1
|
Seyoum MM, Assumpcao ALFV, Caputi V, Ashwell CM, Honaker CF, Daniels KM, Lyte M, Siegel PB, Taylor RL, Lyte JM. Multigenerational selection for high or low antibody response to sheep red blood cells modulates the chicken cecal microbiome and its relationship to the immune and serotonergic systems. Poult Sci 2025; 104:104943. [PMID: 40020409 PMCID: PMC11910675 DOI: 10.1016/j.psj.2025.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025] Open
Abstract
The chicken cecal microbiome has an important role in regulating immune function, health, resilience to foodborne pathogen carriage, and myriad other factors important in poultry production. However, in chickens, the effects of long-term immune modulation through selective breeding on gut microbiome composition and function remain understudied. The present study aimed to investigate how the multigenerational selection of chickens for high (HAS) or low (LAS) antibody response to sheep red blood cells (SRBC) influences cecal microbiome diversity, community composition, and functional capacity across different ages. Data from both lines and sexes were obtained in generation 49 at 293 days of age and in generation 50 at 28 and 56 days of age. The LAS chickens exhibited greater microbial diversity and abundance, particularly at 56 days (p < 0.05), than HAS. Microbial community composition also varied between the two lines, with age and line influencing microbiome structure across developmental stages and sexes (p < 0.05). Functional profiling revealed that metabolic activity of the LAS microbiome was different compared to the HAS microbiome, with pathways enriched in L-tryptophan biosynthesis, as well as carbon metabolism and degradation processes, suggesting that selection on the humoral immune system fostered alterations in microbial functional capacity. Correlation and co-occurrence analyses with serotonin, 5-hydroxyindoleacetic acid, IgA, and IgY revealed associations between microbial taxa and the neuroendocrine-immune axis, particularly in LAS (p < 0.05), including bacterial taxa known to be involved in serotonergic signaling, such as Clostridia, and immunoglobulin concentrations, including Oscillospiraceae. Overall, these results show that long-term selection for differential antibody responses has lasting impacts on cecal microbiome diversity, community structure, and functional potential. This study provides insights into the evolutionary relationship between the cecal microbiome and its relation to the chicken neuroendocrine-immune axis. Together, the findings of this study suggest specific bacterial taxa adapted to the chicken may be leveraged to affect host humoral immune and serotonergic systems to potentially bolster gut health and increase foodborne pathogen resistance.
Collapse
Affiliation(s)
| | | | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Christopher M Ashwell
- Divison of Animal and Nutritional Sciences, West Virginia University, Morgantown WV 26506, USA
| | | | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lowa, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lowa, USA
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert L Taylor
- Divison of Animal and Nutritional Sciences, West Virginia University, Morgantown WV 26506, USA
| | - Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Chick HM, Williams LK, Sparks N, Khattak F, Vermeij P, Frantzen I, Peeters M, Bijlsma JJE, John D, Ogunrin T, Essex K, Cayrou C, Kanamarlapudi V, Bayliss CD, Ketley JM, Humphrey TJ, Rushton SP, Wilkinson TS. Campylobacter jejuni ST353 and ST464 cause localized gut inflammation, crypt damage, and extraintestinal spread during large- and small-scale infection in broiler chickens. Appl Environ Microbiol 2025; 91:e0161424. [PMID: 39964091 PMCID: PMC11921347 DOI: 10.1128/aem.01614-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/12/2025] [Indexed: 03/20/2025] Open
Abstract
Campylobacter infections in humans and chickens are a significant burden to health services and the poultry industry. In the UK, over 75% of chicken products are Campylobacter-positive at retail, but the knowledge of the mechanisms responsible for extraintestinal spread into edible tissues remains incomplete. This work aimed to establish if two chicken-associated lineages of Campylobacter jejuni, ST353 and ST464, have the potential for extraintestinal spread. Large- and small-scale chicken colonization trials investigated the infection biology of C. jejuni ST353 (three strains) and ST464 (four strains). Both lineages strongly colonized the ileum and ceca and were detected in liver and spleen. C. jejuni ST353 and ST464 spleen load were significantly increased compared to C. jejuni M1 controls. Immune responses in cecal tonsils exhibited early induction of IFN-γ and suppressed TGFβ at 7 days post-infection with C. jejuni ST464. Histochemistry of gut tissue demonstrated significant decreases in intestinal crypt depth in ileal tissue with increasing severity relative to Campylobacter lineage, M1
Collapse
Affiliation(s)
- Heather M. Chick
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Lisa K. Williams
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
- Department of Animal and Agriculture, Hartpury University, Gloucester, United Kingdom
| | - Nick Sparks
- Scotland’s Rural College (SRUC) Barony Campus, Dumfries, United Kingdom
| | - Farina Khattak
- Monogastric Science Research Center, Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | | | | | - Daniel John
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Timothy Ogunrin
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Keioni Essex
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Caroline Cayrou
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Christopher D. Bayliss
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Julian M. Ketley
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Thomas J. Humphrey
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Steven P. Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
3
|
Corona-Torres R, Vohra P, Chintoan-Uta C, Bremner A, Terra VS, Mauri M, Cuccui J, Vervelde L, Wren BW, Stevens MP. Evaluation of a FlpA Glycoconjugate Vaccine with Ten N-Heptasaccharide Glycan Moieties to reduce Campylobacter jejuni Colonisation in Chickens. Vaccines (Basel) 2024; 12:395. [PMID: 38675777 PMCID: PMC11054393 DOI: 10.3390/vaccines12040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Campylobacter is a major cause of acute gastroenteritis in humans, and infections can be followed by inflammatory neuropathies and other sequelae. Handling or consumption of poultry meat is the primary risk factor for human campylobacteriosis, and C. jejuni remains highly prevalent in retail chicken in many countries. Control of Campylobacter in the avian reservoir is expected to limit the incidence of human disease. Toward this aim, we evaluated a glycoconjugate vaccine comprising the fibronectin-binding adhesin FlpA conjugated to up to ten moieties of the conserved N-linked heptasaccharide glycan of C. jejuni or with FlpA alone. The glycan dose significantly exceeded previous trials using FlpA with two N-glycan moieties. Vaccinated birds were challenged with C. jejuni orally or by exposure to seeder-birds colonised by C. jejuni to mimic natural transmission. No protection against caecal colonisation was observed with FlpA or the FlpA glycoconjugate vaccine. FlpA-specific antibody responses were significantly induced in vaccinated birds at the point of challenge relative to mock-vaccinated birds. A slight but significant antibody response to the N-glycan was detected after vaccination with FlpA-10×GT and challenge. As other laboratories have reported protection against Campylobacter with FlpA and glycoconjugate vaccines in chickens, our data indicate that vaccine-mediated immunity may be sensitive to host- or study-specific variables.
