolic data suggestive of potential lower negative effects of Pd2Spm administration.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Rita Araújo
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Ana L. M. Batista de Carvalho
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - M. Paula M. Marques
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
- Correspondence: ; Tel.: +351-234370707
| |
Collapse
|
16
|
Courtoy GE, Leclercq I, Froidure A, Schiano G, Morelle J, Devuyst O, Huaux F, Bouzin C. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules 2020; 10:biom10111585. [PMID: 33266431 PMCID: PMC7709042 DOI: 10.3390/biom10111585] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics.
Collapse
Affiliation(s)
- Guillaume E. Courtoy
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (I.L.); (C.B.)
| | - Antoine Froidure
- Pole of Pneumology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
| | - Johann Morelle
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence: (I.L.); (C.B.)
| |
Collapse
|
17
|
Hepatotoxicity of nutmeg: A pilot study based on metabolomics. Biomed Pharmacother 2020; 131:110780. [PMID: 33152938 DOI: 10.1016/j.biopha.2020.110780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Incidences of abuse and poisoning have been reported for nutmeg, a household spice made from grinding the seed of Myristica fragrans, owing to its hallucinogenic properties. However, there have been no reports on nutmeg hepatotoxicity in relation to dose and duration of exposure. To investigate the hepatotoxicity of different nutmeg exposure durations and doses, male mice were administered daily with normal saline, 1.0 g/kg nutmeg, or 4.0 g/kg nutmeg by intragastrical gavage for either 7 or 14 days (for a total of six treatment groups, n = 6). Body weight of each mouse was monitored daily. Histological analysis of liver tissues was performed using hematoxylin and eosin (H&E) staining to investigate the morphological changes in hepatocytes. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were determined using enzyme-linked immunosorbent assay (ELISA) to investigate liver function. Metabolomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed between treatment groups for identifying differential metabolites. Mice in the nutmeg exposure groups exhibited slow growth trends, hepatocyte damage, and significantly elevated serum AST and ALT levels associated with nutmeg dose and exposure duration. Metabolomics and KEGG enrichment pathway analyses also revealed differential levels of some metabolites related to liver function upon nutmeg exposure. Therefore, the present study reasonably speculates that nutmeg exposure may cause liver damage and affect liver function depending on the dose and duration.
Collapse
|
18
|
Sahin M, Neumann JM, Riefke B, Bednarz H, Gutberlet K, Giampà M, Niehaus K, Fatangare A. Spatial evaluation of long-term metabolic changes induced by cisplatin nephrotoxicity. Toxicol Lett 2020; 334:36-43. [PMID: 32941993 DOI: 10.1016/j.toxlet.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent. However, it is causing nephrotoxic side effects including a reduced glomerular filtration rate and acute kidney injury. Although kidneys can recover to an extent from the treatment, long-term damage is possible. While a lot of research is focusing on short-term effects, little is known about adverse metabolic effects in the process of recovery. In this study, male Han Wistar rats were dosed with a single intraperitoneal injection of 3 mg/kg cisplatin. Urine and kidney samples were harvested 3, 8 and 26 days after administration. Tubular injury was demonstrated through urinary biomarkers. Complementing this, mass spectrometry imaging gives insight on molecular alterations on a spatial level, thus making it well suited to analyze short- and long-term disturbances. Various metabolic pathways seem to be affected, as changes in a wide range of metabolites were observed between treated and control animals. Besides previously reported early changes in kidney metabolism, unprecedented long-term effects were detected including deviation in nucleotides, antioxidants, and phospholipids.
Collapse
Affiliation(s)
- Mikail Sahin
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Judith M Neumann
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Bjoern Riefke
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katrin Gutberlet
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Amol Fatangare
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany.
