1
|
Jeon SW, Kwon J, Ko HG, Yoon JS, Kim YA, Lee JR, Kang MH, Kim HY. Synthesis of Autotaxin-Inhibiting Lipid Nanoparticles to Regulate Autophagy and Inflammatory Responses in Activated Macrophages. Tissue Eng Regen Med 2025; 22:397-408. [PMID: 39998744 PMCID: PMC12122970 DOI: 10.1007/s13770-025-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Autotaxin (ATX), an ENPP2 enzyme, regulates lipid signaling by converting lysophosphatidylcholine to lysophosphatidic acid (LPA). Dysregulation of the ATX/LPA axis promotes inflammation and disease progression. BMP-22, a lipid ATX inhibitor, effectively reduces LPA production. However, its clinical utility is hampered by limitations in solubility and pharmacokinetics. To overcome these limitations, we developed BMP-22-incorporated lipid nanoparticles (LNP-BMP) to improve utility while maintaining ATX inhibition efficacy. METHODS LNP-BMP was synthesized by incorporating DOTAP, DOPE, cholesterol, 18:0 PEG2000-PE, and together with BMP-22. The formulation of LNP-BMP was optimized and characterized by testing different molar ratios of BMP-22. The autophagy recovery and anti-inflammatory effects of LNP-BMP via ATX inhibition were evaluated in both macrophage cell line and mouse-derived primary macrophages. RESULTS LNP-BMP was shown to retain its functionality as an ATX inhibitor and maintain the physical characteristics upon BMP-22 integration. Synthesized LNP-BMP exerted superior ability to inhibit ATX activity. When applied to M1-induced macrophages, LNP-BMP exhibited substantial anti-inflammatory effects and successfully restored autophagy activity. CONCLUSION The results demonstrate that LNP-BMP effectively inhibits ATX, achieving both anti-inflammatory effects and autophagy restoration, highlighting its potential as a standalone immunotherapeutic agent. Furthermore, the capacity to load therapeutic drugs into this formulation offers promising opportunities for further therapeutic strategies.
Collapse
Affiliation(s)
- So Won Jeon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jun Kwon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hee Gyeong Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jong Sang Yoon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Yun A Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Ju-Ro Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Min-Ho Kang
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Han Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea.
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Saluja TS, Hosalkar R. Prognostic Utility of Autophagy Marker Beclin1 in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Head Neck Pathol 2025; 19:17. [PMID: 39907919 PMCID: PMC11799460 DOI: 10.1007/s12105-025-01755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Autophagy is involved in several critical cellular processes regulating cell survival and death. Past research suggests that it may either act as a tumor suppressor or promote tumor progression. The purpose of this systematic review and meta-analysis was to evaluate the clinical and prognostic utility of a significant autophagy related protein-Beclin1, in oral squamous cell carcinoma (OSCC). METHODS Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed. Relevant literature was retrieved from PubMed, ScienceDirect and Google Scholar database. After removal of duplicates quality of the studies was assessed using Newcastle-Ottawa Scale. Heterogeneity was assessed using I2 index. Random effect model was used if I2 was more than 50% else fixed effect model was selected. Meta-analysis was carried out using Review Manager (RevMan; Version 5.4). RESULTS Five studies with 494 cases were included in this meta-analysis. Beclin1 expression in OSCC was not significantly associated (p > 0.05) with gender, age, tumor size, lymph node metastasis, histological differentiation and overall survival. Nevertheless, a trend for low Beclin1 expression favoring tumor progression was observed. Sensitivity analysis revealed significant nodal positivity related to low Beclin1 expression. CONCLUSION This study provided an overview of Beclin1 expression in OSCC and highlighted additional evaluations while its use as a prognostic marker. It is suggested that future studies should assess both nuclear as well as cytoplasmic expression of Beclin1 and report intra- and inter-tumor variations in its expression relating to clinicopathological parameters.