Collapse
Affiliation(s)
- Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
- Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Vanessa S. Terra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (V.S.T.); (M.M.); (J.C.); (B.W.W.)
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK; (R.C.-T.); (P.V.); (C.C.-U.); (A.B.); (L.V.)
| |
Collapse
|
4
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Evaluation of Two Recombinant Protein-Based Vaccine Regimens against Campylobacter jejuni: Impact on Protection, Humoral Immune Responses and Gut Microbiota in Broilers. Animals (Basel) 2023; 13:3779. [PMID: 38136816 PMCID: PMC10741133 DOI: 10.3390/ani13243779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Campylobacter infections in humans are traced mainly to poultry products. While vaccinating poultry against Campylobacter could reduce the incidence of human infections, no vaccine is yet available on the market. In our previous study using a plasmid DNA prime/recombinant protein boost vaccine regimen, vaccine candidate YP437 induced partial protective immune responses against Campylobacter in broilers. In order to optimise vaccine efficacy, the vaccination protocol was modified using a protein prime/protein boost regimen with a different number of boosters. Broilers were given two or four intramuscular protein vaccinations (with the YP437 vaccine antigen) before an oral challenge by C. jejuni during a 42-day trial. The caecal Campylobacter load, specific systemic and mucosal antibody levels and caecal microbiota in the vaccinated groups were compared with their respective placebo groups and a challenge group (Campylobacter infection only). Specific humoral immune responses were induced, but no reduction in Campylobacter caecal load was observed in any of the groups (p > 0.05). Microbiota beta diversity analysis revealed that the bacterial composition of the groups was significantly different (p ≤ 0.001), but that vaccination did not alter the relative abundance of the main bacterial taxa residing in the caeca. The candidate vaccine was ineffective in inducing a humoral immune response and therefore did not provide protection against Campylobacter spp. infection in broilers. More studies are required to find new candidates.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
- Life Environmental Sciences Department, University of Rennes 1, 37500 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Raphaël Brunetti
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| | - Ségolène Quesne
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Alassane Keita
- SELEAC—Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Daniel Dory
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| |
Collapse
|
5
|
Yanestria SM, Effendi MH, Tyasningsih W, Mariyono M, Ugbo EN. First report of phenotypic and genotypic (bla OXA-61) beta-lactam resistance in Campylobacter jejuni from broilers in Indonesia. Vet World 2023; 16:2210-2216. [PMID: 38152271 PMCID: PMC10750733 DOI: 10.14202/vetworld.2023.2210-2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim Campylobacter is a zoonotic bacterium that is a major source of foodborne diseases. In humans, most cases of campylobacteriosis are caused by Campylobacter jejuni. Poultry is the main reservoir of Campylobacter for humans, because Campylobacter is part of the normal flora of the digestive tract of poultry. Antimicrobial resistance to several antibiotics in Campylobacter isolated from humans and food animals has increased rapidly. Beta-lactam is an antibiotic with a high prevalence of resistance in Campylobacter. This study aimed to investigate phenotypic and genotypic (blaOXA-61) beta-lactam resistance in C. jejuni from broilers in Indonesia. Materials and Methods A total of 100 samples of broiler intestinal contents were obtained from 10 broiler farms in Pasuruan Regency, Indonesia. Campylobacter jejuni was identified using conventional and polymerase chain reaction (PCR)-based methods. Phenotypic detection of beta-lactam resistance was performed using an antimicrobial susceptibility test with antibiotic disks of aztreonam, ampicillin, and amoxicillin-clavulanic acid. Genotypic detection by PCR was performed using the blaOXA-61 gene, which encodes beta-lactamase. Results Campylobacter jejuni was identified in 23% of the samples. Phenotypically, 100% (23/23) and 73.9% (17/23) C. jejuni isolates had high resistance to aztreonam and ampicillin, respectively, but all isolates were susceptible to amoxicillin-clavulanic acid. Genotypically, all isolates carried blaOXA-61, indicated by the presence of a 372-bp PCR product. Conclusion Campylobacter jejuni is highly resistant to beta-lactams and is a serious threat to human health. Resistance to beta-lactams should be monitored because beta-lactamase genes can be transferred between bacteria. Public awareness must also be increased on the importance of using antibiotics rationally in humans and animals.