| |
Collapse
|
19
|
NHERF1 Loss Upregulates Enzymes of the Pentose Phosphate Pathway in Kidney Cortex. Antioxidants (Basel) 2020; 9:antiox9090862. [PMID: 32937931 PMCID: PMC7554817 DOI: 10.3390/antiox9090862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: We previously showed Na/H exchange regulatory factor 1 (NHERF1) loss resulted in increased susceptibility to cisplatin nephrotoxicity. NHERF1-deficient cultured proximal tubule cells and proximal tubules from NHERF1 knockout (KO) mice exhibit altered mitochondrial protein expression and poor survival. We hypothesized that NHERF1 loss results in changes in metabolic pathways and/or mitochondrial dysfunction, leading to increased sensitivity to cisplatin nephrotoxicity. (2) Methods: Two to 4-month-old male wildtype (WT) and KO mice were treated with vehicle or cisplatin (20 mg/kg dose IP). After 72 h, kidney cortex homogenates were utilized for metabolic enzyme activities. Non-treated kidneys were used to isolate mitochondria for mitochondrial respiration via the Seahorse XF24 analyzer. Non-treated kidneys were also used for LC-MS analysis to evaluate kidney ATP abundance, and electron microscopy (EM) was utilized to evaluate mitochondrial morphology and number. (3) Results: KO mouse kidneys exhibit significant increases in malic enzyme and glucose-6 phosphate dehydrogenase activity under baseline conditions but in no other gluconeogenic or glycolytic enzymes. NHERF1 loss does not decrease kidney ATP content. Mitochondrial morphology, number, and area appeared normal. Isolated mitochondria function was similar between WT and KO. Conclusions: KO kidneys experience a shift in metabolism to the pentose phosphate pathway, which may sensitize them to the oxidative stress imposed by cisplatin.
Collapse
|
20
|
Huang KM, Uddin ME, DiGiacomo D, Lustberg MB, Hu S, Sparreboom A. Role of SLC transporters in toxicity induced by anticancer drugs. Expert Opin Drug Metab Toxicol 2020; 16:493-506. [PMID: 32276560 DOI: 10.1080/17425255.2020.1755253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION . Membrane transporters are integral to the maintenance of cellular integrity of all tissue and cell types. While transporters play an established role in the systemic pharmacokinetics of therapeutic drugs, tissue specific expression of uptake transporters can serve as an initiating mechanism that governs the accumulation and impact of cytotoxic drugs. AREAS COVERED . This review provides an overview of organic cation transporters as determinants of chemotherapy-induced toxicities. We also provide insights into the recently updated FDA guidelines for in vitro drug interaction studies, with a particular focus on the class of tyrosine kinase inhibitors as perpetrators of transporter-mediated drug interactions. EXPERT OPINION . Studies performed over the last few decades have highlighted the important role of basolateral uptake and apical efflux transporters in the pathophysiology of drug-induced organ damage. Increased understanding of the mechanisms that govern the accumulation of cytotoxic drugs has provided insights into the development of novel strategies to prevent debilitating toxicities. Furthermore, we argue that current regulatory guidelines provide inadequate recommendations for in vitro studies to identify substrates or inhibitors of drug transporters. Therefore, the translational and predictive power of FDA-approved drugs as modulators of transport function remains ambiguous and warrants further revision of the current guidelines.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Duncan DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, College of Medicine, the Ohio State University and Comprehensive Cancer Center , Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| |
Collapse
|
21
|
Gao L, Yuan H, Xu E, Liu J. Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Sci Rep 2020; 10:1790. [PMID: 32019966 PMCID: PMC7000692 DOI: 10.1038/s41598-020-58599-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
Paraquat (PQ) is a non-selective herbicide and is exceedingly toxic to humans. The mechanism of PQ toxicity is very complex and has not been clearly defined. There is no specific antidote for PQ poisoning. 5-hydroxy-1-methylhydantoin (HMH) is an intrinsic antioxidant and can protect against renal damage caused by PQ. The mechanism of PQ toxicology and the possible effects of HMH on PQ-induced lung injury were determined in this study. It was found that PQ decreased superoxide dismutase (SOD) activity and elevated the level of malondialdehyde (MDA), while HMH elevated SOD activity and decreased the level of MDA. Based on metabolomics, the citrate cycle, glutathione metabolism, taurine and hypotaurine metabolism, regulation of lipolysis in adipocytes, inflammatory mediator regulation of TRP channels, purine and pyrimidine metabolism, aldosterone synthesis and secretion, and phenylalanine metabolism were changed in the PQ group. Compared with the PQ group, the levels of N-acetyl-l-aspartic acid, L-glutamic acid, L-aspartic acid, mesaconic acid, adenosine 5′ monophosphate, methylmalonic acid, cytidine, phosphonoacetic acid, hypotaurine, glutathione (reduced) and cysteinylglycine increased, while the levels of corticosterone, xanthine, citric acid, prostaglandin G2, 4-pyridoxic acid and succinyl proline decreased in the HMH group. These metabolites revealed that HMH can alleviate inflammation caused by PQ and elevate the activity of intrinsic antioxidants. In conclusion, our results revealed PQ toxicology and the pharmacology underlying the protective effect of HMH on lung injury due to PQ. Toxicity caused by PQ results in lipid peroxidation and an increase in reactive oxygen species (ROS), nitric oxide (NO), damage to the biliary system, gastrointestinal system and nervous system, in addition to lungs, kidneys, and the liver. HMH is a good antioxidant and protects against lung injury caused by PQ. In summary, HMH efficiently reduced PQ-induced lung injury in mice.