Collapse
Affiliation(s)
- Tajindra Singh Saluja
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Hosalkar
- Department of Oral Pathology and Microbiology, MGM Dental College and Hospital, MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Ji F, Dai E, Kang R, Klionsky DJ, Liu T, Hu Y, Tang D, Zhu K. Mammalian nucleophagy: process and function. Autophagy 2025:1-17. [PMID: 39827882 DOI: 10.1080/15548627.2025.2455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments. Impaired nucleophagy has been implicated in aging and various pathological conditions, including cancer, neurodegeneration, autoimmune disorders, and neurological injury. In this review, we focus on nucleophagy in mammalian cells, discussing its mechanisms, regulation, and cargo selection, as well as evaluating its therapeutic potential in promoting human health and mitigating disease.Abbreviations: 5-FU: 5-fluorouracil; AMPK, AMP-activated protein kinase; ATG, autophagy related; CMA, chaperone-mediated autophagy; DRPLA: dentatorubral-pallidoluysian atrophy; ER, endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; HOPS, homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; MEFs: mouse embryonic fibroblasts; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; PCa: prostate cancer; PE: phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; rRNA: ribosomal RNA; SCI: spinal cord injury; SCLC: small cell lung cancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SupraT: supraphysiological levels of testosterone; TOP1cc: TOP1 cleavage complexes.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enyong Dai
- 2nd ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tong Liu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Hu
- Department of Pathology, Chian-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Chan WWR, Chow J, Chau DDL, Zhai Y, Lau KF. Beclin 1-Mediated Autophagy Is Potentiated by an Interaction with the Neuronal Adaptor FE65. BIOLOGY 2025; 14:97. [PMID: 39857327 PMCID: PMC11763304 DOI: 10.3390/biology14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Autophagy is a vital cellular pathway in eukaryotic cells, including neurons, where it plays significant roles in neurodevelopment and maintenance. A crucial step in autophagy is the formation of the class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1), which is essential for initiating autophagosome biogenesis. Beclin 1 is the key component of PI3KC3-C1, and its interactors have been reported to affect autophagy. The brain-enriched adaptor protein FE65 has been shown to interact with Alzheimer's disease amyloid precursor protein (APP) to alter the processing of APP. Additionally, FE65 has been implicated in various cellular pathways, including autophagy. We demonstrate here that FE65 positively regulates autophagy. FE65, through its C-terminus, has been shown to interact with Beclin 1. Notably, the overexpression of FE65 enhances Beclin 1-mediated autophagy, whereas this process is attenuated in FE65 knockout cells. Moreover, the stimulatory effect of FE65 on Beclin 1-mediated autophagy is diminished by an FE65 C-terminus deletion mutant that disrupts the FE65-Beclin 1 interaction. Lastly, we have found that the FE65-Beclin 1 interaction modulates the kinase activity of the PI3KC3-C1 complex. Together, we have identified FE65 as a novel Beclin 1 interactor, and this interaction potentiates autophagy.
Collapse
Affiliation(s)
| | | | | | | | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (W.W.R.C.); (J.C.); (D.D.-L.C.); (Y.Z.)
| |
Collapse
|
5
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
6
|
Yoon J, Hwang Y, Yun H, Chung JM, Kim S, Kim G, Lee Y, Lee B, Kang HC. LC3B drives transcription-associated homologous recombination via direct interaction with R-loops. Nucleic Acids Res 2024; 52:5088-5106. [PMID: 38412240 PMCID: PMC11109984 DOI: 10.1093/nar/gkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Exploring the connection between ubiquitin-like modifiers (ULMs) and the DNA damage response (DDR), we employed several advanced DNA damage and repair assay techniques and identified a crucial role for LC3B. Notably, its RNA recognition motif (RRM) plays a pivotal role in the context of transcription-associated homologous recombination (HR) repair (TA-HRR), a particular subset of HRR pathways. Surprisingly, independent of autophagy flux, LC3B interacts directly with R-loops at DNA lesions within transcriptionally active sites via its RRM, promoting TA-HRR. Using native RNA immunoprecipitation (nRIP) coupled with high-throughput sequencing (nRIP-seq), we discovered that LC3B also directly interacts with the 3'UTR AU-rich elements (AREs) of BRCA1 via its RRM, influencing its stability. This suggests that LC3B regulates TA-HRR both proximal to and distal from DNA lesions. Data from our LC3B depletion experiments showed that LC3B knockdown disrupts end-resection for TA-HRR, redirecting it towards the non-homologous end joining (NHEJ) pathway and leading to chromosomal instability, as evidenced by alterations in sister chromatid exchange (SCE) and interchromosomal fusion (ICF). Thus, our findings unveil autophagy-independent functions of LC3B in DNA damage and repair pathways, highlighting its importance. This could reshape our understanding of TA-HRR and the interaction between autophagy and DDR.
Collapse
Affiliation(s)
- Junghyun Yoon
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hansol Yun
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jee Min Chung
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Gyeongmin Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yeji Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Byoung Dae Lee
- Department of Neuroscience, Kyung Hee University, Seoul 02447; Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
7
|
Shang JN, Yu CG, Li R, Xi Y, Jian YJ, Xu N, Chen S. The nonautophagic functions of autophagy-related proteins. Autophagy 2024; 20:720-734. [PMID: 37682088 PMCID: PMC11062363 DOI: 10.1080/15548627.2023.2254664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yue Jenny Jian
- Nanjing Foreign Language School, Nanjing, Jiangsu, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| |
Collapse
|
8
|
Pandya K, Singh N. In silico study reveals unconventional interactions between MDC1 of DDR and Beclin-1 of autophagy. Mol Divers 2023; 27:2789-2802. [PMID: 36482226 DOI: 10.1007/s11030-022-10579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
DNA damage response (DDR) and autophagy are concerned with maintaining cellular homeostasis and dysregulation of these two pathways lead to pathologic conditions including tumorigenesis. Autophagy is activated as a protective mechanism during DDR which is indicative of their functional cooperativity but the molecular mechanism leading to the convergence of these two pathways during genotoxic stress remains elusive. In this study, through in silico analysis, we have shown an interaction between the Mediator of DNA damage checkpoint 1 (MDC1), an important DDR-associated protein, and Beclin-1, an autophagy inducer. MDC1 is an adaptor or scaffold protein known to regulate DDR, apoptosis, and cell cycle progression. While, Beclin-1 is involved in autophagosome nucleation and exhibits affinity for binding to Fork-head-associated domain (FHA) containing proteins. The FHA domain is commonly conserved in DDR-related proteins including MDC1. Through molecular docking, we have predicted the modeled complex between the MDC1 FHA domain and the Beclin-1 Coiled coil domain (CCD). The docking complex was modeled using ClusPro2.0, based on the crystal structure for the dimerized MDC1 FHA domain and Beclin-1 CCD. The complex stability and binding affinities were assessed using a Ramachandran plot, MD simulation, MM/GBSA, and PRODIGY webserver. Finally, the hot-spot residues at the interface were determined using computational alanine scanning by the DrugScorePPI webserver. Our analysis unveils significant interaction between MDC1 and Beclin-1, involving hydrogen bonds, non-bonded contacts, and salt bridges and indicates MDC1 possibly recruits Beclin-1 to the DSBs, as a consequence of which Beclin-1 is able to modulate DDR.