Collapse
Affiliation(s)
- Sheila Marty Yanestria
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Wiwiek Tyasningsih
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mariyono Mariyono
- Bacteriology Laboratory, Balai Besar Veteriner Wates, Jl. Yogyakarta-Wates No. Km. 27, Wates, Yogyakarta 55651, Central Java, Indonesia
| | - Emmanuel Nnabuike Ugbo
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Enugu - Abakaliki Rd, 481101, Abakaliki, Ebonyi, Nigeria
| |
Collapse
|
6
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
7
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Plasmid DNA Prime/Protein Boost Vaccination against Campylobacter jejuni in Broilers: Impact of Vaccine Candidates on Immune Responses and Gut Microbiota. Pharmaceutics 2023; 15:pharmaceutics15051397. [PMID: 37242639 DOI: 10.3390/pharmaceutics15051397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Campylobacter infections, traced to poultry products, are major bacterial foodborne zoonoses, and vaccination is a potential solution to reduce these infections. In a previous experimental trial using a plasmid DNA prime/recombinant protein boost vaccine regimen, two vaccine candidates (YP437 and YP9817) induced a partially protective immune response against Campylobacter in broilers, and an impact of the protein batch on vaccine efficacy was suspected. This new study was designed to evaluate different batches of the previously studied recombinant proteins (called YP437A, YP437P and YP9817P) and to enhance the immune responses and gut microbiota studies after a C. jejuni challenge. Throughout the 42-day trial in broilers, caecal Campylobacter load, specific antibodies in serum and bile, the relative expression of cytokines and β-defensins, and caecal microbiota were assessed. Despite there being no significant reduction in Campylobacter in the caecum of vaccinated groups, specific antibodies were detected in serum and bile, particularly for YP437A and YP9817P, whereas the production of cytokines and β-defensins was not significant. The immune responses differed according to the batch. A slight change in microbiota was demonstrated in response to vaccination against Campylobacter. The vaccine composition and/or regimen must be further optimised.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Raphaël Brunetti
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Ségolène Quesne
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Alassane Keita
- SELEAC-Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Marianne Chemaly
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Daniel Dory
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| |
Collapse
|
8
|
Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Gloanec N, Dory D, Quesne S, Béven V, Poezevara T, Keita A, Chemaly M, Guyard-Nicodème M. Impact of DNA Prime/Protein Boost Vaccination against Campylobacter jejuni on Immune Responses and Gut Microbiota in Chickens. Vaccines (Basel) 2022; 10:vaccines10060981. [PMID: 35746589 PMCID: PMC9231206 DOI: 10.3390/vaccines10060981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/15/2023] Open
Abstract
Campylobacteriosis is reported to be the leading zoonosis in Europe, and poultry is the main reservoir of Campylobacter. Despite all the efforts made, there is still no efficient vaccine to fight this bacterium directly in poultry. Recent studies have reported interactions between the chicken immune system and gut microbiota in response to Campylobacter colonisation. The present study was designed to analyse in more depth the immune responses and caecal microbiota following vaccination with a DNA prime/protein boost flagellin-based vaccine that induces some protection in specific-pathogen-free White Leghorn chickens, as shown previously. These data may help to improve future vaccination protocols against Campylobacter in poultry. Here a vaccinated and a placebo group were challenged by C. jejuni at the age of 19 days. A partial reduction in Campylobacter loads was observed in the vaccinated group. This was accompanied by the production of specific systemic and mucosal antibodies. Transient relatively higher levels of Interleukin-10 and antimicrobial peptide avian β-defensin 10 gene expressions were observed in the vaccinated and placebo groups respectively. The analysis of caecal microbiota revealed the vaccination's impact on its structure and composition. Specifically, levels of operational taxonomic units classified as Ruminococcaceae and Bacillaceae increased on day 40.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Daniel Dory
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- Correspondence: ; Tel.: +33-(0)2-96-31-64-42
| | - Ségolène Quesne
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Véronique Béven
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
| | - Typhaine Poezevara
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Alassane Keita
- SELEAC–Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Muriel Guyard-Nicodème
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| |
Collapse
|
10
|
Heidaritabar M, Carney V, Groenen MAM, Plastow G. Assessing the genomic diversity and relatedness in 10 Canadian heritage chicken lines using whole-genome sequence data. J Anim Breed Genet 2022; 139:556-573. [PMID: 35579203 DOI: 10.1111/jbg.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
In the past 50 years, there has been a steep increase in the demand for poultry products, met by increasing production along with genetic selection for improved growth, efficiency, health and reproduction. The selection tends to reduce the number and type of genetic resources contributing to the majority of production. The University of Alberta maintains 10 heritage chicken lines (Brown Leghorn (BL), Light Sussex (LS), New Hampshire (NH), Saskatchewan Barred Rock (SaskBR), Shaver Barred Rock (ShaverBR), Shaver Rhode Island Red (RIR), White Leghorn (WL) and three commercial crosses called Alberta Meat Control strains 1957 (AMC-1957), 1978 sire line (AMC-1978-20S) and 1978 dam line (AMC-1978-30D), that played a large role in the evolution of the poultry industry in Canada. Since these lines have not been subjected to the same intensive selection pressures as commercial counterparts, they may contain unique genetic variants lost in commercial lines. Thus, for conservation management of these lines, the first step is to assess their genetic diversity. 71 male samples from across 10 lines were analysed using whole-genome sequencing and patterns of genetic diversity and relatedness among these lines were explored. AMC-1978-30D showed the highest genetic diversity as reflected in observed and expected heterozygosity (0.327 and 0.250), percentage of polymorphic markers (~ 65%) and average recent inbreeding coefficient (-0.039), followed by AMC-1978-20S and AMC-1957. BL showed the lowest genetic diversity as reflected in observed and expected heterozygosity (0.130 and 0.116), percentage of polymorphic markers (~31%) and average recent inbreeding coefficient (0.577), followed by LS, WL and NH. Our findings highlight the need for special attention for the populations of BL, WL, LS and NH, with the largest levels of inbreeding. Our results can be used to develop a breeding strategy to optimize and conserve the genetic variation present in heritage lines.
