1
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
2
|
Guo Y, Ma G, Wang Y, Lin T, Hu Y, Zang T. Causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity. Aging Cell 2024; 23:e14271. [PMID: 39300745 PMCID: PMC11561668 DOI: 10.1111/acel.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 09/22/2024] Open
Abstract
The causative mechanisms underlying the genetic relationships of neurodegenerative diseases with epigenetic aging and human longevity remain obscure. We aimed to detect causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity. We obtained large-scale genome-wide association study summary statistics data for four measures of epigenetic age (GrimAge, PhenoAge, IEAA, and HannumAge) (N = 34,710), multivariate longevity (healthspan, lifespan, and exceptional longevity) (N = 1,349,462), and for multiple neurodegenerative diseases (N = 6618-482,730), including Lewy body dementia, Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Main analyses were conducted using multiplicative random effects inverse-variance weighted Mendelian randomization (MR), and conditional/conjunctional false discovery rate (cond/conjFDR) approach. Shared genomic loci were functionally characterized to gain biological understanding. Evidence showed that AD patients had 0.309 year less in exceptional longevity (IVW beta = -0.309, 95% CI: -0.38 to -0.24, p = 1.51E-19). We also observed suggestively significant causal evidence between AD and GrimAge age acceleration (IVW beta = -0.10, 95% CI: -0.188 to -0.013, p = 0.02). Following the discovery of polygenic overlap, we identified rs78143120 as shared genomic locus between AD and GrimAge age acceleration, and rs12691088 between AD and exceptional longevity. Among these loci, rs78143120 was novel for AD. In conclusion, we observed that only AD had causal effects on epigenetic aging and human longevity, while other neurodegenerative diseases did not. The genetic overlap between them, with mixed effect directions, suggested complex shared genetic etiology and molecular mechanisms.
Collapse
Affiliation(s)
- Yu Guo
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Guojuan Ma
- Beidahuang Industry Group General HospitalHarbinChina
| | - Yukai Wang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Tingyan Lin
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yang Hu
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Tianyi Zang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
3
|
Lee H, Han DW, La H, Park C, Kang K, Kwon O, Uhm SJ, Song H, Do JT, Choi Y, Hong K. DOT1-like histone lysine methyltransferase is critical for adult vessel maintenance and functions. Anim Biosci 2024; 37:1635-1643. [PMID: 38665093 PMCID: PMC11366529 DOI: 10.5713/ab.23.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE Disruptor of telomeric silencing 1-like (DOT1L) is the only known histone H3K79 methyltransferase essential for the development of the embryonic cardiovascular system, including the heart, blood vessels, and lymphatic vessels, through transcriptional regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic development and function. However, its precise function in the postnatal cardiovascular system remains unknown. METHODS Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the vascular system during postnatal life were investigated. To assess vessel morphology and vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in vitro tube formation and cell migration assays were performed using DOT1L-depleted human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular genes in HUVECs were measured by quantitative polymerase chain reaction. RESULTS Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed vascular phenotypes, including increased vascular permeability and brain hemorrhage, when DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs led to impaired cell migration and tube formation, likely due to altered gene transcription. These findings highlight the essential role of DOT1L in maintaining vascular integrity and function during embryonic development and postnatal life. CONCLUSION Our study revealed that DOT1L is required for the maintenance of adult vascular function through the regulation of gene expression.
