1
|
Zhou Y, Chen Y, Li L, Lin L. Inhibition of hsa_circ_0003314 contributes to trophoblast cell migration and invasion and inhibits pyroptosis in preeclampsia. Histochem Cell Biol 2025; 163:52. [PMID: 40377691 DOI: 10.1007/s00418-025-02384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/18/2025]
Abstract
Inflammation is a key contributor to the development of preeclampsia. Recent studies suggest that circular RNAs (circRNAs) may serve as potential therapeutic targets for this disease, though their specific functions remain incompletely understood. In this study, we investigated the role of hsa_circ_0003314 in preeclampsia pathogenesis. The interaction between hsa_circ_0003314 and microRNA (miR)-1827 was validated using RNA pull-down and luciferase reporter assays, while the binding of miR-1827 to the 3'-UTR of caspase-5 was confirmed by RNA immunoprecipitation and luciferase reporter assays. Pyroptotic cells were quantified by flow cytometry based on the percentage of caspase-1/propidium iodide (PI) double-positive cells. Enzyme-linked immunosorbent assay (ELISA) was performed to measure interleukin (IL)-1β concentrations in the culture supernatant. The migration and invasion abilities of HTR-8/SVneo cells were evaluated using Transwell assays. We found that hsa_circ_0003314 expression was upregulated in HTR-8/SVneo cells subjected to hypoxia/reoxygenation (H/R) treatment. Silencing hsa_circ_0003314 enhanced cell migration, invasion, and epithelial-mesenchymal transition (EMT), while reducing the expression of pyroptosis-related proteins, GSDMD-N and HMGB1. The proportion of pyroptotic cells was significantly decreased upon hsa_circ_0003314 knockdown in H/R-treated cells. Mechanistically, hsa_circ_0003314 functions as a molecular sponge for miR-1827, thereby regulating caspase-5 expression. Notably, caspase-5 overexpression rescued the effects of hsa_circ_0003314 knockdown, restoring pyroptosis markers and suppressing the enhanced migratory and invasive behavior of HTR-8/SVneo cells. In conclusion, silencing hsa_circ_0003314 promotes migration, invasion, and EMT in H/R-treated HTR-8/SVneo cells by inhibiting caspase-5-mediated pyroptosis through the sequestration of miR-1827. These findings identify hsa_circ_0003314 as a promising therapeutic target in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dong Street, Fuzhou, 350001, Fujian, China
| | - Yuqing Chen
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dong Street, Fuzhou, 350001, Fujian, China
| | - Lihua Li
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dong Street, Fuzhou, 350001, Fujian, China
| | - Lizhen Lin
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dong Street, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Huang X, Mulasihan M, Tudi M, Li S. A single-center clinical study of acute kidney injury associated with acute myocardial infarction. Int Urol Nephrol 2024; 56:325-334. [PMID: 37368084 DOI: 10.1007/s11255-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To investigate the risk factors of acute kidney injury (AKI) patients with acute myocardial infarction (AMI) and establish potential microRNA (miRNA) biomarkers in the peripheral blood of AMI-AKI patients. METHODS Patients hospitalized from 2016 to 2020 and diagnosed with AMI (with AKI or without AKI groups) were recruited. The data of the two groups were compared and the risk factors of AMI-AKI were analyzed by logistic regression. The receiver operator characteristics (ROC) curve was drawn and the predictive value of risk factors in AMI-AKI was evaluated. Six AMI-AKI patients were selected and six healthy subjects were enrolled as the control. The peripheral blood samples of the two groups were collected for miRNA high-throughput sequencing. RESULTS A total of 300 AMI patients were collected, including 190 patients with AKI and 110 patients without AKI. Multivariate logistic regression analysis indicated that diastolic pressure (68-80 mmHg), urea nitrogen, creatinine, serum uric acid (SUA), aspartate aminotransferase (AST), and left ventricular ejection fraction were the dependent risk factors of AMI-AKI patients (P < 0.05). ROC curve showed that the incidence of AMI-AKI patients was most correlated with urea nitrogen, creatinine, and SUA. In addition, 60 differentially expressed miRNAs were identified between AMI-AKI and controls. Then, hsa-miR-2278, hsa-miR-1827, and hsa-miR-149-5p were more corrected with predictors. Twelve of them targeted 71 genes involved in phagosome, oxytocin signaling pathway, and microRNAs in cancer pathways. CONCLUSION Urea nitrogen, creatinine, and SUA were the dependent risk factors and important predictors for AMI-AKI patients. Three miRNAs may be considered as biomarkers for AMI-AKI.