Collapse
Affiliation(s)
- Marzieh Heidaritabar
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie Carney
- Poultry Innovation Partnership, University of Alberta, Edmonton, Alberta, Canada
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Live-Attenuated Oral Vaccines to Reduce Campylobacter Colonization in Poultry. Vaccines (Basel) 2022; 10:vaccines10050685. [PMID: 35632441 PMCID: PMC9143049 DOI: 10.3390/vaccines10050685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
The control of Campylobacter in poultry at the pre-harvest level is critical to reducing foodborne infections with Campylobacter since the consumption of contaminated poultry is the most frequent cause of human campylobacteriosis. Although poultry vaccination is suggested as useful intervention measures, no Campylobacter vaccines are currently available. To develop live-attenuated oral Campylobacter vaccines, in this study, we evaluated the efficacy of pre-colonization by oxidative stress defense mutants, including knockout mutants of ahpC, katA, and sodB, in preventing Campylobacter jejuni from colonizing poultry. Interestingly, when chickens were pre-colonized with ΔahpC and ΔkatA mutants, rather than the ΔsodB mutant, the level of C. jejuni colonization was significantly reduced within 35 days. Further studies demonstrated when chickens were pre-colonized with the ΔahpC mutant by oral challenge with a high dose (ca., 5 × 108 CFU/bird) and a low dose (ca., 5 × 106 CFU/bird), it twice reduced the level of C. jejuni by 3.9 log10CFU/g feces and 3 log10CFU/g feces after 42 days, respectively, compared to the untreated control. Due to a colonization defect, the ΔahpC mutant was removed from chickens within 42 days. After excretion from the host, moreover, the ΔahpC mutant cannot survive in aerobic environments because of compromised aerotolerance. Our findings suggest that the ahpC mutant has a great potential for on-farm application to control C. jejuni at the pre-harvest level.
Collapse
|
12
|
Vohra P, Chintoan-Uta C, Bremner A, Mauri M, Terra VS, Cuccui J, Wren BW, Vervelde L, Stevens MP. Evaluation of a Campylobacter jejuni N-glycan-ExoA glycoconjugate vaccine to reduce C. jejuni colonisation in chickens. Vaccine 2021; 39:7413-7420. [PMID: 34799141 DOI: 10.1016/j.vaccine.2021.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 01/10/2023]
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and handling or consumption of contaminated poultry meat is the key source of infection. Glycoconjugate vaccines containing the C. jejuni N-glycan have been reported to be partially protective in chickens. However, our previous studies with subunit vaccines comprising the C. jejuni FlpA or SodB proteins with up to two or three C. jejuni N-glycans, respectively, failed to elicit significant protection. In this study, protein glycan coupling technology was used to add up to ten C. jejuni N-glycans onto a detoxified form of Pseudomonas aeruginosa exotoxin A (ExoA). The glycoprotein, G-ExoA, was evaluated for efficacy against intestinal colonisation of White Leghorn chickens by C. jejuni strains M1 and 11168H relative to unglycosylated ExoA. Chickens were challenged with the minimum dose required for reliable colonisation, which was 102 colony-forming units (CFU) for strain M1 and and 104 CFU for strain 11168H. Vaccine-specific serum IgY was detected in chickens vaccinated with both ExoA and G-ExoA. However, no reduction in caecal colonisation by C. jejuni was observed. While the glycan dose achieved with G-ExoA was higher than FlpA- or SodB-based glycoconjugates that were previously evaluated, it was lower than that of glycoconjugates where protection against C. jejuni has been reported, indicating that protection may be highly sensitive to the amount of glycan presented and/or study-specific variables.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Marta Mauri
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Vanessa S Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | | |
Collapse
|
13
|
Nothaft H, Perez-Muñoz ME, Yang T, Murugan AVM, Miller M, Kolarich D, Plastow GS, Walter J, Szymanski CM. Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Front Microbiol 2021; 12:734526. [PMID: 34867850 PMCID: PMC8637857 DOI: 10.3389/fmicb.2021.734526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abarna V M Murugan
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Southport, QLD, Australia
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Livestock Gentec, Edmonton, AB, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals (Basel) 2021; 11:1355. [PMID: 34068764 PMCID: PMC8150830 DOI: 10.3390/ani11051355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter spp. are widely distributed microorganisms, many of which are commensals of gastrointestinal tract in multiple animal species, including poultry. Most commonly detected are C. jejuni and C. coli. Although infections are usually asymptomatic in poultry, poultry meat and products represent main sources of infection with these bacteria to humans. According to recent EFSA report, campylobacteriosis is the most commonly reported zoonotic disease. In 2018, EFSA Panel on Biological Hazards indicated that use of feed and water additives is the second most likely strategy that can be successful in minimizing Campylobacter spp. colonization rate in broiler chickens. One of those feed and water additives are probiotics. From numerous research papers it can be concluded that probiotics exhibit plenty of mechanisms of anti-Campylobacter activity, which were evaluated under in vitro conditions. These results, to some extent, can explain the efficacy of probiotics in in vivo studies, although different outcome can be observed under these two laboratory conditions. Probiotics are capable of reducing Campylobacter spp. population count in poultry gastrointestinal tract and they can reduce carcass contamination. Potential modes of anti-Campylobacter activity of probiotics, results of in vivo studies and studies performed at a farm level are widely discussed in the paper.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (J.K.); (A.K.)