Collapse
Affiliation(s)
- Lina Gao
- School of Forensic Medicine, China Medical University, Liaoning, 110014, China.
| | - Huiya Yuan
- School of Forensic Medicine, China Medical University, Liaoning, 110014, China
| | - Enyu Xu
- School of Forensic Medicine, China Medical University, Liaoning, 110014, China
| | - Junting Liu
- School of Forensic Medicine, China Medical University, Liaoning, 110014, China
| |
Collapse
|
22
|
Xu L, Zhang Y, Zhang P, Dai X, Gao Y, Lv Y, Qin S, Xu F. Integrated Metabolomics and Network Pharmacology Strategy-Driven Active Traditional Chinese Medicine Ingredients Discovery for the Alleviation of Cisplatin Nephrotoxicity. Chem Res Toxicol 2019; 32:2411-2421. [PMID: 31682104 DOI: 10.1021/acs.chemrestox.9b00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Renal injury is the main adverse reaction of cisplatin, and many traditional Chinese medicines (TCMs) were proven active against renal toxicity. Here, an integrated metabolomics and network pharmacology strategy was proposed to discover active TCM ingredients for the alleviation of cisplatin nephrotoxicity. First, by interrogating the Human Metabolome Database (HMDB) we collected targets connected to 149 cisplatin nephrotoxicity-related metabolites. Second, targets of kidney damage were obtained from the Therapeutic Target Database (TTD), PharmGKB, Online Mendelian Inheritance in Man (OMIM), and Genetic Association Database (GAD). Common targets of both dysregulated metabolites and kidney damage were then used for TCM active ingredient screening by applying the network pharmacology approach. Eventually, 22 ingredients passed screening criteria, and their antinephrotoxicity activity was assessed in human kidney tubular epithelial (HK2) cells. As a result, 14 ingredients were found to be effective, in which kaempferol showed relatively better activity. Further metabolomics analysis revealed that kaempferol exerted an antinephrotoxicity effect in rats by regulating amino acid, pyrimidine, and purine metabolism as well as lipid metabolism. Collectively, this proposed integrated strategy would promote the transformation of metabolomics research in the field of drug pair discovery for the purpose of reduced toxicity and increased efficiency.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China.,Suzhou Dushuhu Public Hospital , Dushuhu Public Hospital Affiliated with Soochow University , Suzhou 215000 , China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , Nanjing 210008 , China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China.,Gunma University Initiative for Advanced Research (GIAR) , Gunma University , Gunma 371-8510 , Japan.,Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , 171 77 Solna , Sweden
| | - Xiaomin Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China
| | - Yiqiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China
| | - Yingtong Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
23
|
Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batista de Carvalho AL, Marques MPM, Gil AM. Multi-Organ NMR Metabolomics to Assess In Vivo Overall Metabolic Impact of Cisplatin in Mice. Metabolites 2019; 9:E279. [PMID: 31766161 PMCID: PMC6918135 DOI: 10.3390/metabo9110279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
This work describes, to our knowledge, the first NMR metabolomics analysis of mice kidney, liver, and breast tissue in response to cisplatin exposure, in search of early metabolic signatures of cisplatin biotoxicity. Balb/c mice were exposed to a single 3.5 mg/kg dose of cisplatin and then euthanized; organs (kidney, liver, breast tissue) were collected at 1, 12, and 48 h. Polar tissue extracts were analyzed by NMR spectroscopy, and the resulting spectra were studied by multivariate and univariate analyses. The results enabled the identification of the most significant deviant metabolite levels at each time point, and for each tissue type, and showed that the largest metabolic impact occurs for kidney, as early as 1 h post-injection. Kidney tissue showed a marked depletion in several amino acids, comprised in an overall 13-metabolites signature. The highest number of changes in all tissues was noted at 12 h, although many of those recovered to control levels at 48 h, with the exception of some persistently deviant tissue-specific metabolites, thus enabling the identification of relatively longer-term effects of cDDP. This work reports, for the first time, early (1-48 h) concomitant effects of cDDP in kidney, liver, and breast tissue metabolism, thus contributing to the understanding of multi-organ cDDP biotoxicity.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Rita Araújo
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | | | - Maria Paula M. Marques
- “Química-Física Molecular”, University of Coimbra, 3004-535 Coimbra, Portugal (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| |
Collapse
|
24
|
Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV. Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J Clin Invest 2019; 129:4797-4816. [PMID: 31589169 PMCID: PMC6819104 DOI: 10.1172/jci122313] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.