Collapse
Affiliation(s)
- Xuan Huang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China
| | - Muhuyati Mulasihan
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China
| | - Mireayi Tudi
- The First People's Hospital of Kashi Region, Yingbin Road, Kashi, 844099, China
| | - Suhua Li
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China.
| |
Collapse
|
4
|
Li Y, Wang X, Pan C, Yuan H, Li X, Chen Z, He H. Myoblast-derived exosomal Prrx2 attenuates osteoporosis via transcriptional regulation of lncRNA-MIR22HG to activate Hippo pathway. Mol Med 2023; 29:54. [PMID: 37081396 PMCID: PMC10116833 DOI: 10.1186/s10020-023-00649-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis are common diseases that predominantly affect older individuals. The interaction between muscle and skeleton exerts pivotal roles in bone remodeling. This study aimed to explore the function of myoblast-derived exosomal Prrx2 in osteogenic differentiation and its potential mechanisms. METHODS Exosomes were isolated from myogenic differentiated C2C12 cells. qRT-PCR and Western blotting were used to determine target molecule expression. Osteogenic differentiation of BMSCs was evaluated by Alizarin red staining, ALP activity and levels of OCN, OPN, RUNX2, and BMP2. Dual-luciferase reporter assay, RIP, and ChIP assays were performed to verify the interaction between molecules. The nuclear translocation of YAP1 was observed by immunofluorescence staining. In vivo osteoporotic model was established by ovariectomy in mice. Bone loss was examined using HE staining. RESULTS Prrx2 expression was elevated in myogenic differentiated C2C12 cells and their exosomes. Myoblast-derived exosomal Prrx2 enhanced osteogenic differentiation of BMSCs. Delivering exosomal Prrx2 directly bond to MIR22HG promoter and promoted its transcription and expression. MIR22HG enhanced expression and nuclear translocation of YAP via sponging miR-128, thus facilitating BMSC osteogenic differentiation. Knockdown of exosomal Prrx2 suppressed osteogenic differentiation, which could be abolished by MIR22HG overexpression. Similarly, miR-128 inhibitor or YAP overexpression reversed the inhibitory effect of MIR22HG depletion or miR-128 mimics on osteogenic differentiation. Finally, myoblast-derived exosomal Prrx2 alleviated osteoporosis in mice via up-regulating MIR22HG and activating the Hippo pathway. CONCLUSION Myoblast-derived exosomal Prrx2 contributes to transcriptional activation of MIR22HG to activate YAP pathway via sponging miR-128, thereby facilitating osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yunchao Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China.
| | - Xiaoxiao Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Changyu Pan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Hui Yuan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Xinyi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Zejun Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Haoyu He
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| |
Collapse
|
5
|
Davarinejad O, Najafi S, Zhaleh H, Golmohammadi F, Radmehr F, Alikhani M, Moghadam RH, Rahmati Y. MiR-574-5P, miR-1827, and miR-4429 as Potential Biomarkers for Schizophrenia. J Mol Neurosci 2021; 72:226-238. [PMID: 34811713 DOI: 10.1007/s12031-021-01945-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a severe chronic debilitating disorder with millions of affected individuals. Diagnosis is based on clinical presentations, which are made when the progressive disease has appeared. Early diagnosis may help improve the clinical outcomes and response to treatments. Lack of a reliable molecular diagnostic invokes the identification of novel biomarkers. To elucidate the molecular basis of the disease, in this study we used two mRNA expression arrays, including GSE93987 and GSE38485, and one miRNA array, GSE54914, and meta-analysis was conducted for evaluation of mRNA expression arrays via metaDE package. Using WGCNA package, we performed network analysis for both mRNA expression arrays separately. Then, we constructed protein-protein interaction network for significant modules. Limma package was employed to analyze the miRNA array for identification of dysregulated miRNAs (DEMs). Using genes of significant modules and DEMs, a mRNA-miRNA network was constructed and hub genes and miRNAs were identified. To confirm the dysregulated genes, expression values were evaluated through available datasets including GSE62333, GSE93987, and GSE38485. The ability of the detected hub miRNAs to discriminate schizophrenia from healthy controls was evaluated by assessing the receiver-operating curve. Finally, the expression levels of genes and miRNAs were evaluated in 40 schizophrenia patients compared with healthy controls via Real-Time PCR. The results confirmed dysregulation of hsa-miR-574-5P, hsa-miR-1827, hsa-miR-4429, CREBRF, ARPP19, TGFBR2, and YWHAZ in blood samples of schizophrenia patients. In conclusion, three miRNAs including hsa-miR-574-5P, hsa-miR-1827, and hsa-miR-4429 are suggested as potential biomarkers for diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Omran Davarinejad