| | | | | |
Collapse
|
15
|
Mortada M, Cosby DE, Akerele G, Ramadan N, Oxford J, Shanmugasundaram R, Ng TT, Selvaraj RK. Characterizing the immune response of chickens to Campylobacter jejuni (Strain A74C). PLoS One 2021; 16:e0247080. [PMID: 33720955 PMCID: PMC7959354 DOI: 10.1371/journal.pone.0247080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Campylobacter is one of the major foodborne pathogens causing bacterial gastroenteritis worldwide. The immune response of broiler chickens to C. jejuni is under-researched. This study aimed to characterize the immune response of chickens to Campylobacter jejuni colonization. Birds were challenged orally with 0.5 mL of 2.4 x 108 CFU/mL of Campylobacter jejuni or with 0.5 mL of 0.85% saline. Campylobacter jejuni persisted in the ceca of challenged birds with cecal colonization reaching 4.9 log10 CFU/g on 21 dpi. Campylobacter was disseminated to the spleen and liver on 7 dpi and was cleared on 21 dpi from both internal organs. Challenged birds had a significant increase in anti-Campylobacter serum IgY (14&21 dpi) and bile IgA (14 dpi). At 3 dpi, there was a significant suppression in T-lymphocytes derived from the cecal tonsils of birds in the challenge treatment when compared to the control treatment after 72 h of ex vivo stimulation with Con A or C. jejuni. The T-cell suppression on 3 dpi was accompanied by a significant decrease in LITAF, K60, CLAU-2, IL-1β, iNOS, and IL-6 mRNA levels in the ceca and an increase in nitric oxide production from adherent splenocytes of challenged birds. In addition, on 3 dpi, there was a significant increase in CD4+ and CD8+ T lymphocytes in the challenge treatment. On 14 dpi, both pro and anti-inflammatory cytokines were upregulated in the spleen, and a significant increase in CD8+ T lymphocytes in Campylobacter-challenged birds’ ceca was observed. The persistence of C. jejuni in the ceca of challenged birds on 21 dpi was accompanied by an increase in IL-10 and LITAF mRNA levels, an increase in MNC proliferation when stimulated ex-vivo with the diluted C. jejuni, an increase in serum specific IgY antibodies, an increase in both CD4+ and CD8+ cells, and a decrease in CD4+:CD8+ cell ratio. The balanced Th1 and Th2 immune responses against C. jejuni might explain the ceca’s bacterial colonization and the absence of pathology in Campylobacter-challenged birds. Future studies on T lymphocyte subpopulations should elucidate a pivotal role in the persistence of Campylobacter in the ceca.
Collapse
Affiliation(s)
- Mohamad Mortada
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas E. Cosby
- USDA-ARS, Poultry Microbiological Safety and Processing Research Unit, Athens, Georgia, United States of America
| | - Gabriel Akerele
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Nour Ramadan
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Jarred Oxford
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | | | - Theros T. Ng
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Sciences, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Pumtang-on P, Mahony TJ, Hill RA, Vanniasinkam T. A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms 2021; 9:397. [PMID: 33671947 PMCID: PMC7919041 DOI: 10.3390/microorganisms9020397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Campylobacter jejuni infection linked to the consumption of contaminated poultry products is one of the leading causes of human enteric illness worldwide. Vaccination of chickens is one of the potential strategies that could be used to control C. jejuni colonization. To date, various C. jejuni vaccines using potential antigens have been evaluated, but a challenge in identifying the most effective formulation is the wide variability in vaccine efficacies reported. A systematic review was undertaken to compare C. jejuni vaccine studies. Based upon specific selection criteria eligible papers were identified and included in the analysis. Vaccine efficacy reported from different C. jejuni antigens, vaccine types, and vaccination regimens reported in these papers were reviewed. Our analysis shows that total outer membrane proteins and cysteine ABC transporter substrate-binding protein were among the most efficacious vaccine antigen candidates reported. This review also highlights the importance of the need for increased consistency in the way C. jejuni vaccine studies in poultry are designed and reported in order to be able to undertake a robust comparison of C. jejuni vaccine candidates.
Collapse
Affiliation(s)
- Pongthorn Pumtang-on
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| | - Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rodney A. Hill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| | - Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| |
Collapse
|
17
|
The Probiotic Lactobacillus fermentum Biocenol CCM 7514 Moderates Campylobacter jejuni-Induced Body Weight Impairment by Improving Gut Morphometry and Regulating Cecal Cytokine Abundance in Broiler Chickens. Animals (Basel) 2021; 11:ani11010235. [PMID: 33477806 PMCID: PMC7832853 DOI: 10.3390/ani11010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High consumption of chicken meat and derived products has been associated with Campylobacter jejuni infections in humans. Probiotics have been exploited successfully with the aim of preventing colonization by unwanted microorganisms in birds. In this research, we investigated the effects of Lactobacillus fermentum Biocenol CCM 7514 supplementation on body weight, morphometry of the intestine and the cecal cytokine response. Probiotic-treated chickens showed higher body weight values than those exposed to C. jejuni or reared under control conditions. These differences in body weight were correlated to the overall characteristics of the small intestine, with larger villi and deeper crypts, observed in chickens administered with L. fermentum; such conditions are known to favor nutrient absorption. Likewise, body weight proved to be correlated to transcript abundance of IL-1β and IL-13. In probiotic-treated birds, such factors were upregulated in comparison to what was detected in C. jejuni-infected chickens; these interleukins are considered crucial in the response to invading pathogens. Clearly, these results show that administration of this probiotic strain lessens the negative effects elicited by C. jejuni and ultimately improves chicken body weight. Abstract This research was conducted to investigate if the administration of the probiotic Lactobacillus fermentum could influence body weight, intestinal morphometry and the cecal cytokine response in Campylobacter jejuni-infected chickens. Seventy-two 1-day old COBB 500 male chicks were allocated randomly into four experimental groups. (I) Control group (C), in which chicks were left untreated. (II) LB group, treated with L. fermentum. (III) Cj group, infected with C. jejuni and (IV) coexposure group in which both bacteria were administered. Body weight was registered and then all birds were slaughtered; samples from the small intestine and caecum were collected at 4- and 7-days post infection. The experiment lasted eleven days. Villi height and crypt depth ratios of the duodenum, jejunum and ileum were evaluated using appropriate software, while reverse transcription quantitative PCR (RT-qPCR) was utilized for assessing transcript levels of key cecal inflammatory cytokines (IL-1β, IL-18, IL-17, IL-15, IL13 and IL-4). Campylobacter-infected birds showed lower body weight values than those supplemented with the probiotic; these birds, in turn, proved to be heavier than those reared under control conditions. L. fermentum administration improved morphometrical parameters of the duodenum, jejunum and ileum; in general, villi were larger and crypts deeper than those identified in control conditions. Moreover, the negative effects elicited by C. jejuni were not observed in chickens exposed to the probiotic. Significant differences were also determined with regards to transcript abundance of all evaluated cytokines in the caecum. C. jejuni induced a downregulation of the studied interleukins; however, such a response was heightened by administration of L. fermentum, with an increase rate of transcription that promoted a more effective response to a C. jejuni infection. The effects of experimental treatments proved to vary between sampling points. Conclusively, these results demonstrate that L. fermentum lessens the negative effects elicited by C. jejuni on body weight by alleviating the impact on intestinal morphometry and cecal cytokine response, which ultimately improve chicken growth performance.