Collapse
Affiliation(s)
- Seiji Kishi
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of General Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Craig R. Brooks
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kensei Taguchi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yutaro Mori
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinwande Akinfolarin
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Navin Gupta
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Pierre Galichon
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, INSERM UMR S1155, AP-HP, Hôpital Tenon, Paris, France
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomohisa Suzuki
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Qian Wang
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryuji Morizane
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joseph V. Bonventre
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, Liu J, Li P. Effect of ginsenoside Rh 2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152862. [PMID: 31048124 DOI: 10.1016/j.phymed.2019.152862] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Ginsenoside Rh2 (Rh2), an important ingredient from Panax ginseng, has received much attention due to a range of pharmacological actions. PURPOSE The aim of the study was to investigate the therapeutic potential Rh2 on cisplatin (CDDP)-induced nephrotoxicity and to elucidate involved mechanisms. STUDY DESIGN An in vivo mice model of CDDP-induced nephrotoxicity was established by a single intraperitoneal injection of CDDP (20 mg/kg) to assess the effects of Rh2 on renal biochemical parameter, oxidative stress, inflammation tubular cell apoptosis and serum metabolic profiles. RESULTS Rh2 protected against CDDP-induced renal dysfunction and ameliorated CDDP-induced oxidative stress, histopathological damage, inflammation and tubular cell apoptosis in kidney. Rh2 treatment had significantly increased expression of Bcl-2 and decreased expression of p53, Bax, cytochrome c, caspase-8, caspase-9, and caspase-3 in kidney tissues. Metabolomic analysis identified 29 altered serum metabolites in Rh2 treatment mice. CONCLUSION These results suggest that Rh2 protects against CDDP-induced nephrotoxicity via action on caspase-mediated pathway.
Collapse
Affiliation(s)
- Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Brierley DI, Harman JR, Giallourou N, Leishman E, Roashan AE, Mellows BA, Bradshaw HB, Swann JR, Patel K, Whalley BJ, Williams CM. Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol. J Cachexia Sarcopenia Muscle 2019; 10:844-859. [PMID: 31035309 PMCID: PMC6711413 DOI: 10.1002/jcsm.12426] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment. CONCLUSIONS Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.
Collapse
Affiliation(s)
- Daniel I. Brierley
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
- School of PharmacyUniversity of ReadingBerkshireUK
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Joe R. Harman
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Emma Leishman
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | | | - Heather B. Bradshaw
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Jonathan R. Swann
- Division of Computational and Systems MedicineImperial College LondonLondonUK
| | - Ketan Patel
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Claire M. Williams
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
| |
Collapse
|
27
|
Pu X, Gao Y, Li R, Li W, Tian Y, Zhang Z, Xu F. Biomarker Discovery for Cytochrome P450 1A2 Activity Assessment in Rats, Based on Metabolomics. Metabolites 2019; 9:metabo9040077. [PMID: 31003543 PMCID: PMC6523085 DOI: 10.3390/metabo9040077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the major CYP450 enzymes (CYPs) in the liver, and participates in the biotransformation of various xenobiotics and endogenous signaling molecules. The expression and activity of CYP1A2 show large individual differences, due to genetic and environmental factors. In order to discover non-invasive serum biomarkers associated with hepatic CYP1A2, mass spectrometry-based, untargeted metabolomics were first conducted, in order to dissect the metabolic differences in the serum and liver between control rats and β-naphthoflavone (an inducer of CYP1A2)-treated rats. Real-time reverse transcription polymerase chain reaction and pharmacokinetic analysis of phenacetin and paracetamol were performed, in order to determine the changes of mRNA levels and activity of CYP1A2 in these two groups, respectively. Branched-chain amino acids phenylalanine and tyrosine were ultimately focalized, as they were detected in both the serum and liver with the same trends. These findings were further confirmed by absolute quantification via a liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics approach. Furthermore, the ratio of phenylalanine to tyrosine concentration was also found to be highly correlated with CYP1A2 activity and gene expression. This study demonstrates that metabolomics can be a potentially useful tool for biomarker discovery associated with CYPs. Our findings contribute to explaining interindividual variations in CYP1A2-mediated drug metabolism.