Collapse
Affiliation(s)
- Kavya Pandya
- Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
9
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
10
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
11
|
Li J, Wang Y, Luo Y, Liu Y, Yi Y, Li J, Pan Y, Li W, You W, Hu Q, Zhao Z, Zhang Y, Cao Y, Zhang L, Yuan J, Xiao ZXJ. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity. Nat Commun 2022; 13:7799. [PMID: 36528652 PMCID: PMC9759531 DOI: 10.1038/s41467-022-35557-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancers (NSCLC) frequently contain KRAS mutation but retain wild-type TP53. Abundant senescent cells are observed in premalignant but not in malignant tumors derived from the Kras-driven mouse model, suggesting that KRAS oncogenic signaling would have to overcome the intrinsic senescence burden for cancer progression. Here, we show that the nuclear Beclin 1-mediated inhibition of p53-dependent senescence drives Kras-mediated tumorigenesis. KRAS activates USP5 to stabilize nuclear Beclin 1, leading to MDM2-mediated p53 protein instability. KrasG12D mice lacking Beclin 1 display retarded lung tumor growth. Knockdown of USP5 or knockout of Becn1 leads to increased senescence and reduced autophagy. Mechanistically, KRAS elevates ROS to induce USP5 homodimer formation by forming the C195 disulfide bond, resulting in stabilization and activation of USP5. Together, these results demonstrate that activation of the USP5-Beclin 1 axis is pivotal in overriding intrinsic p53-dependent senescence in Kras-driven lung cancer development.
Collapse
Affiliation(s)
- Juan Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yue Luo
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jinsong Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Pan
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weiyuxin Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wanbang You
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qingyong Hu
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiqiang Zhao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong, Shanghai, 201210, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
BECLIN1 Is Essential for Podocyte Secretory Pathways Mediating VEGF Secretion and Podocyte-Endothelial Crosstalk. Int J Mol Sci 2022; 23:ijms23073825. [PMID: 35409185 PMCID: PMC8998849 DOI: 10.3390/ijms23073825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) secretion from podocytes is crucial for maintaining endothelial integrity within the glomerular filtration barrier. However, until now, the molecular mechanisms underlying podocyte secretory function remained unclear. Through podocyte-specific deletion of BECLIN1 (ATG6 or Becn1), a key protein in autophagy initiation, we identified a major role for this molecule in anterograde Golgi trafficking. The Becn1-deficient podocytes displayed aberrant vesicle formation in the trans-Golgi network (TGN), leading to dramatic vesicle accumulation and complex disrupted patterns of intracellular vesicle trafficking and membrane dynamics. Phenotypically, podocyte-specific deletion of Becn1 resulted in early-onset glomerulosclerosis, which rapidly progressed and dramatically reduced mouse life span. Further, in vivo and in vitro studies clearly showed that VEGFA secretion, and thereby endothelial integrity, greatly depended on BECLIN1 availability and function. Being the first to demonstrate the importance of a secretory pathway for podocyte integrity and function, we identified BECLIN1 as a key component in this complex cellular process. Functionally, by promoting VEGFA secretion, a specific secretory pathway emerged as an essential component for the podocyte-endothelial crosstalk that maintains the glomerular filtration barrier.