Collapse
|
18
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
19
|
Vohra P, Chintoan-Uta C, Terra VS, Bremner A, Cuccui J, Wren BW, Vervelde L, Stevens MP. Evaluation of Glycosylated FlpA and SodB as Subunit Vaccines Against Campylobacter jejuni Colonisation in Chickens. Vaccines (Basel) 2020; 8:vaccines8030520. [PMID: 32932979 PMCID: PMC7564835 DOI: 10.3390/vaccines8030520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and the handling or consumption of contaminated poultry meat is the key source of infection. C. jejuni proteins FlpA and SodB and glycoconjugates containing the C. jejuni N-glycan have been separately reported to be partially protective vaccines in chickens. In this study, two novel glycoproteins generated by protein glycan coupling technology-G-FlpA and G-SodB (with two and three N-glycosylation sites, respectively)-were evaluated for efficacy against intestinal colonisation of chickens by C. jejuni strain M1 relative to their unglycosylated variants. Two independent trials of the same design were performed with either a high challenge dose of 107 colony-forming units (CFU) or a minimum challenge dose of 102 CFU of C. jejuni M1. While antigen-specific serum IgY was detected in both trials, no reduction in caecal colonisation by C. jejuni M1 was observed and glycosylation of vaccine antigens had no effect on the outcome. Our data highlight inconsistencies in the outcome of C. jejuni vaccination trials that may reflect antigen-, challenge strain-, vaccine administration-, adjuvant- and chicken line-specific differences from previously published studies. Refinement of glycoconjugate vaccines by increasing glycosylation levels or using highly immunogenic protein carriers could improve their efficacy.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
- Institute for Immunology and Infection Research, School of Biological Sciences, Charlotte Auerbach Road, University of Edinburgh, Edinburgh EH9 3FL, UK
- Correspondence: ; Tel.: +44-(0)-131-651-7112
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Vanessa S. Terra
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (V.S.T.); (J.C.); (B.W.W.)
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (C.C.-U.); (A.B.); (L.V.); (M.P.S.)
| |
Collapse
|
20
|
Karaffová V, Revajová V, Koščová J, Gancarčíková S, Nemcová R, Ševčíková Z, Herich R, Levkut M. Local intestinal immune response including NLRP3 inflammasome in broiler chicken infected with Campylobacter jejuni after administration of Lactobacillus reuteri B1/1. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1788516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- V. Karaffová
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - V. Revajová
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - J. Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - S. Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - R. Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Z. Ševčíková
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - R. Herich
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - M. Levkut
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Neuroimmunological Institute SAS, Bratislava, Slovakia
| |
Collapse
|
21
|
Hameed A. Human Immunity Against Campylobacter Infection. Immune Netw 2019; 19:e38. [PMID: 31921468 PMCID: PMC6943174 DOI: 10.4110/in.2019.19.e38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Campylobacter is a worldwide foodborne pathogen, associated with human gastroenteritis. The efficient translocation of Campylobacter and its ability to secrete toxins into host cells are the 2 key features of Campylobacter pathophysiology which trigger inflammation in intestinal cells and contribute to the development of gastrointestinal symptoms, particularly diarrhoea, in humans. The purpose of conducting this literature review is to summarise the current understanding of: i) the human immune responses involved in the elimination of Campylobacter infection and ii) the resistance potential in Campylobacter against these immune responses. This review has highlighted that the intestinal epithelial cells are the preliminary cells which sense Campylobacter cells by means of their cell-surface and cytosolic receptors, activate various receptors-dependent signalling pathways, and recruit the innate immune cells to the site of inflammation. The innate immune system, adaptive immune system, and networking between these systems play a crucial role in bacterial clearance. Different cellular constituents of Campylobacter, mainly cell membrane lipooligosaccharides, capsule, and toxins, provide protection to Campylobacter against the human immune system mediated killing. This review has also identified gaps in knowledge, which are related to the activation of following during Campylobacter infection: i) cathelicidins, bactericidal permeability-increasing proteins, chemokines, and inflammasomes in intestinal epithelial cells; ii) siglec-7 receptors in dendritic cell; iii) acute phase proteins in serum; and iv) T-cell subsets in lymphoid nodules. This review evaluates the existing literature to improve the understanding of human immunity against Campylobacter infection and identify some of the knowledge gaps for future research.