Collapse
Affiliation(s)
- Xiao Pu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiqiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Cui J, Zheng X, Yang D, Hu Y, An C, Bo Y, Li H, Zhang Y, Niu M, Xue X, Lu Y, Tang Y, Yin H, Li Z, Gao W, Wu Y. Astragali radix total flavonoid synergizes cisplatin to inhibit proliferation and enhances the chemosensitivity of laryngeal squamous cell carcinoma. RSC Adv 2019; 9:24471-24482. [PMID: 35527911 PMCID: PMC9069756 DOI: 10.1039/c9ra04701h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common head and neck cancer. Astragali radix extracts play crucial roles in the regulation of cancer progression. However, the role of Astragali radix extracts in LSCC and the related mechanisms remains unclear. Here, we evaluated the inhibitory effects of the combined use of Astragali radix total flavonoid (TFA) and cisplatin (CDDP) on an LSCC mouse model by pharmacodynamics. Ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed to define the prototype of TFA in vivo. The potential drug targets were identified through the integrative analysis of LSCC microarrays, RNA sequencing data and the main bioactive component of TFA. Furthermore, a protein–protein interaction network, compound–target network and target–pathway network were constructed based on the prototype and potential drug targets to identify the main targets and pathways. Animal experiments showed that TFA has significant synergistic antitumor activity with cisplatin and attenuates the nephrotoxicity caused by CDDP chemotherapy, improving the survival of LSCC-bearing mice. Using UPLC-MS/MS, we identified 8 constituents of TFA in experimental mice serum: formononetin, ononin, calycosin, calycosin-7-O-β-D-glucoside, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavaneglucoside, 3-hydroxy-9,10-dimethoxypterocarpan and 9,10-dimethoxyptercarpan-3-O-β-d-glucoside. Integrative analysis predicted 19 target genes for TFA constituents, and the target genes were mainly involved in the EGFR-related cancer signaling, metabolism and oxidative stress. Collectively, these findings highlight the role of TFA in the regulation of LSCC and provide potential targets for a high-efficiency and low-toxicity therapeutic strategy of LSCC. Astragali radix total flavonoid synergizes with cisplatin to inhibit tumorigenesis of laryngeal squamous cell carcinoma.![]()
Collapse
|
29
|
Alghamdi A, Gerasimidis K, Blackburn G, Akinci D, Edwards C, Russell RK, Watson DG. Untargeted Metabolomics of Extracts from Faecal Samples Demonstrates Distinct Differences between Paediatric Crohn's Disease Patients and Healthy Controls but No Significant Changes Resulting from Exclusive Enteral Nutrition Treatment. Metabolites 2018; 8:E82. [PMID: 30467282 PMCID: PMC6315767 DOI: 10.3390/metabo8040082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomic profiling using high resolution mass spectrometry with hydrophilic interaction chromatography was applied to 11 faecal extracts from eleven healthy children and to 43 faecal extracts from eleven children undergoing exclusive enteral nutrition for the treatment of active Crohn's disease (CD) at timepoints before, during (15, 30, and 60 days), and after treatment. Differences between the control and CD samples were identified at each timepoint. An orthogonal partial least square-discriminant analysis (OPLS-DA) model identified eight metabolites that were normally distributed according to Q-Q plots. The OPLS-DA model was able to discriminate the CD samples from the controls at every timepoint, but the model was not able to differentiate the CD samples from one another at the different timepoints during treatment with exclusive enteral nutrition. The differentiated metabolites identified in the CD samples included tyrosine, an ornithine isomer, arachidonic acid, eicosatrienoic acid, docosatetraenoic acid, a sphingomyelin, a ceramide, and dimethylsphinganine. Despite successful treatment, underlying differences remained in the metabolome of the CD patients. These differences dominated the separation of the samples when multivariate methods were applied.
