1
|
Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future. Future Med Chem 2022; 14:1087-1105. [PMID: 35703127 DOI: 10.4155/fmc-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer in the world and its prevalence is increasing in developing countries. Deregulated cell cycle traverse is a hallmark of malignant transformation and is often observed in CRC as a result of imprecise activity of cell cycle regulatory components, viz. cyclins and cyclin-dependent kinases (CDKs). Apart from cell cycle regulation, some CDKs also regulate processes such as transcription and have also been shown to be involved in colorectal carcinogenesis. This article aims to review cyclin-dependent kinases as potential targets for CRC. Furthermore, therapeutic candidates to target CDKs are also discussed.
Collapse
|
2
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
3
|
The Role of 17β-Estrogen in Escherichia coli Adhesion on Human Vaginal Epithelial Cells via FAK Phosphorylation. Infect Immun 2021; 89:e0021921. [PMID: 34424749 DOI: 10.1128/iai.00219-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen, the predominant sex hormone, has been found to be related to the occurrence of vaginal infectious diseases. However, its role in the occurrence and development of bacterial vaginitis caused by Escherichia coli is still unclear. The objective of this study was to investigate the role of 17β-estrogen in E. coli adhesion on human vaginal epithelial cells. The vaginal epithelial cell line VK2/E6E7 was used to study the molecular events induced by estrogen between E. coli and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation with cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by Western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. The results showed that, following stimulation with 1,000 nM estrogen for 48 h, transient activation of ERα and FAK was observed, as was an increased average number of E. coli cells adhering to vaginal epithelial cells. In addition, estrogen-induced activation of ERα and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and acted for 1 h, and a decrease in the number of adherent E. coli cells was observed simultaneously. However, this inhibitory effect diminished as the concentration of estrogen increased. In conclusion, FAK and ERα signaling cascades were associated with the increasing E. coli adherence to vaginal epithelial cells, which was promoted by a certain concentration of estrogen.
Collapse
|
4
|
Zhu M, Liang Z, Pan J, Zhang X, Xue R, Cao G, Hu X, Gong C. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:668-682. [PMID: 34589285 PMCID: PMC8463320 DOI: 10.1016/j.omtn.2021.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) produces circular RNA (circRNA), whose functions have not yet been clearly elucidated. In this study, a novel circRNA HBV_circ_1 produced by HBV was identified in HBV-positive HepG2.2.15 cells and HBV-related hepatocellular carcinoma (HCC) tissue (HCCT). Microarray analysis of 68 HCCT samples showed that HBV_circ_1 abundance was significantly higher than that in paracancerous tissues. In addition, survival rate of HBV_circ_1-positive patients was significantly lower compared with HBV_circ_1-negative patients. Transient expression indicated that HBV_circ_1 enhanced cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Furthermore, ectopical HBV_circ_1 expression increased tumor size in vivo. HBV_circ_1 was confirmed to interact with cyclin-dependent kinase 1 (CDK1) to regulate cell proliferation. These results suggest that HCC progression may be promoted by interaction of HBV_circ_1 with CDK1. Our data not only showed a novel clue to understand carcinogenesis and progress of HBV-related HCC but also provided a new target for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Mandal R, Becker S, Strebhardt K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers (Basel) 2021; 13:2181. [PMID: 34062779 PMCID: PMC8124690 DOI: 10.3390/cancers13092181] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclin Dependent Kinase 9 (CDK9) is one of the most important transcription regulatory members of the CDK family. In conjunction with its main cyclin partner-Cyclin T1, it forms the Positive Transcription Elongation Factor b (P-TEFb) whose primary function in eukaryotic cells is to mediate the positive transcription elongation of nascent mRNA strands, by phosphorylating the S2 residues of the YSPTSPS tandem repeats at the C-terminus domain (CTD) of RNA Polymerase II (RNAP II). To aid in this process, P-TEFb also simultaneously phosphorylates and inactivates a number of negative transcription regulators like 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF). Significantly