Collapse
Affiliation(s)
- HeeJi Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020,
China
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Ohbeom Kwon
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339,
Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
4
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
5
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Cynn E, Li D, O’Reilly ME, Wang Y, Bashore AC, Jha A, Foulkes A, Zhang H, Winter H, Maegdefessel L, Yan H, Li M, Ross L, Xue C, Reilly MP. Human Macrophage Long Intergenic Noncoding RNA, SIMALR, Suppresses Inflammatory Macrophage Apoptosis via NTN1 (Netrin-1). Arterioscler Thromb Vasc Biol 2023; 43:286-299. [PMID: 36546321 PMCID: PMC10162399 DOI: 10.1161/atvbaha.122.318353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as novel regulators of macrophage biology and inflammatory cardiovascular diseases. However, studies focused on lncRNAs in human macrophage subtypes, particularly human lncRNAs that are not conserved in rodents, are limited. METHODS Through RNA-sequencing of human monocyte-derived macrophages, we identified suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR). Lipopolysaccharide/IFNγ (interferon γ) stimulated human macrophages were treated with SIMALR antisense oligonucleotides and subjected to RNA-sequencing to investigate the function of SIMALR. Western blots, luciferase assay, and RNA immunoprecipitation were performed to validate function and potential mechanism of SIMALR. RNAscope was performed to identify SIMALR expression in human carotid atherosclerotic plaques. RESULTS RNA-sequencing of human monocyte-derived macrophages identified SIMALR, a human macrophage-specific long intergenic noncoding RNA that is highly induced in lipopolysaccharide/IFNγ-stimulated macrophages. SIMALR knockdown in lipopolysaccharide/IFNγ stimulated THP1 human macrophages induced apoptosis of inflammatory macrophages, as shown by increased protein expression of cleaved PARP (poly[ADP-ribose] polymerase), caspase 9, caspase 3, and Annexin V+. RNA-sequencing of control versus SIMALR knockdown in lipopolysaccharide/IFNγ-stimulated macrophages showed Netrin-1 (NTN1) to be significantly decreased upon SIMALR knockdown. We confirmed that NTN1 knockdown in lipopolysaccharide/IFNγ-stimulated macrophages induced apoptosis. The SIMALR knockdown-induced apoptotic phenotype was rescued by adding recombinant NTN1. NTN1 promoter-luciferase reporter activity was increased in HEK293T (human embryonic kidney 293) cells treated with lentiviral overexpression of SIMALR. NTN1 promoter activity is known to require HIF1α (hypoxia-inducible factor 1 subunit alpha), and our studies suggest that SIMALR may interact with HIF1α to regulate NTN1 transcription, thereby regulating macrophages apoptosis. SIMALR was found to be expressed in macrophages in human carotid atherosclerotic plaques of symptomatic patients. CONCLUSIONS SIMALR is a nonconserved, human macrophage lncRNA expressed in atherosclerosis that suppresses macrophage apoptosis. SIMALR partners with HIF1α (hypoxia-inducible factor 1 subunit alpha) to regulate NTN1, which is a known macrophage survival factor. This work illustrates the importance of interrogating the functions of human lncRNAs and exploring their translational and therapeutic potential in human atherosclerosis.
Collapse
Affiliation(s)
- Esther Cynn
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Daniel Li
- Mission Bio, South San Francisco, CA
| | - Marcella E. O’Reilly
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY
| | - Alexander C. Bashore
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Anjali Jha
- Biostatistics Center, Massachusetts General Hospital, Boston, MA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
| | - Andrea Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston, MA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hanrui Zhang
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Hanna Winter
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Hanying Yan
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Leila Ross
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Chenyi Xue
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
| | - Muredach P. Reilly
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, NY
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
8
|
Kwon YS, Ko JS, Oh SY, Han YT, Jo SA. Oleracone F Alleviates Cognitive Impairment and Neuropathology in APPswe/PSEN1dE9 Mice by Reducing the Expression of Vascular Cell Adhesion Molecule and Leukocyte Adhesion to Brain Vascular Endothelial Cells. Int J Mol Sci 2023; 24:ijms24032056. [PMID: 36768379 PMCID: PMC9916962 DOI: 10.3390/ijms24032056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the blood-brain barrier dysfunction has been suggested as a key pathological feature of the disease. Our research group successfully established a synthetic protocol for oleracones, a novel series of flavonoids isolated from the plant extract of Portulaca oleracea L. (PO). PO extract was reported to have anti-inflammatory and antioxidant effects, enhancing cognitive function. Thus, we investigated the effects and mechanism of oleracones on cognition using AD model transgenic mice (Tg; APPswe/PSEN1dE9). Oleracone F treatment significantly improved memory dysfunction in Tg mice. Oleracone F decreased the number, burden, and immunoreactivity of amyloid plaques and amyloid precursor protein (APP) protein levels in the brains of Tg mice compared to wild-type mice. Oleracone F also alleviated inflammation observed in Tg mice brains. In vitro studies in human microvascular endothelial cells (HBMVECs) demonstrated that oleracones D, E, and F blocked the elevations in VCAM-1 protein induced by tumor necrosis factor-α (TNF-α), hindering leukocyte adhesion to HBMVECs. Taken together, our results suggest that oleracones ameliorated cognitive impairment by blocking TNF-α-induced increases in VCAM-1, thereby reducing leukocyte infiltration to the brain and modulating brain inflammation.