Collapse
|
13
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
14
|
lncRNA GAS5 Sensitizes Breast Cancer Cells to Ionizing Radiation by Inhibiting DNA Repair. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1987519. [PMID: 35059460 PMCID: PMC8766191 DOI: 10.1155/2022/1987519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/09/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Radioresistance of breast cancer is a major reason for therapeutic failure and limits further increases in the dose of radiation due to severe adverse effects. Recently, long noncoding RNAs (lncRNAs) have been shown to regulate cancer proliferation, chemoresistance, and radioresistance. Among these lncRNAs, lncRNA GAS5 expression was shown to be downregulated in breast cancer and related to trastuzumab resistance. However, its role in the radiation response is unclear. In this study, we demonstrated that lncRNA GAS5 expression was reduced in irradiated cells and that overexpression of GAS5 reduced cell viability and promoted cell apoptosis after irradiation. Moreover, overexpression of GAS5 resulted in increased G2/M arrest and unrepaired DNA damage, indicating a radiosensitizing role of GAS5 in breast cancer cells. Finally, we found that a GAS5-interacting miRNA, miR-21, reversed the radiosensitizing effects of GAS5 by inhibiting the apoptotic pathway. In conclusion, we found that lncRNA GAS5 sensitized breast cancer cells to ionizing radiation by inhibiting DNA repair and suppressing miR-21, identifying novel targets for breast cancer radiosensitization.
Collapse
|
15
|
Peters AE, Caban SJ, McLaughlin EA, Roman SD, Bromfield EG, Nixon B, Sutherland JM. The Impact of Aging on Macroautophagy in the Pre-ovulatory Mouse Oocyte. Front Cell Dev Biol 2021; 9:691826. [PMID: 34268312 PMCID: PMC8277196 DOI: 10.3389/fcell.2021.691826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Accompanying the precipitous age-related decline in human female fertility is an increase in the proportion of poor-quality oocytes within the ovary. The macroautophagy pathway, an essential protein degradation mechanism responsible for maintaining cell health, has not yet been thoroughly investigated in this phenomenon. The aim of this study was to characterize the macroautophagy pathway in an established mouse model of oocyte aging using in-depth image analysis-based methods and to determine mechanisms that account for the observed changes. Three autophagy pathway markers were selected for assessment of gene and protein expression in this model: Beclin 1; an initiator of autophagosome formation, Microtubule-associated protein 1 light chain 3B; a constituent of the autophagosome membrane, and lysosomal-associated membrane protein 1; a constituent of the lysosome membrane. Through quantitative image analysis of immunolabeled oocytes, this study revealed impairment of the macroautophagy pathway in the aged oocyte with an attenuation of both autophagosome and lysosome number. Additionally, an accumulation of amphisomes greater than 10 μm2 in area were observed in aging oocytes, and this accumulation was mimicked in oocytes treated with lysosomal inhibitor chloroquine. Overall, these findings implicate lysosomal dysfunction as a prominent mechanism by which these age-related changes may occur and highlight the importance of macroautophagy in maintaining mouse pre-ovulatory oocyte quality. This provides a basis for further investigation of dysfunctional autophagy in poor oocyte quality and for the development of therapeutic or preventative strategies to aid in the maintenance of pre-ovulatory oocyte health.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Shandelle J Caban
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia.,School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Drug Development, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
17
|
Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. BIOLOGY 2021; 10:biology10020163. [PMID: 33669593 PMCID: PMC7922961 DOI: 10.3390/biology10020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Constant exposure to endogenous and environmental factors induces oxidative stress and DNA damage. Rare brain disorders caused by defects in DNA repair and DNA damage response (DDR) signaling establish that failure to process DNA damage may lead to neurodegeneration. In this review, we present mechanisms that link DDR with neurodegeneration in these disorders and discuss their relevance for common age-related neurodegenerative diseases (NDDs). Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. Abstract Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.
Collapse
|
18
|
Bivalkar-Mehla S, Puri D, Singh SB, Subramanyam D. Understanding the role of Beclin1 in mouse embryonic stem cell differentiation through CRISPR-Cas9-mediated gene editing. J Biosci 2021. [DOI: 10.1007/s12038-021-00139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Co-Chaperone Bag-1 Plays a Role in the Autophagy-Dependent Cell Survival through Beclin 1 Interaction. Molecules 2021; 26:molecules26040854. [PMID: 33561998 PMCID: PMC7914623 DOI: 10.3390/molecules26040854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Expression levels of the major mammalian autophagy regulator Beclin 1 and its interaction with Bcl-2 regulate the switch between autophagic cell survival and apoptotic cell death pathways. However, some of the regulators and the precise mechanisms of these processes still remain elusive. Bag-1 (Bcl-2 associated athanogene-1), a member of BAG family proteins, is a multifunctional pro-survival molecule that possesses critical functions in vital cellular pathways. Herein, we report the role of Bag-1 on Bcl-2/Beclin 1 crosstalk through indirectly interacting with Beclin 1. Pull-down experiments suggested a molecular interaction between Bag-1 and Beclin 1 in breast cancer cell lines. On the other hand, in vitro binding assays showed that Bag-1/Beclin 1 interaction does not occur directly but occurs through a mediator molecule. Bag-1 interaction with p-Beclin 1 (T119), indicator of early autophagy, is increased during nutrient starvation suggesting involvement of Bag-1 in the autophagic regulation. Furthermore, CRISPR/Cas9-mediated Bag-1 knock-out in MCF-7 cells hampered cell survival and proliferation and resulted in decreased levels of total LC3 under starvation. Collectively, we suggest that Bag-1 modulates cell survival/death decision through maintaining macroautophagy as a component of Beclin 1-associated complexes.