enhanced activity of CDK9 is observed in multiple cancer types, which is universally associated with significantly shortened Overall Survival (OS) of the patients. In these cancer types, CDK9 regulates a plethora of cellular functions including proliferation, survival, cell cycle regulation, DNA damage repair and metastasis. Due to the extremely critical role of CDK9 in cancer cells, inhibiting its functions has been the subject of intense research, resulting the development of multiple, increasingly specific small-molecule inhibitors, some of which are presently in clinical trials. The search for newer generation CDK9 inhibitors with higher specificity and lower potential toxicities and suitable combination therapies continues. In fact, the Phase I clinical trials of the latest, highly specific CDK9 inhibitor BAY1251152, against different solid tumors have shown good anti-tumor and on-target activities and pharmacokinetics, combined with manageable safety profile while the phase I and II clinical trials of another inhibitor AT-7519 have been undertaken or are undergoing. To enhance the effectiveness and target diversity and reduce potential drug-resistance, the future of CDK9 inhibition would likely involve combining CDK9 inhibitors with inhibitors like those against BRD4, SEC, MYC, MCL-1 and HSP90.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Sven Becker
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Natriuretic peptide receptor-C releases and activates guanine nucleotide-exchange factor H1 in a ligand-dependent manner. Biochem Biophys Res Commun 2021; 552:9-16. [PMID: 33740666 DOI: 10.1016/j.bbrc.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
Although natriuretic peptide receptor-C (NPR-C) is involved in the clearance of natriuretic peptides from plasma, it also possesses other physiological functions, such as inhibition of adenylyl cyclase activity through Gαi. However, the physiological roles and intracellular signaling pathways of NPR-C have yet been not fully elucidated. In this study, we identified a RhoA-specific guanine nucleotide-exchange factor, GEF-H1, as a novel binding protein of NPR-C. We demonstrated that endogenous NPR-C interacted with GEF-H1 in HeLa cells, and that the interaction between NPR-C and GEF-H1 was dependent on a 37-amino acid cytoplasmic region of NPR-C. In contrast, another natriuretic peptide receptor, NPR-A, which includes the kinase homology and guanylyl cyclase domains in the intracellular region, did not interact with GEF-H1. We also revealed that the ligands of NPR-C (i.e., ANP, CNP, and osteocrin) caused dissociation of GEF-H1 from NPR-C. Furthermore, osteocrin treatment induced phosphorylation of GEF-H1 at Ser-886, enhanced the interaction of GEF-H1 with 14-3-3, and increased the amount of activated GEF-H1. These findings strongly supported that NPR-C may be involved in diverse physiological roles by regulating GEF-H1 signaling.
Collapse
|
7
|
Marak BN, Dowarah J, Khiangte L, Singh VP. A comprehensive insight on the recent development of Cyclic Dependent Kinase inhibitors as anticancer agents. Eur J Med Chem 2020; 203:112571. [DOI: 10.1016/j.ejmech.2020.112571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
8
|
Matsuda S, Kikkawa U, Uda H, Nakashima A. The S. pombe CDK5 ortholog Pef1 regulates sexual differentiation through control of the TORC1 pathway and autophagy. J Cell Sci 2020; 133:jcs247817. [PMID: 32788233 DOI: 10.1242/jcs.247817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
In Schizosaccharomyces pombe, a general strategy for survival in response to environmental changes is sexual differentiation, which is triggered by TORC1 inactivation. However, mechanisms of TORC1 regulation in fission yeast remain poorly understood. In this study, we found that Pef1, which is an ortholog of mammalian CDK5, regulates the initiation of sexual differentiation through positive regulation of TORC1 activity. Conversely, deletion of pef1 leads to activation of autophagy and subsequent excessive TORC1 reactivation during the early phases of the nitrogen starvation response. This excessive TORC1 reactivation results in the silencing of the Ste11-Mei2 pathway and mating defects. Additionally, we found that pef1 genetically interacts with tsc1 and tsc2 for TORC1 regulation, and physically interacts with three cyclins, Clg1, Pas1 and Psl1. The double deletion of clg1 and pas1 promotes activation of autophagy and TORC1 during nitrogen starvation, similar to what is seen in pef1Δ cells. Overall, our work suggests that Pef1-Clg1 and Pef1-Pas1 complexes regulate initiation of sexual differentiation through control of the TSC-TORC1 pathway and autophagy.