Collapse
Affiliation(s)
- Amber Hameed
- Division of Life Sciences, University of Northampton, Northampton NN1 5PH, UK
| |
Collapse
|
22
|
Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens. Mol Immunol 2019; 111:182-197. [PMID: 31078054 DOI: 10.1016/j.molimm.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) has recently emerged as a new pattern of protein secretions in Campylobacter jejuni (C. jejuni). Within the T6SS cluster, hemolysin co-regulated protein (hcp) is considered as a hallmark of functional T6SS and holds key role in bacterial virulence. As poultry is the primary reservoir of C. jejuni and the major sources for human infection, we evaluated the capacity of recombinant hcp (rhcp) immunization in blocking C. jejuni colonization in chickens with an aim to control bacterial transmission to humans via poultry food chain. Considering the mucosal route is the primary portal for C. jejuni entry and gut mucosa offers the apposite site for C. jejuni adherence, we investigated the immune-protective potential of intra-gastric administration of rhcp using chitosan-based nanoparticles. To achieve this goal, full length coding sequence of hcp gene from C. jejuni was cloned and expressed in E. coli. Purified rhcp was entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) and orally gavaged in chickens. Our results suggest that intra-gastric immunization of CS-TPP-rhcp induces consistent and steady increase in intestinal (sIgA) and systemic antibody (IgY) response against rhcp with significant reduction in cecal load of C. jejuni. The protection afforded by rhcp associated cellular responses with Th1 and Th17 profile in terms of increased expression of NFkB, IL-1β, IL-8, IL-6, IFN-γ and IL-17 A genes. Though systemic immunization of rhcp with IFA resulting in a robust systemic (IgY) and local (sIgA) antibody response, mucosal administration of rhcp loaded CS-TPP NPs was found to be superior in terms of bacterial clearance. Altogether, present study suggests that chitosan based intra-gastric delivery of rhcp have several advantages over the injectable composition and could be a promising vaccine approach to effectively control C. jejuni colonization in chickens.
Collapse
|
23
|
Sylte MJ, Inbody MH, Johnson TA, Looft T, Line JE. Evaluation of different Campylobacter jejuni isolates to colonize the intestinal tract of commercial turkey poults and selective media for enumeration. Poult Sci 2018. [PMID: 29514291 DOI: 10.3382/ps/pex384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Consumption of contaminated poultry products is the main source of human campylobacteriosis, for which Campylobacter jejuni is responsible for 90% of human cases. Although chickens are believed to be a main source of human exposure to C. jejuni, turkeys also contribute to cases of human infection. Little is known about the kinetics of C. jejuni intestinal colonization in turkeys, or best selective media for their recovery. Enumeration of C. jejuni from intestinal samples can be challenging because most selective Campylobacter media support the growth of non-Campylobacter organisms. In this study, we sought to compare a) C. jejuni isolates that persistently colonize different compartments of the poult intestinal tract, and b) selective media to enumerate C. jejuni from turkey intestinal samples. Three-week-old poults were orally colonized with C. jejuni isolates NCTC 11168 or NADC 20827 (isolated from a turkey flock). Mock-colonized poults were orally gavaged with uninoculated media. Poults were euthanized at d 3, 7, and 21 post colonization and direct plated on different selective Campylobacter media [Campy Line agar with sulfamethoxazole (CLA-S), CHROMagar Campylobacter (CAC) and Campy Cefex] for enumeration. Isolates NCTC 11168 and NADC 20827 poorly colonized the distal ileum. Both isolates colonized the colon, but the number of NADC 20827 significantly decreased at d 21. Isolates NCTC 11168 and NADC 20827 persistently colonized the cecum for up to 21 days. There was no significant difference in the Campylobacter amount recovered on CLA-S and CAC. Campy Cefex failed to prevent growth of background microbes to enumerate C. jejuni from turkey samples. Two independent PCR assays (multiplex PCR and qPCR) confirmed that colonies grown on CLA-S or CAC were C. jejuni. Data from this study demonstrated that isolates NCTC 11168 and NADC 20827 persistently colonized the cecum, and CLA-S or CAC were successful to enumerate Campylobacter from intestinal samples. These findings will be useful to evaluate the host response by C. jejuni in turkeys, and test pre-harvest strategies to reduce its colonization and promote food safety.
Collapse
Affiliation(s)
- M J Sylte
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, 50010
| | - M H Inbody
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, 50010
| | - T A Johnson
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, 50010
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, 50010
| | - J E Line
- Poultry Microbiological Safety and Processing Research Unit, U.S. Department of Agriculture, Agricultural Research Services, U.S National Poultry Research Center, Athens, GA, 30605
| |
Collapse
|
24
|
Li L, Pielsticker C, Han Z, Kubasová T, Rychlik I, Kaspers B, Rautenschlein S. Infectious bursal disease virus inoculation infection modifies Campylobacter jejuni-host interaction in broilers. Gut Pathog 2018; 10:13. [PMID: 29610580 PMCID: PMC5877392 DOI: 10.1186/s13099-018-0241-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is considered as a chicken commensal. The gut microbiota and the immune status of the host may affect its colonization. Infectious bursal disease virus (IBDV) is an immunosuppressive virus of chickens, which allows secondary pathogens to invade or exacerbates their pathogenesis. To investigate the effect of IBDV-induced immunosuppression on the pathogenesis of C. jejuni, broiler chickens were inoculated with a very virulent (vv) strain of IBDV at 14 days post hatch followed by C. jejuni inoculation at 7 (Experiment A) or 9 (Experiment B) days post virus (IBDV) inoculation. RESULTS vvIBDV-infection led to a depression in caecal lamina propria B lymphocytes and the anti-C. jejuni-antibody response starting at 14 days post C. jejuni inoculation (pbi). The C. jejuni-colonization pattern was comparable between mono-inoculated groups of both experiments, but it varied for vvIBDV + C. jejuni co-inoculated groups. In Experiment A significant higher numbers of colony forming units (CFU) of C. jejuni were detected in the caecum of co-inoculated birds compared to C. jejuni-mono-inoculated birds in the early phase after C. jejuni-inoculation. In Experiment B the clearance phase was affected in the co-inoculated group with significantly higher CFU at 21 days pbi compared to the mono-inoculated group (P < 0.05). No major differences were seen in numbers local lamina propria T lymphocyte populations between C. jejuni-inoculated groups with or without vvIBDV-infection. Interestingly, both pathogens affected the microbiota composition. The consequences of these microflora changes for the host have to be elucidated further. CONCLUSION Our data suggests that the timing between viral and bacterial infection might affect the outcome of C. jejuni colonization differently. Our results confirm previous studies that anti-Campylobacter-antibodies may specifically be important for the clearance phase of the bacteria. Therefore, as vvIBDV is widely distributed in the field, it may have a significant impact on the colonization and shedding rate of C. jejuni in commercial poultry flocks. Subsequently, successful IBDV-control strategies may indirectly also benefit the gut-health of chickens.