Collapse
Affiliation(s)
- Young-Sun Kwon
- Department of Nanobiomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Sung Ko
- Department of Nanobiomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Se-Young Oh
- Department of Convergence Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Young Taek Han
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: ; Tel.: +82-41-550-1433
| |
Collapse
|
9
|
Matsuoka S, Petri G, Larson K, Behnke A, Wang X, Peng M, Spagnoli S, Lohr C, Milston-Clements R, Divilov K, Jin L. Evaluation of Histone Demethylase Inhibitor ML324 and Acyclovir against Cyprinid herpesvirus 3 Infection. Viruses 2023; 15:163. [PMID: 36680202 PMCID: PMC9863241 DOI: 10.3390/v15010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.
Collapse
Affiliation(s)
- Shelby Matsuoka
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Gloria Petri
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kristen Larson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra Behnke
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Muhui Peng
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane Lohr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Monsour M, Gordon J, Lockard G, Alayli A, Elsayed B, Connolly J, Borlongan CV. Minor Changes for a Major Impact: A Review of Epigenetic Modifications in Cell-Based Therapies for Stroke. Int J Mol Sci 2022; 23:13106. [PMID: 36361891 PMCID: PMC9656972 DOI: 10.3390/ijms232113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/16/2024] Open
Abstract
Epigenetic changes in stroke may revolutionize cell-based therapies aimed at reducing ischemic stroke risk and damage. Epigenetic changes are a novel therapeutic target due to their specificity and potential for reversal. Possible targets for epigenetic modification include DNA methylation and demethylation, post-translational histone modification, and the actions of non-coding RNAs such as microRNAs. Many of these epigenetic modifications have been reported to modulate atherosclerosis development and progression, ultimately contributing to stroke pathogenesis. Furthermore, epigenetics may play a major role in inflammatory responses following stroke. Stem cells for stroke have demonstrated safety in clinical trials for stroke and show therapeutic benefit in pre-clinical studies. The efficacy of these cell-based interventions may be amplified with adjunctive epigenetic modifications. This review advances the role of epigenetics in atherosclerosis and inflammation in the context of stroke, followed by a discussion on current stem cell studies modulating epigenetics to ameliorate stroke damage.
Collapse
Affiliation(s)
- Molly Monsour
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Jonah Gordon
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Gavin Lockard
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Adam Alayli
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Bassel Elsayed
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Jacob Connolly
- University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Induction of ICAM1 in Brain Vessels is Implicated in an Early AD Pathogenesis by Modulating Neprilysin. Neuromolecular Med 2022:10.1007/s12017-022-08726-x. [PMID: 35948857 DOI: 10.1007/s12017-022-08726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Intercellular adhesion molecule 1 (ICAM1) is a vessel adhesion protein induced during brain vascular inflammation, which could be closely linked with the development of Alzheimer's disease (AD). This study investigated the effect of ICAM1 on amyloid-degrading enzymes (ADEs) in endothelial cells and their potential involvement in inflammation and AD progression. TNF-α treatment increased ICAM1 in human brain microvascular endothelial cells (HBMVECs) but decreased the neprilysin (NEP) protein level. Knock-down of ICAM1 using siRNA enhanced NEP, which increased the degradation of amyloid-β. In the brains of 4-month-old AD transgenic mice (APPswe/PSEN1dE9), there were significantly higher levels of ICAM1 expression and amyloid deposits but lower levels of NEP and insulin-degrading enzymes (IDE), demonstrating an inverse correlation of ICAM1 with NEP and IDE expression. Further studies demonstrated significantly increased GFAP protein levels in the brain, specifically localized near blood vessels, of both TNF-α-injected and 4-month-old AD transgenic mice. Taken together, the induction of ICAM1 in endothelial cells suppresses NEP expression, accelerating the accumulation of amyloid-β in blood vessels. It also enhances leukocyte adhesion to blood vessels stimulating the migration of leukocytes into the brain, subsequently triggering brain inflammation.