Collapse
Affiliation(s)
- Shinya Matsuda
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Uda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
9
|
Pucciarelli D, Angus SP, Huang B, Zhang C, Nakaoka HJ, Krishnamurthi G, Bandyopadhyay S, Clapp DW, Shannon K, Johnson GL, Nakamura JL. Nf1-Mutant Tumors Undergo Transcriptome and Kinome Remodeling after Inhibition of either mTOR or MEK. Mol Cancer Ther 2020; 19:2382-2395. [PMID: 32847978 DOI: 10.1158/1535-7163.mct-19-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/18/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor NF1 leads to activation of RAS effector pathways, which are therapeutically targeted by inhibition of mTOR (mTORi) or MEK (MEKi). However, therapeutic inhibition of RAS effectors leads to the development of drug resistance and ultimately disease progression. To investigate molecular signatures in the context of NF1 loss and subsequent acquired drug resistance, we analyzed the exomes, transcriptomes, and kinomes of Nf1-mutant mouse tumor cell lines and derivatives of these lines that acquired resistance to either MEKi or mTORi. Biochemical comparisons of this unique panel of tumor cells, all of which arose in Nf1+/- mice, indicate that loss of heterozygosity of Nf1 as an initial genetic event does not confer a common biochemical signature or response to kinase inhibition. Although acquired drug resistance by Nf1-mutant tumor cells was accompanied by altered kinomes and irreversibly altered transcriptomes, functionally in multiple Nf1-mutant tumor cell lines, MEKi resistance was a stable phenotype, in contrast to mTORi resistance, which was reversible. Collectively, these findings demonstrate that Nf1-mutant tumors represent a heterogeneous group biochemically and undergo broader remodeling of kinome activity and gene expression in response to targeted kinase inhibition.
Collapse
Affiliation(s)
- Daniela Pucciarelli
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Benjamin Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Chi Zhang
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Ganesh Krishnamurthi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - D Wade Clapp
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
10
|
Luan T, Liu X, Mao P, Wang X, Rui C, Yan L, Wang Y, Fan C, Li P, Zeng X. The Role of 17β-Estrogen in Candida albicans Adhesion on Human Vaginal Epithelial Cells via FAK Phosphorylation. Mycopathologia 2020; 185:425-438. [PMID: 32185617 DOI: 10.1007/s11046-020-00440-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSES To investigate the role of 17β-estrogen in Candida albicans (C. albicans) adhesion on human vaginal epithelial cells in vulvovaginal candidiasis (VVC). METHODS The vaginal epithelial cell line, VK2/E6E7, was used to study the estrogen-induced molecular events between C. albicans and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation in cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. RESULTS A transient activation of ERα and FAK was observed following the stimulation with 1000 nM estrogen for 48 h, as well as the increased average number of C. albicans adhering to each vaginal epithelial cell. Estrogen-induced activation of ERa and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and allowed to act for 12 h. Simultaneously, a decrease in the number of adherent C. albicans was observed. However, this inhibitory effect diminished as the concentration of estrogen increased. CONCLUSION FAK and ERα signaling cascades were involved in the early interaction between the vaginal epithelial cells and C. albicans, which appeared to be linked with the enhanced cell adhesion leading to VVC and promoted by a certain concentration of estrogen.
Collapse
Affiliation(s)
- Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Pengyuan Mao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Lina Yan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yiquan Wang
- Department of Internal Medicine, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells 2020; 9:cells9030673. [PMID: 32164329 PMCID: PMC7140648 DOI: 10.3390/cells9030673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells through regulation of the water channel aquaporin-2 (AQP2). The hormone binds to vasopressin V2 receptors (V2R) on the surface of the cells and stimulates cAMP synthesis. The cAMP activates protein kinase A (PKA), which initiates signaling that causes an accumulation of AQP2 in the plasma membrane of the cells facilitating water reabsorption from primary urine and fine-tuning of body water homeostasis. AVP-mediated PKA activation also causes an increase in the AQP2 protein abundance through a mechanism that involves dephosphorylation of AQP2 at serine 261 and a decrease in its poly-ubiquitination. However, the signaling downstream of PKA that controls the localization and abundance of AQP2 is incompletely understood. We carried out an siRNA screen targeting 719 kinase-related genes, representing the majority of the kinases of the human genome and analyzed the effect of the knockdown on AQP2 by high-content imaging and biochemical approaches. The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.