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzaneh Golmohammadi
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farnaz Radmehr
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Alikhani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Heidari Moghadam
- Cardiovascular Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yazdan Rahmati
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Lin Y, Zhang M, Zhou L, Chen X, Chen J, Wu D. Promoting effect of rapamycin on osteogenic differentiation of maxillary sinus membrane stem cells. PeerJ 2021; 9:e11513. [PMID: 34141480 DOI: 10.7717/peerj.11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Background Stem cells located in the maxillary sinus membrane can differentiate into osteocytes. Our study aimed to evaluate the effect of rapamycin (RAPA) on the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs). Methods Colony-forming unit assay, immunophenotype identification assay, and multi-differentiation assay confirmed characteristics of MSMSCs obtained from SD rats. Transmission electron microscopy (TEM) and flow cytometry (FCM) identified the initial autophagic level of MSMSCs induced by RAPA. Real-time quantitative PCR (qPCR) evaluated subsequent autophagic levels and osteogenic differentiation. Alkaline phosphatase (ALP) activity assay and alizarin red staining (ARS) evaluated subsequent osteogenic differentiation. We performed a histological examination to clarify in vivo osteogenesis with ectopic bone mass from BALB/c nude mice. Results MSMSCs possessed an active proliferation and multi-differentiation capacity, showing a phenotype of mesenchymal stem cells. The autophagic level increased with increasing RAPA (0, 10, 100, 1,000 nM) and decreased over time. ALP activity and calcium nodules forming in four RAPA-treated groups on three-time points (7, 14, 21 d) showed significant differences. Col1a1, Runx2, and Spp1 expressed most in 100 nM RAPA group on 7 and 14 d. Osteogenesis-related genes except for Ibsp expression between four groups tended to be consistent on 21 d. 100 nM and 10 nM RAPA-treated groups showed more bone formation in vivo. Conclusion RAPA can promote osteogenic differentiation of MSMSCs, indicating a possible relationship between osteogenic differentiation and autophagy.
Collapse
Affiliation(s)
- Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Zhang
- Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, China.,General Department of Hubin Campus, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuxi Chen
- Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiang Chen
- Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Dong Wu
- Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Ma L, Wu D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9. Arch Oral Biol 2021; 129:105166. [PMID: 34118749 DOI: 10.1016/j.archoralbio.2021.105166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Human periodontal ligament stem cells (hPDLSCs) play an important role in regenerative engineering technology for periodontal therapy. The mechanism of microRNA (miR)-383-5p in osteogenic differentiation needs further exploration. This study aimed at investigating the potential role of miR-383-5p in the osteogenic differentiation of hPDLSCs. METHODS Osteogenic differentiation of hPDLSCs was induced by osteoblastinducing media and evaluated by Alizarin Red staining and Alkaline phosphatase staining. To examine the role of miR-383-5p in osteogenic differentiation, miR-383-5p mimic or inhibitor and histone deacetylase (HDAC) 9 overexpression plasmid or siRNA-HDAC9 were co-transfected into hPDLSCs. qRT-PCR and Western blot were applied for detection of mRNA and protein levels. RESULTS During the osteogenic differentiation of hPDLSCs, miR-383-5p expression was gradually up-regulated, while HDAC9 mRNA level was down-regulated. HDAC9 overexpression suppressed Alkaline phosphatase activity, mineral node formation and the expressions of osteogenic markers including Runx family transcription factor 2 (RUNX2), osteocalcin and Smad family member 4 (Smad4) in the differentiated hPDLSCs, while siHDAC9 exerted opposite effects on osteogenic differentiation. The Alkaline phosphatase activity, mineral node formation and the expressions of RUNX2, osteocalcin and Smad4 of the differentiated hPDLSCs were regulated by miR-383-5p/HDAC9 axis. The miR-383-5p/HDAC9 axis effectively regulated the expressions of osteogenic markers during the differentiation of hPDLSCs. CONCLUSION MiR-383-5p overexpression facilitated the osteogenic differentiation of hPDLSCs via inhibiting HDAC9 expression.