Collapse
|
20
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
21
|
Schoenherr C, Byron A, Griffith B, Loftus A, Wills JC, Munro AF, von Kriegsheim A, Frame MC. The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 2020; 295:12045-12057. [PMID: 32616651 PMCID: PMC7443501 DOI: 10.1074/jbc.ra120.012565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Billie Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Jiang J, Meng Y, Hu S, Botchway BOA, Zhang Y, Liu X. Saikosaponin D: A potential therapeutic drug for osteoarthritis. J Tissue Eng Regen Med 2020; 14:1175-1184. [PMID: 32592611 DOI: 10.1002/term.3090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease. Currently, no effective therapeutic exists for osteoarthritis in the clinic setting. Inflammatory response and autophagy are key players in the occurrence and prognosis of osteoarthritis. In recent years, the regulation of inflammation and autophagy signal pathway has been touted as a potential treatment course for osteoarthritis. Saikosaponin D has anti-inflammatory and induces autophagy effects via inhibiting the nuclear transcription factor-κB, mTOR signaling pathways. Here in the report, we analyze and summarize recent evidences pertaining to the relationship between Saikosaponin and osteoarthritis. Published studies were scoured for in research databases, such as PubMed and Scopus with the keywords Saikosaponin and osteoarthritis. Phosphatidylinositol 3-kinase (PI3k)/Akt/mTOR signaling pathway is an important autophagy modulator, and can regulate chondrocytic autophagy, inflammation, and apoptosis. Saikosaponin D alleviates inflammation and regulates autophagy by inhibiting the PI3k/Akt/mTOR signaling pathway. Saikosaponin D could be a potential therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Junsong Jiang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital, Shaoxing University, Shaoxing, China
| | - Songfeng Hu
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| |
Collapse
|
23
|
D'Adamo S, Cetrullo S, Guidotti S, Silvestri Y, Minguzzi M, Santi S, Cattini L, Filardo G, Flamigni F, Borzì RM. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med 2020; 153:159-172. [PMID: 32305648 DOI: 10.1016/j.freeradbiomed.2020.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) contributes to Osteoarthritis (OA) pathogenesis and its effects are worsened by the impairment of homeostatic mechanisms such as autophagy in OA chondrocytes. Rescue of an efficient autophagic flux could therefore reduce the bulk of damaged molecules, and at the same time improve cell function and viability. As a promising dietary or intra-articular supplement to rescue autophagy in OA chondrocytes, we tested spermidine (SPD), known to induce autophagy and to reduce OS in several other cellular models. Chondrocytes were obtained from OA cartilage and seeded at high-density to keep their differentiated phenotype. The damaging effects of OS and the chondroprotective activity of SPD were assessed by evaluating the extent of cell death, oxidative DNA damage and caspase 3 activation. The autophagy promoting activity of SPD was evaluated by assessing pivotal autophagic effectors, i.e. Beclin-1 (BECN-1), microtubule-associated protein 1 light chain 3 II (LC3-II) and p62. BECN-1 protein expression was significantly increased by SPD and reduced by H2O2 treatment. SPD also rescued the impaired autophagic flux consequent to H2O2 exposure by increasing mRNA and protein expression of LC3-II and p62. SPD induction of mitophagy was revealed by immunofluorescent co-localization of LC3-II and TOM20. The key protective role of autophagy was confirmed by the loss of SPD chondroprotection upon autophagy-related gene 5 (ATG5) silencing. Significant SPD tuning of the H2O2-dependent induction of degradative (MMP-13), inflammatory (iNOS, COX-2) and hypertrophy markers (RUNX2 and VEGF) was revealed by Real Time PCR and pointed at the SPD ability of reducing NF-κB activation through autophagy induction. Conversely, blockage of autophagy led to parallel increases of oxidative markers and p65 nuclear translocation. SPD also increased the proliferation of slow-proliferating primary cultures. Taken together, our findings highlight the chondroprotective, anti-oxidant and anti-inflammatory activity of SPD and suggest that the protection afforded by SPD against OS is exerted through the rescue of the autophagic flux.