Collapse
|
12
|
Simonovic S, Hinze C, Schmidt-Ott KM, Busch J, Jung M, Jung K, Rabien A. Limited utility of qPCR-based detection of tumor-specific circulating mRNAs in whole blood from clear cell renal cell carcinoma patients. BMC Urol 2020; 20:7. [PMID: 32013938 PMCID: PMC6998103 DOI: 10.1186/s12894-019-0542-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 10/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background RNA sequencing data is providing abundant information about the levels of dysregulation of genes in various tumors. These data, as well as data based on older microarray technologies have enabled the identification of many genes which are upregulated in clear cell renal cell carcinoma (ccRCC) compared to matched normal tissue. Here we use RNA sequencing data in order to construct a panel of highly overexpressed genes in ccRCC so as to evaluate their RNA levels in whole blood and determine any diagnostic potential of these levels for renal cell carcinoma patients. Methods A bioinformatics analysis with Python was performed using TCGA, GEO and other databases to identify genes which are upregulated in ccRCC while being absent in the blood of healthy individuals. Quantitative Real Time PCR (RT-qPCR) was subsequently used to measure the levels of candidate genes in whole blood (PAX gene) of 16 ccRCC patients versus 11 healthy individuals. PCR results were processed in qBase and GraphPadPrism and statistics was done with Mann-Whitney U test. Results While most analyzed genes were either undetectable or did not show any dysregulated expression, two genes, CDK18 and CCND1, were paradoxically downregulated in the blood of ccRCC patients compared to healthy controls. Furthermore, LOX showed a tendency towards upregulation in metastatic ccRCC samples compared to non-metastatic. Conclusions This analysis illustrates the difficulty of detecting tumor regulated genes in blood and the possible influence of interference from expression in blood cells even for genes conditionally absent in normal blood. Testing in plasma samples indicated that tumor specific mRNAs were not detectable. While CDK18, CCND1 and LOX mRNAs might carry biomarker potential, this would require validation in an independent, larger patient cohort.
Collapse
Affiliation(s)
- Sinisa Simonovic
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,Berlin Institute for Urologic Research, Berlin, Germany. .,Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.
| | - Christian Hinze
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Kai M Schmidt-Ott
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monika Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
13
|
Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2641-2649. [PMID: 31240956 DOI: 10.1080/21691401.2019.1631838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types, however, the role of FAK on BMP9-induced osteogenic differentiation in SMSCs has not been characted. The purpose of current study is to explore the mechanism of FAK on the BMP9-induced osteogenesis of SMSCs in vitro and in vivo. Methods: The optimal dose of BMP9 was determined by incubation in different BMP9 concentrations, then cells were transfected with siRNA-induced FAK knockdown in BMP9-induced osteogenesis. Cell proliferation, migration, the osteogenic capacity, and the underlying mechanism were further detected in vitro. Imaging and pathological examination were conducted to observe the bone formation in vivo. Results: Our findings suggested that BMP9 could obviously promote FAK phosphorylation in osteogenic conditions. In contrast, FAK knockdown significantly decreased the cell proliferation, migration, the osteogenic capacity of SMSCs. To be specific, FAK knockdown could markedly inhibit the Wnt and MAPK signal pathway of SMSCs induced by BMP9. Besides, FAK knockdown could also effectively inhibit BMP-9-induced bone formation in vivo. Conclusion: FAK plays a pivotal role in promoting BMP9-induced osteogenesis of SMSCs, which is probably via activating Wnt and MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xueping Gu
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xingwei Sun
- b Department of Intervention, The Second Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Qin Wu
- c Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , PR China.,d Department of Ultrasound, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Hu Dan
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| |
Collapse
|
14
|
Abe S, Yuasa K. Sudachitin, a polymethoxyflavone from Citrus sudachi, induces apoptosis via the regulation of MAPK pathways in human keratinocyte HaCaT cells. Biochem Biophys Res Commun 2019; 519:344-350. [PMID: 31514996 DOI: 10.1016/j.bbrc.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023]
Abstract
Although we recently reported that sudachitin (5,7,4'-trihydroxy-6,8,3'-trimethoxyflavone), a polymethoxyflavone isolated from the peel of Citrus sudachi, can induce apoptosis in human keratinocyte HaCaT cells, the mechanism underlying its action remains unclear. In this study, we explored the mechanisms underlying sudachitin-induced apoptosis in HaCaT cells. Sudachitin activated p38MAPK and inhibited ERK1/2, whereas another polymethoxyflavone, nobiletin (5,6,7,8,3',4'-hexamethoxyflavone), activated ERK1/2. The p38MAPK inhibitor SB203580 significantly attenuated sudachitin-induced heat shock protein 27 phosphorylation, downstream of p38MAPK, and subsequent apoptosis, indicating that sudachitin induces apoptosis via the p38MAPK pathway. Additionally, sudachitin inhibited serum- and EGF-stimulated Raf-1-ERK1/2 activation, and blocked EGF-induced cell migration and proliferation in HaCaT cells. These results suggest that small structural differences in polymethoxyflavones can induce different cellular responses by altering the regulation of MAPK activities and that sudachitin may be a potential candidate for developing new drugs for skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Shogo Abe
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan
| | - Keizo Yuasa
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan; Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima, Japan.