Collapse
Affiliation(s)
- Adel Alghamdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | - Gavin Blackburn
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Didem Akinci
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Christine Edwards
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow G51 4TF, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
30
|
Lagies S, Pichler R, Kaminski MM, Schlimpert M, Walz G, Lienkamp SS, Kammerer B. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci Rep 2018; 8:3878. [PMID: 29497074 PMCID: PMC5832874 DOI: 10.1038/s41598-018-22073-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as in vitro models for nephrotoxicity testing in the future.
Collapse
Affiliation(s)
- Simon Lagies
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19a, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Manuel Schlimpert
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19a, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Bernd Kammerer
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
31
|
Farooqui Z, Shahid F, Khan AA, Khan F. Oral administration of Nigella sativa oil and thymoquinone attenuates long term cisplatin treatment induced toxicity and oxidative damage in rat kidney. Biomed Pharmacother 2017; 96:912-923. [PMID: 29223554 DOI: 10.1016/j.biopha.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Cisplatin (CP) is an effective anti-cancer drug which causes remarkable toxicity to the kidney, particularly to proximal tubules, by generating reactive oxygen species. Nigella sativa (NS), commonly known as "black cumin" reduces the progression of various kidney disorders. Thymoquinone (TQ), the major bioactive constituent of NS seeds, has been credited for various pharmacological effects of NS. Since, a typical clinical CP dosing regimen involves CP administration in multiple cycles over a long time duration, hence the present study aimed to evaluate the renoprotective efficacy of NS oil and TQ against multiple dose CP treatment induced deleterious biochemical and histological alterations in rat kidney. Adult male Wistar rats were divided into six groups viz. control, CP, CPNSO, CPTQ, NSO and TQ. Animals in CPNSO and CPTQ groups were pre-administered NSO (2ml/kg bwt, orally) and TQ (1.5mg/kg bwt, orally) respectively for 14 days and were then treated with CP (3mg/kg bwt, i.p), every fourth day for 20 days while still receiving NSO/TQ. NSO and TQ administration, prior to and along with CP treatment, attenuated CP induced renal functional impairment as evident by significantly restored serum creatinine and blood urea nitrogen levels. CP treatment alone led to significant decline in the specific activities of brush border membrane (BBM) marker enzymes viz. ALP (-46.64%), GGTase (-50.24%) and LAP (-42.15%), while NSO or TQ administration to CP treated rats significantly prevented the decline in the activities of these enzymes in isolated BBM vesicles (BBMVs) as well as in the homogenates of renal cortex and medulla. Furthermore, both NSO and TQ administration also mitigated the CP induced perturbations in renal metabolic and redox status. Histological studies supported these biochemical results showing significant attenuation of CP induced kidney damage in CPNSO and CPTQ cotreated groups. Thus, NSO and TQ have excellent scope for use as functional food or combinatorial nutraceuticals in CP chemotherapy to ameliorate the accompanying nephropathy in long term cancer chemotherapy.
Collapse
Affiliation(s)
- Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
32
|
Oral thymoquinone administration ameliorates: the effect of cisplatin on brush border membrane enzymes, energy metabolism, and redox status in rat kidney. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1271-1284. [PMID: 28944407 DOI: 10.1007/s00210-017-1428-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
Therapeutic use of cisplatin (CP), an effective anticancer drug, is limited by dose dependent nephrotoxicity. Thymoquinone (TQ), the major Nigella sativa seed oil constituent has been shown to prevent progression of various renal disorders. The present study investigates the protective effect of TQ on CP-induced nephrotoxicity. Rats were divided into six groups viz. control, CP, CPTQ1, CPTQ2, CPTQ3, and TQ alone group. Animals in CP and TQ combination groups were administered TQ (0.5, 1.5, and 3 mg/kg bwt, orally) with single intraperitoneal dose of CP (6 mg/kg bwt). The effect of TQ administration was determined on CP-induced alterations in various serum/urine parameters and on the enzymes of brush border membrane enzyme (BBM), carbohydrate metabolism, and antioxidant defense system in renal cortex and medulla. Oral administration of TQ in all the three doses prior to and following a single dose CP treatment caused significant recovery of serum creatinine and blood urea nitrogen levels; however, maximum recovery was seen in CPTQ2 group. TQ administration averted CP-induced decline in BBM activities, both in the cortical and medullary homogenates and in isolated BBM vesicles. TQ administration also ameliorated CP-induced impairments in renal metabolic and antioxidant status. Histopathological studies supported these biochemical findings. TQ ameliorates CP-induced oxidative damage owing to its intrinsic antioxidant properties.
Collapse
|