Collapse
Affiliation(s)
- Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Serena Guidotti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Ylenia Silvestri
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
24
|
Kong E, Kim HD, Kim J. Deleting key autophagy elongation proteins induces acquirement of tumor-associated phenotypes via ISG15. Cell Death Differ 2020; 27:2517-2530. [PMID: 32127658 DOI: 10.1038/s41418-020-0519-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a cellular catabolic process that maintains intracellular homeostasis using lysosomal degradation systems. We demonstrate that inhibiting autophagy by depleting essential autophagy elongation proteins, Atg5 or Atg7, induces ISG15 expression through STING-mediated cytosolic dsDNA response. Genome stability is impaired in ATG5- or ATG7-depleted cells, and thus, double-strand breakages of DNA increase and cytosolic dsDNA accumulates. Accumulated cytosolic dsDNA induces the STING pathway to activate type I IFN signals which induce STAT1 activity and downregulate ATF3. When depletion of ATG5 or ATG7 inhibits autophagy, ATF3 is downregulated and STAT1 is upregulated. Furthermore, inhibiting autophagy induces ISG15 expression through STAT1 activation, which promotes acquisition of tumor-associated phenotypes such as migration, invasion, and proliferation. In conclusion, it appears that via the STING-mediated cytosolic dsDNA response, the STAT1-ISG15 axis mediates the relationship between autophagy and the immune system in relation to tumor progression. Moreover, combined with autophagy control, regulating ISG15 expression could be a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- EunBin Kong
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea. .,HAEL Lab, TechnoComplex Building, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
25
|
Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic Gene in leukemia and myeloma. Biomed Pharmacother 2020; 125:110030. [PMID: 32187960 DOI: 10.1016/j.biopha.2020.110030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Different strategies were taken to make virotherapy more effective at killing cancer cells. Among them, oncolytic virus which arms the therapeutic gene to enhance antitumor activity is a prevalent approach. In this study, a newly developed oncolytic vaccinia virus (OVV) that expresses Beclin-1 (OVV-BECN1) was tested for its in vitro and in vivo oncolytic activity in blood cancer. Results showed that the OVV exhibited higher infectivity for leukemia cells. OVV-BECN1 induced significant apoptosis-independent cell death either in wild-type leukemia and multiple myeloma (MM) cell lines or caspase-3 shRNA leukemia cell lines, and had a superior antitumor activity compared to the parent OVV. Autophagic cell death induced by OVV-BECN1 was demonstrated in vitro and in vivo experiments. Finally, upregulation of SIRT-1, a member of class III histone deacetylases, by OVV-BECN1 resulted in the deacetylation of LC3 and its distribution from the nucleus toward the cytoplasm, which might contribute to induction of autophagy. Overall, our data showed a favorable therapeutic effect of the oncolytic vaccinia virus on blood cancers through oncolytic and autophagic mechanisms, and may therefore constitute a promising and effective therapeutic strategy for treating human leukemia and MM. However, further studies are warranted for its reliable clinical translation.
Collapse
|
26
|
Huang W, Zeng C, Hu S, Wang L, Liu J. ATG3, a Target of miR-431-5p, Promotes Proliferation and Invasion of Colon Cancer via Promoting Autophagy. Cancer Manag Res 2019; 11:10275-10285. [PMID: 31849517 PMCID: PMC6911302 DOI: 10.2147/cmar.s226828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Studies have indicated that ATG3 could mediate the effects of other tumor-related regulators in carcinogenesis. However, the expression, role, and mechanism of ATG3 itself in cancers are rarely revealed. Thus, we explored the expression, function, and mechanism of ATG3 in colon cancer. Materials and methods The expression of ATG3 was detected in colon cancer tissues and cell lines, as well as in adjacent tumor tissues and normal colon epithelial cells. The effects of ATG3 alteration on proliferation and invasion were further analyzed. The expression and role of miR-431-5p, a potential negative regulator of ATG3, were also studied. Eventually, the role of autophagy in ATG3 related effects in colon cancer was checked. Results ATG3 is upregulated in colon cancer tissues and cells demonstrated by qPCR and IHC. ATG3 knockdown significantly suppressed proliferation and invasion of colon cancer cells indicated by plate clone formation and Transwell invasion assays. The expression of miR-431-5p is downregulated and negatively correlates with ATG3 in colon cancer. Furthermore, luciferase report system, plate clone formation and Transwell invasion assays demonstrated that miR-431-5p could prohibit cell proliferation and invasion via directly targeting ATG3 in colon cancer. Eventually, Western blot, plate clone formation and Transwell invasion assays proved that autophagy block could antagonize the promotive functions of ATG3 on proliferation and invasion in cancer suggesting autophagy activation accounts for the promotive role of ATG3 on proliferation and invasion in colon cancer. Conclusion Collectively, ATG3 upregulation, caused by downregulated miR-435-5p, promotes proliferation and invasion via an autophagy-dependent manner in colon cancer suggesting that miR-431-5p/ATG3/autophagy may be a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology, Changsha Central Hospital, Changsha, Hunan, People's Republic of China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chong Zeng
- Department of Respiratory and Neurology, Hunan Rongjun Hospital, Changsha, Hunan, People's Republic of China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Liu
- Department of Pathology, Changsha Central Hospital, Changsha, Hunan, People's Republic of China
| |
Collapse
|
27
|
Chen F, Sun S, Liu N, Pei S, Zhu Q, Wang X, Gou S. Beclin1 affected by DN604 upregulates chemo-sensitivity of cervix SiHa cancer cells via inhibiting CK2-MRN-DSBs repair. Anticancer Drugs 2019; 30:774-783. [PMID: 31274516 DOI: 10.1097/cad.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DN604, containing a functional dicarboxylato ligand as carboplatin analogue, was significantly studied to explore its potency of antitumour activity. In vitro and in vivo experimental evidence indicated that DN604 exhibited superior antitumor activity than present platinum(II)-based agents in cervix squamous carcinoma SiHa cancer cells. Moreover, DN604 showed negligible toxic effects in vivo as confirmed as Pt accumulation and body weights of mice. Mechanistic studies have shown that DN604 suppressed CK2-mediated MRN complex to improve its antitumor efficacy by promoting DNA double-strand breaks repair. Furthermore, DN604 could inhibit Beclin1 and attenuate CK2-mediated several DSBs repair-related pathways, thus leading to cell apoptosis. Taken together, our research demonstrated that DN604 with the functional dicarboxylato ligand as the leaving group could effectively enhance chemo-sensitivity of SiHa cells to platinum-based agents via suppressing Beclin1 and CK2-mediated MRN-DSBs repair.