Collapse
Affiliation(s)
- Li Li
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Colin Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Zifeng Han
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Tereza Kubasová
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Bernd Kaspers
- Department for Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinastr. 13, 80539 Munich, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
25
|
Meunier M, Guyard-Nicodème M, Vigouroux E, Poezevara T, Béven V, Quesne S, Amelot M, Parra A, Chemaly M, Dory D. A DNA prime/protein boost vaccine protocol developed against Campylobacter jejuni for poultry. Vaccine 2018; 36:2119-2125. [PMID: 29555216 DOI: 10.1016/j.vaccine.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Vaccination of broilers is one of the potential ways to decrease Campylobacter intestinal loads and therefore may reduce human disease incidence. Despite many studies, no efficient vaccine is available yet. Using the reverse vaccinology strategy, we recently identified new vaccine candidates whose immune and protective capacities need to be evaluated in vivo. Therefore, the goal of the present study was to develop and evaluate an avian subunit vaccine protocol for poultry against Campylobacter jejuni. For this, flagellin was used as vaccine antigen candidate. A DNA prime/protein boost regimen was effective in inducing a massive protective immune response against C. jejuni in specific pathogen free Leghorn chickens. Contrastingly, the same vaccine regimen stimulated the production of antibodies against Campylobacter in conventional Ross broiler chickens harbouring maternally derived antibodies against Campylobacter, but not the control of C. jejuni colonization. These results highlight the strength of the vaccine protocol in inducing protective immunity and the significance of the avian strain and/or immune status in the induction of this response. Nevertheless, as such the vaccine protocol is not efficient in broilers to induce protection and has to be adapted; this has been done in one of our recent published work.
Collapse
Affiliation(s)
- Marine Meunier
- GVB - Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France; HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Muriel Guyard-Nicodème
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Estelle Vigouroux
- GVB - Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Typhaine Poezevara
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Véronique Béven
- GVB - Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Ségolène Quesne
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Michel Amelot
- SELEAC - Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | | | - Marianne Chemaly
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| | - Daniel Dory
- GVB - Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France.
| |
Collapse
|
26
|
Meunier M, Guyard-Nicodème M, Vigouroux E, Poezevara T, Beven V, Quesne S, Bigault L, Amelot M, Dory D, Chemaly M. Promising new vaccine candidates against Campylobacter in broilers. PLoS One 2017; 12:e0188472. [PMID: 29176789 PMCID: PMC5703506 DOI: 10.1371/journal.pone.0188472] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1) significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.
Collapse
Affiliation(s)
- Marine Meunier
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Muriel Guyard-Nicodème
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Estelle Vigouroux
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Typhaine Poezevara
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Véronique Beven
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - S. Quesne
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Lionel Bigault
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Michel Amelot
- SELEAC—Avian Breeding and Experiment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Daniel Dory
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Marianne Chemaly
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| |
Collapse
|
27
|
Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens. Appl Environ Microbiol 2017; 83:AEM.01523-17. [PMID: 28939610 DOI: 10.1128/aem.01523-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Source attribution studies report that the consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimization of the vaccine for commercial broiler chickens has great potential to prevent the entry of the pathogen into the food chain. Here, we tested the same vaccination approach in broiler chickens and observed similar efficacies in pathogen load reduction, stimulation of the host IgY response, the lack of C. jejuni resistance development, uniformity in microbial gut composition, and the bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of Clostridiales cluster XIVa, Anaerosporobacter mobilis, that was significantly more abundant in responder birds. In broiler chickens, coadministration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody responses, and weight gain. To investigate whether the responder-nonresponder effect was due to the selection of a C. jejuni "supercolonizer mutant" with altered phase-variable genes, we analyzed all poly(G)-containing loci of the input strain compared to nonresponder colony isolates and found no evidence of phase state selection. However, untargeted nuclear magnetic resonance (NMR)-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels that is possibly linked to increased microbial diversity in this subgroup. The comprehensive methods used to examine the bimodality of the vaccine response provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.IMPORTANCE Campylobacter jejuni is a common cause of human diarrheal disease worldwide and is listed by the World Health Organization as a high-priority pathogen. C. jejuni infection typically occurs through the ingestion of contaminated chicken meat, so many efforts are targeted at reducing C. jejuni levels at the source. We previously developed a vaccine that reduces C. jejuni levels in egg-laying chickens. In this study, we improved vaccine performance in meat birds by supplementing the vaccine with probiotics. In addition, we demonstrated that C. jejuni colonization levels in chickens are negatively correlated with the abundance of clostridia, another group of common gut microbes. We describe new methods for vaccine optimization that will assist in improving the C. jejuni vaccine and other vaccines under development.
Collapse
|