Collapse
|
12
|
Mengozzi A, Pugliese NR, Taddei S, Masi S, Virdis A. Microvascular Inflammation and Cardiovascular Prevention: The Role of Microcirculation as Earlier Determinant of Cardiovascular Risk. High Blood Press Cardiovasc Prev 2021; 29:41-48. [PMID: 34855153 DOI: 10.1007/s40292-021-00493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Healthcare systems encumbered by cardiovascular diseases demand adequate cardiovascular prevention. Indeed, even with the most novel therapies, the residual cardiovascular risk still fuels morbidity and mortality. Addressing inflammation as a putative mediator of this risk has brought along promising in vitro results, though large clinical trials have only in part confirmed them. To fully exploit the therapeutic potential between the inflammatory hypothesis, a change of viewpoint is required. Focus on microcirculation, whose dysfunction is the primary driver of cardiometabolic disease, is mandatory. Several factors play a pivotal role in the capacity of microvascular inflammation to promote a health-to-disease transition: the adipose tissue (in particular, perivascular and epicardial), the mitochondria function, the hyperglycemic damage and their epigenetic signature. Indeed, the low-grade inflammatory response, which is now an acknowledged hallmark of cardiometabolic disease, is promoted by these mediators and leaves a permanent epigenetic scar on the microvasculature. Even if a more profound knowledge about the mechanisms of metabolic memory has been brought to light by recent evidence, we still have to fully understand its mechanisms and clinical potential. Addressing the detrimental role of inflammation by targeting the microvascular phenotype and leveraging epigenetics is the road down which we must go to achieve satisfactory cardiovascular prevention, ultimately leading to disease-free ageing.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Cardiovascular Science, University College London, London, UK
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
13
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
14
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
15
|
The progress of research on histone methylation in ischemic stroke pathogenesis. J Physiol Biochem 2021; 78:1-8. [PMID: 34472033 DOI: 10.1007/s13105-021-00841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Stroke, also known as cerebral stroke or cerebrovascular accident, refers to acute ischemic or hemorrhagic encephalopathy caused by a disturbance to cerebral blood flow. Ischemic stroke is the most common type of cerebral stroke, accounting for approximately 80% of the total incidence of clinical stroke. High morbidity, disability, and mortality rates place heavy burdens on the families of patients and society. An increasing number of studies have shown that histone modification plays an important role in the pathogenesis of ischemic stroke, but most studies on histone modification focus on acetylation, and studies on the role of histone methylation in the pathogenesis of ischemic stroke are limited. Here, we review the role of histone methylation and related histone methyltransferase (HMT) inhibitors in the pathogenesis of ischemic stroke and related HMT inhibitors in the treatment of ischemic stroke, which may open up a new avenue to the study of ischemic stroke.
Collapse
|
16
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
17
|
Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis : Role of G9a signaling during lung epithelial-mesenchymal transition. Toxicol In Vitro 2020; 70:105037. [PMID: 33148527 DOI: 10.1016/j.tiv.2020.105037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer patients who have undergone radiotherapy developed severe complications such as pneumonitis and fibrosis. Upon irradiation, epithelial cells acquire mesenchymal phenotype via a process called epithelial to mesenchymal transition (EMT), which plays a vital role in organ fibrosis. Several mechanisms have been studied on EMT, however, the correlation between radiation-induced EMT and epigenetic changes are not well known. In the present study, we investigated the role of histone methyltransferase G9a on radiation-induced EMT signaling. There was an increase in total global histone methylation level in irradiated epithelial cells. Western blot analysis on irradiated cells showed an increased expression of H3K9me2/3. The pre-treatment of G9a inhibitor enhanced E-cadherin expression and decreased the mesenchymal markers like N-cadherin, vimentin in the radiated group. Surprisingly, radiation-induced ROS generation and pERK1/2 levels were also inhibited by G9a inhibitor BIX01294, which is showing its antioxidant potential. The ChIP-qPCR analysis on the E-cadherin promoter suggested that G9a and Snail might have formed complex to enrich suppressive marker H3K9me2/3. On the whole, our present study suggested that 1] ROS could modify H3K9 methylation via G9a and promote radiation-induced lung EMT in Beas2B and A549 cells 2] E-cadherin promoter enrichment with heterochromatin mark H3K9me2 expression upon irradiation could be modified by regulating G9a methyltransferase.