Collapse
Affiliation(s)
- Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Department of chemical biology and pharmaceutical engineering, Southeast University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Yeganeh B, Lee J, Ermini L, Lok I, Ackerley C, Post M. Autophagy is required for lung development and morphogenesis. J Clin Invest 2019; 129:2904-2919. [PMID: 31162135 DOI: 10.1172/jci127307] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major respiratory illness in extremely premature infants. The biological mechanisms leading to BPD are not fully understood, although an arrest in lung development has been implicated. The current study aimed to investigate the occurrence of autophagy in the developing mouse lung and its regulatory role in airway branching and terminal sacculi formation. We found 2 windows of epithelial autophagy activation in the developing mouse lung, both resulting from AMPK activation. Inhibition of AMPK-mediated autophagy led to reduced lung branching in vitro. Conditional deletion of beclin 1 (Becn1) in mouse lung epithelial cells (Becn1Epi-KO), either at early (E10.5) or late (E16.5) gestation, resulted in lethal respiratory distress at birth or shortly after. E10.5 Becn1Epi-KO lungs displayed reduced airway branching and sacculi formation accompanied by impaired vascularization, excessive epithelial cell death, reduced mesenchymal thinning of the interstitial walls, and delayed epithelial maturation. E16.5 Becn1Epi-KO lungs had reduced terminal air sac formation and vascularization and delayed distal epithelial differentiation, a pathology similar to that seen in infants with BPD. Taken together, our findings demonstrate that intrinsic autophagy is an important regulator of lung development and morphogenesis and may contribute to the BPD phenotype when impaired.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Joyce Lee
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Institute of Medical Science, and
| | - Leonardo Ermini
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Irene Lok
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children
| | - Cameron Ackerley
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Departments of Physiology and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children.,Institute of Medical Science, and.,Departments of Physiology and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Classen F, Kranz P, Riffkin H, Pompsch M, Wolf A, Göpelt K, Baumann M, Baumann J, Brockmeier U, Metzen E. Autophagy induced by ionizing radiation promotes cell death over survival in human colorectal cancer cells. Exp Cell Res 2019; 374:29-37. [DOI: 10.1016/j.yexcr.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
|
30
|
Retracted
: Ailanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA‐195. J Cell Biochem 2018; 120:10444-10451. [DOI: 10.1002/jcb.28329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
|
31
|
Thekkekkara D, Basavan D, Chandna S, Nanjan MJ. A combination of resveratrol and 3,3'-diindolylmethane, a potent radioprotector. Int J Radiat Biol 2018; 94:558-568. [PMID: 29671693 DOI: 10.1080/09553002.2018.1467063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Exposure to ionizing radiation causes damage to the genomic integrity and stability of the cell. Though a large number of molecules have been studied for their radioprotective capability, no single agent is available today that meets all the requirements of a good radiprotector. In this study, we have investigated a combination of Resveratrol (RSV) and 3,3'-Diindolyl methane (DIM) for its efficacy for radioprotection. It is our hypothesis that this combination that possesses less toxicity than synthetic compounds, free radical scavenging potential, and the capacity to interfere with the several of the signaling cascades that trigger damage to cell by ionizing radiation may possess good radioprotective capability. MATERIALS AND METHODS Mice were pre-treated with a combination of RSV and DIM and the 30-day mortality assay, endogenous antioxidant levels in intestinal mucosa, metaphase chromosomal aberrations, and micronuclei formation were assessed after exposed to ionizing radiation. RESULTS The dose modifying factor (DRF) obtained for RSV, DIM, and the combination is 1.15, 1.17, and 1.3, respectively. Pre-treatment of mice with the combination results in significant (***p = .001) protection of the endogenous antioxidant levels, chromosomal aberrations, micronuclei formation, after exposure to ionizing radiation. CONCLUSIONS Our findings suggest that pre-treatment with the combination of RSV and DIM protects effectively from the ionizing radiation-induced damage at the molecular, cellular, and tissue levels by counteracting both the direct and indirect effects.