| |
Collapse
|
15
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
16
|
Pan Y, Jiang Z, Sun D, Li Z, Pu Y, Wang D, Huang A, He C, Cao L. Cyclin-dependent Kinase 18 Promotes Oligodendrocyte Precursor Cell Differentiation through Activating the Extracellular Signal-Regulated Kinase Signaling Pathway. Neurosci Bull 2019; 35:802-814. [PMID: 31028571 DOI: 10.1007/s12264-019-00376-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
The correct differentiation of oligodendrocyte precursor cells (OPCs) is essential for the myelination and remyelination processes in the central nervous system. Determining the regulatory mechanism is fundamental to the treatment of demyelinating diseases. By analyzing the RNA sequencing data of different neural cells, we found that cyclin-dependent kinase 18 (CDK18) is exclusively expressed in oligodendrocytes. In vivo studies showed that the expression level of CDK18 gradually increased along with myelin formation during development and in the remyelination phase in a lysophosphatidylcholine-induced demyelination model, and was distinctively highly expressed in oligodendrocytes. In vitro overexpression and interference experiments revealed that CDK18 directly promotes the differentiation of OPCs, without affecting their proliferation or apoptosis. Mechanistically, CDK18 activated the RAS/mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase pathway, thus promoting OPC differentiation. The results of the present study suggest that CDK18 is a promising cell-type specific target to treat demyelinating disease.
Collapse
Affiliation(s)
- Yuchen Pan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
- Department of Internal Medicine, Jiangsu Provincial Corps Hospital, Chinese People's Armed Police Force, Yangzhou, 225003, China
| | - Zeping Jiang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Dingya Sun
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Zhenghao Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Aijun Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China.
| | - Li Cao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Ma X, Zhang L, Song J, Nguyen E, Lee RS, Rodgers SJ, Li F, Huang C, Schittenhelm RB, Chan H, Chheang C, Wu J, Brown KK, Mitchell CA, Simpson KJ, Daly RJ. Characterization of the Src-regulated kinome identifies SGK1 as a key mediator of Src-induced transformation. Nat Commun 2019; 10:296. [PMID: 30655532 PMCID: PMC6336867 DOI: 10.1038/s41467-018-08154-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies. The systemic understanding of oncogenic kinase signalling is still limited. Here, the authors combine chemical proteomics with functional screens to assess the impact of oncogenic Src on the expressed kinome and identify SGK1 as a critical mediator of Src-induced cell transformation.
Collapse
Affiliation(s)
- Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fuyi Li
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Chanly Chheang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kristin K Brown
- Cancer Therapeutics Program and Cancer Metabolism Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christina A Mitchell
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
18
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Abe S, Hirose S, Nishitani M, Yoshida I, Tsukayama M, Tsuji A, Yuasa K. Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells. Biosci Biotechnol Biochem 2018; 82:2064-2071. [PMID: 30185129 DOI: 10.1080/09168451.2018.1514246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of polyphenols have been isolated from plants, and their biological activities have been examined. Sudachitin (5,7,4'-trihydroxy-6,8,3'-trimethoxyflavone) is a polymethoxyflavone that is isolated from the peel of Citrus sudachi. Although we previously reported that sudachitin possesses an anti-inflammatory activity, its other biological activities are not yet understood. In this study, we report a novel biological activity of sudachitin, which selectively induced apoptosis in human keratinocyte HaCaT cells. Another polymethoxyflavone, nobiletin (5,6,7,8,3',4'-hexamethoxyflavone), promoted autophagy but not apoptosis in HaCaT cells. On the other hand, 3'-demethoxysudachitin (5,7,4'-trihydroxy-6,8-dimethoxyflavone) failed to induce apoptosis and autophagy. These results show that three polymethoxyflavones have different effects on apoptosis and autophagy in HaCaT cells. Understanding the structure and biological activity of polymethoxyflavones may lead to the discovery of potential candidates for cancer drug development without significant toxic side effects. Abbreviations: ROS: reactive oxygen species; DMSO: dimethyl sulfoxide; MTT: 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; MAPK: mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Shogo Abe
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan
| | - Saki Hirose
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan
| | - Mami Nishitani
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan
| | - Ichiro Yoshida
- b Laboratory of Nutritional Science, Department of Food Science and Nutrition , Shikoku Junior College , Tokushima , Japan
| | - Masao Tsukayama
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan
| | - Akihiko Tsuji
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan.,c Department of Bioscience and Bioindustry , Tokushima University Graduate School , Tokushima , Japan
| | - Keizo Yuasa
- a Department of Biological Science and Technology , Tokushima University Graduate School , Tokushima , Japan.,c Department of Bioscience and Bioindustry , Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
20
|
Mok MT, Zhou J, Tang W, Zeng X, Oliver AW, Ward SE, Cheng AS. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol Ther 2018; 186:138-151. [PMID: 29360538 DOI: 10.1016/j.pharmthera.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 20 (CDK20), or more commonly referred to as cell cycle-related kinase (CCRK), is the latest member of CDK family with strong linkage to human cancers. Accumulating studies have reported the consistent overexpression of CCRK in cancers arising from brain, colon, liver, lung and ovary. Such aberrant up-regulation of CCRK is clinically significant as it correlates with tumor staging, shorter patient survival and poor prognosis. Intriguingly, the signalling molecules perturbed by CCRK are divergent and cancer-specific, including the cell cycle regulators CDK2, cyclin D1, cyclin E and RB in glioblastoma, ovarian carcinoma and colorectal cancer, and KEAP1-NRF2 cytoprotective pathway in lung cancer. In hepatocellular carcinoma (HCC), CCRK mediates virus-host interaction to promote hepatitis B virus-associated tumorigenesis. Further mechanistic analyses reveal that CCRK orchestrates a self-reinforcing circuitry comprising of AR, GSK3β, β-catenin, AKT, EZH2, and NF-κB signalling for transcriptional and epigenetic regulation of oncogenes and tumor suppressor genes. Notably, EZH2 and NF-κB in this circuit have been recently shown to induce IL-6 production to facilitate tumor immune evasion. Concordantly, in a hepatoma preclinical model, ablation of Ccrk disrupts the immunosuppressive tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade via potentiation of anti-tumor T cell responses. In this review, we summarized the multifaceted tumor-intrinsic and -extrinsic functions of CCRK, which represents a novel signalling hub exploitable in cancer immunotherapy.
Collapse
Affiliation(s)
- Myth T Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Cardiff, Wales, CF10 3AT, UK
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Krasinska L, Fisher D. Non-Cell Cycle Functions of the CDK Network in Ciliogenesis: Recycling the Cell Cycle Oscillator. Bioessays 2018; 40:e1800016. [DOI: 10.1002/bies.201800016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Liliana Krasinska
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| | - Daniel Fisher
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| |
Collapse
|
22
|
Oue Y, Murakami S, Isshiki K, Tsuji A, Yuasa K. Intracellular localization and binding partners of death associated protein kinase-related apoptosis-inducing protein kinase 1. Biochem Biophys Res Commun 2018; 496:1222-1228. [DOI: 10.1016/j.bbrc.2018.01.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
23
|
Kalra S, Joshi G, Munshi A, Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur J Med Chem 2017; 142:424-458. [PMID: 28911822 DOI: 10.1016/j.ejmech.2017.08.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Collapse
Affiliation(s)
- Sourav Kalra
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gaurav Joshi
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Raj Kumar
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
24
|
Margiotta A, Progida C, Bakke O, Bucci C. Characterization of the role of RILP in cell migration. Eur J Histochem 2017; 61:2783. [PMID: 28735522 PMCID: PMC5460375 DOI: 10.4081/ejh.2017.2783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Rab-interacting lysosomal protein (RILP) is a regulator of late stages of endocytosis. Recent work proved that depletion of RILP promotes migration of breast cancer cells in wound healing assay, whereas its overexpression influences re-arrangements of actin cytoskeleton. Here, we further characterized the role of RILP in cell migration by analyzing several aspects of this process. We showed that RILP is fundamental also for migration of lung cancer cells regulating cell velocity. RILP silencing did not affect Golgi apparatus nor microtubules reorientation during migration. However, both RILP over-expression and expression of its mutated form, RILPC33, impair cell adhesion and spreading. In conclusion, our results demonstrate that RILP has important regulatory roles in cell motility affecting migration velocity but also in cell adhesion and cell spreading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- University of Salento, Department of Biological and Environmental Sciences and Technologies.
| | | | | | | |
Collapse
|