Collapse
|
18
|
Nikolic D, Jankovic M, Petrovic B, Novakovic I. Genetic Aspects of Inflammation and Immune Response in Stroke. Int J Mol Sci 2020; 21:ijms21197409. [PMID: 33049931 PMCID: PMC7582307 DOI: 10.3390/ijms21197409] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic determinants play important role in the complex processes of inflammation and immune response in stroke and could be studied in different ways. Inflammation and immunomodulation are associated with repair processes in ischemic stroke, and together with the concept of preconditioning are promising modes of stroke treatment. One of the important aspects to be considered in the recovery of patients after the stroke is a genetic predisposition, which has been studied extensively. Polymorphisms in a number of candidate genes, such as IL-6, BDNF, COX2, CYPC19, and GPIIIa could be associated with stroke outcome and recovery. Recent GWAS studies pointed to the variant in genesPATJ and LOC as new genetic markers of long term outcome. Epigenetic regulation of immune response in stroke is also important, with mechanisms of histone modifications, DNA methylation, and activity of non-coding RNAs. These complex processes are changing from acute phase over the repair to establishing homeostasis or to provoke exaggerated reaction and death. Pharmacogenetics and pharmacogenomics of stroke cures might also be evaluated in the context of immuno-inflammation and brain plasticity. Potential novel genetic treatment modalities are challenged but still in the early phase of the investigation.
Collapse
Affiliation(s)
- Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, 11000 Belgrade, Serbia
- Correspondence:
| | - Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Bojana Petrovic
- Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
19
|
Jang C, Kim J, Kwon Y, Jo SA. Telmisartan Inhibits TNFα-Induced Leukocyte Adhesion by Blocking ICAM-1 Expression in Astroglial Cells but Not in Endothelial Cells. Biomol Ther (Seoul) 2020; 28:423-430. [PMID: 32782234 PMCID: PMC7457170 DOI: 10.4062/biomolther.2020.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Telmisartan is an angiotensin-II receptor blocker and acts as a selective modulator of peroxisome proliferator-activated receptor gamma (PPARγ). Several studies have demonstrated that telmisartan ameliorates depression and memory dysfunction and reduces brain inflammation. We hypothesized that the beneficial effects of telmisartan on brain could be due to modulation of the blood-brain barrier (BBB) function. Here, we examined the effect of telmisartan on tumor necrosis factor alpha (TNF-α)-induced expression of intercellular adhesion molecule 1 (ICAM-1) which plays an important role in leukocyte transcytosis through the BBB. Telmisartan blocked TNF-α-induced ICAM-1 expression and leukocyte adhesion in U87MG human glioma cells but showed no effect on human brain microvascular endothelial cells. In U87MG cells, a PPAR antagonist, GW9662 did not block the effect of telmisartan on ICAM1 expression but rather potentiated. Moreover, GW9662 caused no change in TNF-α-induced ICAM-1 expression, suggesting no implication of PPARγ in the telmisartan effect. Further studies showed that telmisartan blocked TNF-α- induced activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factorkappa B (NF-κB). In contrast, inhibitors of JNK, ERK1/2 and NF-κB but not p38, blocked ICAM-1 expression induced by TNF-α. Thus, our findings suggest that the beneficial effect of telmisartan is likely due to the reduction of astrocytic ICAM1 expression and leukocytes adhesion to astrocytes, and that this response was mediated by the inhibition of JNK/ERK1/2/NF-κB activation and in the PPAR-independent manner. In conclusion, this study enhances our understanding of the mechanism by which telmisartan exerts the beneficial brain function.
Collapse
Affiliation(s)
- Changhwan Jang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jungjin Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Youngsun Kwon
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sangmee A Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
20
|
Wei X, Yi X, Zhu XH, Jiang DS. Histone methylation and vascular biology. Clin Epigenetics 2020; 12:30. [PMID: 32070413 PMCID: PMC7027016 DOI: 10.1186/s13148-020-00826-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
Affiliation(s)
- Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China.