Collapse
Affiliation(s)
- Dithu Thekkekkara
- a Departement of Pharmacognosy and Phytopharmacy , J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| | - Duraiswamy Basavan
- a Departement of Pharmacognosy and Phytopharmacy , J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| | - Sudhir Chandna
- b Natural Radiation Response Mechanisums Group, Division of Radiation Biosciences , Institute of Nuclear Medicine & Allied Sciences (INMAS) , Delhi , India
| | - Moola Joghee Nanjan
- c TIFAC CORE HD, J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| |
Collapse
|
32
|
Targeting autophagy in lymphomas: a double-edged sword? Int J Hematol 2018; 107:502-512. [DOI: 10.1007/s12185-018-2414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
|
33
|
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, Fisher PB. New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Adv Cancer Res 2017; 137:77-114. [PMID: 29405978 DOI: 10.1016/bs.acr.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a functionally conserved self-degradation process that facilitates the survival of eukaryotic life via the management of cellular bioenergetics and maintenance of the fidelity of genomic DNA. The first known autophagy inducer was Beclin-1. Beclin-1 is expressed in multicellular eukaryotes ranging throughout plants to animals, comprising a nonmonophyllic group, as shown in this report via aggressive BLAST searches. In humans, Beclin-1 is a haploinsuffient tumor suppressor as biallelic deletions have not been observed in patient tumors clinically. Therefore, Beclin-1 fails the Knudson hypothesis, implicating expression of at least one Beclin-1 allele is essential for cancer cell survival. However, Beclin-1 is frequently monoallelically deleted in advanced human cancers and the expression of two Beclin-1 allelles is associated with greater anticancer effects. Overall, experimental evidence suggests that Beclin-1 inhibits tumor formation, angiogenesis, and metastasis alone and in cooperation with the tumor suppressive molecules UVRAG, Bif-1, Ambra1, and MDA-7/IL-24 via diverse mechanisms of action. Conversely, Beclin-1 is upregulated in cancer stem cells (CSCs), portending a role in cancer recurrence, and highlighting this molecule as an intriguing molecular target for the treatment of CSCs. Many aspects of Beclin-1's biological effects remain to be studied. The consequences of these BLAST searches on the molecular evolution of Beclin-1, and the eukaryotic branches of the tree of life, are discussed here in greater detail with future inquiry focused upon protist taxa. Also in this review, the effects of Beclin-1 on tumor suppression and cancer malignancy are discussed. Beclin-1 holds significant promise for the development of novel targeted cancer therapeutics and is anticipated to lead to a many advances in our understanding of eukaryotic evolution, multicellularity, and even the treatment of CSCs in the coming decades.
Collapse
Affiliation(s)
- Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
34
|
Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci 2017; 18:ijms18112351. [PMID: 29112132 PMCID: PMC5713320 DOI: 10.3390/ijms18112351] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy and DNA repair are biological processes vital for cellular homeostasis maintenance and when dysfunctional, they lead to several human disorders including premature aging, neurodegenerative diseases, and cancer. The interchange between these pathways is complex and it may occur in both directions. Autophagy is activated in response to several DNA lesions types and it can regulate different mechanisms and molecules involved in DNA damage response (DDR), such as cell cycle checkpoints, cell death, and DNA repair. Thus, autophagy may modulate DNA repair pathways, the main focus of this review. In addition to the already well-documented autophagy positive effects on homologous recombination (HR), autophagy has also been implicated with other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Given the relevance of these cellular processes, the clinical applications of drugs targeting this autophagy-DNA repair interface emerge as potential therapeutic strategies for many diseases, especially cancer.
Collapse
|
35
|
Monitoring Autophagy Immunohistochemically and Ultrastructurally during Human Head and Neck Carcinogenesis. Relationship with the DNA Damage Response Pathway. Int J Mol Sci 2017; 18:ijms18091920. [PMID: 28880214 PMCID: PMC5618569 DOI: 10.3390/ijms18091920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a catabolic process that preserves cellular homeostasis. Its exact role during carcinogenesis is not completely defined. Specifically in head and neck cancer, such information from clinical settings that comprise the whole spectrum of human carcinogenesis is very limited. Towards this direction, we examined the in situ status of the autophagy-related factors, Beclin-1, microtubule-associated protein 1 light chain 3, member B (LC3B) and sequestosome 1/p62 (p62) in clinical material covering all histopathological stages of human head and neck carcinogenesis. This material is unique as each panel of lesions is derived from the same patient and moreover we have previously assessed it for the DNA damage response (DDR) activation status. Since Beclin-1, LC3B and p62 reflect the nucleation, elongation and degradation stages of autophagy, respectively, their combined immunohistochemical (IHC) expression profiles could grossly mirror the autophagic flux. This experimental approach was further corroborated by ultrastructural analysis, applying transmission electron microscopy (TEM). The observed Beclin-1/LC3B/p62 IHC patterns, obtained from serial sections analysis, along with TEM findings are suggestive of a declined authophagic activity in preneoplastic lesions that was restored in full blown cancers. Correlating these findings with DDR status in the same pathological stages are indicative of: (i) an antitumor function of autophagy in support to that of DDR, possibly through energy deprivation in preneoplastic stages, thus preventing incipient cancer cells from evolving; and (ii) a tumor-supporting role in the cancerous stage.
Collapse
|