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
23
|
Kirkpatrick JE, Kirkwood KL, Woster PM. Inhibition of the histone demethylase KDM4B leads to activation of KDM1A, attenuates bacterial-induced pro-inflammatory cytokine release, and reduces osteoclastogenesis. Epigenetics 2018; 13:557-572. [PMID: 29927684 PMCID: PMC6260135 DOI: 10.1080/15592294.2018.1481703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease (PD) afflicts 46% of Americans with no effective adjunctive therapies available. While most pharmacotherapy for PD targets bacteria, the host immune response is responsible for driving tissue damage and bone loss in severe disease. Herein, we establish that the histone demethylase KDM4B is a potential drug target for the treatment of PD. Immunohistochemical staining of diseased periodontal epithelium revealed an increased abundance of KDM4B that correlates with inflammation. In murine calvarial sections exposed to Aggregatibacter actinomycetemcomitans lipopolysaccharide (Aa-LPS), immunohistochemical staining revealed a significant increase in KDM4B protein expression. The 8-hydroxyquinoline ML324 is known to inhibit the related demethylase KDM4E in vitro, but has not been evaluated against any other targets. Our studies indicate that ML324 also inhibits KDM4B (IC50: 4.9 μM), and decreases the pro-inflammatory cytokine response to an Aa-LPS challenge in vitro. Our results suggest that KDM4B inhibition-induced immunosuppression works indirectly, requiring new protein synthesis. In addition, fluorescence-stained macrophages exhibited a significant decrease in global monomethyl histone 3 lysine 4 (H3K4me) levels following an Aa-LPS challenge that was prevented by KDM4B inhibition, suggesting this effect is produced through KDM1A-mediated demethylation of H3K4. Finally, ML324 inhibition of KDM4B in osteoclast progenitors produced a significant reduction in Aa-LPS-induced osteoclastogenesis. These data link histone methylation with host immune response to bacterial pathogens in PD, and suggest a previously unreported, alternative mechanism for epigenetic control of the host inflammatory environment. As such, KDM4B represents a new therapeutic target for treating hyper-inflammatory diseases that result in bone destruction.
Collapse
Affiliation(s)
- Joy E. Kirkpatrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
24
|
Jiang W, Agrawal DK, Boosani CS. Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 2018; 18:1215-1224. [PMID: 29901135 PMCID: PMC6072136 DOI: 10.3892/mmr.2018.9142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone modifications are the key epigenetic mechanisms that have been identified to regulate gene expression in many human diseases. However, in the early developmental stages, such as in utero and the postnatal stages, histone modifications are essential for gene regulation and cell growth. Atherosclerosis represents a classical example of the involvement of different cell types, and their cumulative effects in the development of atheroma and the progression of the disease. Post translational modifications on proteins either induces their functional activity or renders them inactive. Post translational modifications such as methylation or acetylation on histones have been well characterized, and their role in enhancing or inhibiting specific gene expression was clearly elucidated. In the present review article, the critical roles of different histone modifications that occur in atherosclerosis have been summarized. Different histone proteins have been identified to serve a critical role in the development of atherosclerosis. Specifically, histone methylation and histone acetylation in monocytes, macrophages, vascular smooth muscle cells and in endothelial cells during the progression of atherosclerosis, have been well reported. In recent years, different target molecules and genes that regulate histone modifications have been examined for their effects in the treatment of atherosclerosis in animal models and in clinical trials. An increasing body of evidence suggests that these epigenetic changes resulting from DNA methylation and non-coding RNA may also be associated with histone modifications, thereby indicating that novel therapeutic strategies can be developed by targeting these post translational modifications, which may in turn aid in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Chandra S Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
25
|
Ng GYQ, Yun-An L, Sobey CG, Dheen T, Fann DYW, Arumugam TV. Epigenetic regulation of inflammation in stroke. Ther Adv Neurol Disord 2018; 11:1756286418771815. [PMID: 29774056 PMCID: PMC5949939 DOI: 10.1177/1756286418771815] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body's immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Lim Yun-An
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia
| | - Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Medical Drive, MD9, Singapore School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|