Collapse
Affiliation(s)
- Lan Ma
- Department of Stomatology, Jingmen No.1 People's Hospital, China
| | - Di Wu
- Department of Stomatology, Jingmen No.1 People's Hospital, China.
| |
Collapse
|
8
|
Zhou Z, Zheng X, Mei X, Li W, Qi S, Deng Y, Lei B. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:762. [PMID: 34268375 PMCID: PMC8246201 DOI: 10.21037/atm-20-7123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Background Glioma is the most common and fatal primary cranial tumor. The epidermal growth factor receptor (EGFR) plays an important role in the occurrence and treatment of glioma, which might function through a circular ribonucleic acid (circRNA)-related mechanism. Hsa_circ_0080229 (circ_0080229) has been identified as a circRNA arising from an EGFR gene in gliomas; however, little is known about its molecular mechanism to date. Methods To address this question, a series of experiments were conducted to confirm the effect of circ_0080229 in gliomas and identify the downstream mechanism. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis and in-situ hybridization/fluorescence in-situ hybridization (ISH/FISH) testing were performed to identify the expression of circ_0080229 in patient samples. Bioinformatic analysis was carried out to explore the possible mechanism. Next, a series of in-vitro functional assays and in-vivo assays with a xenograft subcutaneous glioma model was carried out to confirm the effect of circ_0080229. Finally, qRT-PCR analysis and a Western Blot analysis were performed to verify the related mechanism. Results The expression of circ_0080229 was upregulated in both glioma tissues and cell lines related to unfavorable clinicopathologic characteristics. The expression of circ_0080229 was found to be inversely correlated with miR-1827, a micro-ribonucleic acid (miRNA) targeting murine double minute-2 (MDM2). The downregulation of circ_0080229 inhibited gliomas in vivo and suppressed U87 and U251 cell lines in vitro, which the transfection of the miR-1827 inhibitor could reverse. Concerning the mechanism, a block of circ_0080229 decreased MDM2 expression, while the inhibition of miR-1827 reversed this effect. Thus, circ_0080229 appears to target the downstream miR-1827/MDM2 signaling pathway. Conclusions Our results showed that the silencing of circ_0080229 upregulates the expression of miR-1827, which in turn resulted in the suppression of MDM2, and the mediation of the downstream P53 signaling pathway. Circ_0080229 exerted an effect in mediating tumor progression through the MDM2 signaling pathway by sponging miR-1827. Its importance as a potential prognostic biomarker in gliomas has thus been established.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiuyuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Mei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wengpeng Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis 2021; 12:340. [PMID: 33795657 PMCID: PMC8016856 DOI: 10.1038/s41419-021-03586-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis is the most prevailing primary bone disease and a growing health care burden. The aim of this study was to clarify the functional roles and mechanisms of the circ-ITCH regulating osteogenic differentiation of osteoporosis. Circ-ITCH and yes-associated protein 1 (YAP1) levels were downregulated, but the miR‐214 level was upregulated in osteoporotic mice and patients. Knockdown of circ-ITCH inhibited the alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) during osteogenic induction. Furthermore, miR-214 was a target of circ-ITCH, knockdown of miR-214 could impede the regulatory effects of sh-circ-ITCH on osteogenic differentiation. Moreover, miR-214 suppressed hBMSCs osteogenic differentiation by downregulating YAP1. Finally, in vivo experiments indicated that overexpression of circ-ITCH could improve osteogenesis in ovariectomized mice. In conclusion, circ-ITCH upregulated YAP1 expression to promote osteogenic differentiation in osteoporosis via sponging miR-214. Circ-ITCH could act as a novel therapeutic target for osteoporosis.
Collapse
|
10
|
Xiang J, Bian Y. PWAR6 interacts with miR‑106a‑5p to regulate the osteogenic differentiation of human periodontal ligament stem cells. Mol Med Rep 2021; 23:268. [PMID: 33576453 PMCID: PMC7893692 DOI: 10.3892/mmr.2021.11907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) associated with bone regeneration serve an important role in the treatment of periodontal disease. Long non-coding RNAs are involved in the osteogenesis of multiple stem cells and can act as a sponge of microRNAs (miRs). The present study aimed to investigate the interaction between Prader Willi/Angelman region RNA 6 (PWAR6) and miR-106a-5p, as well as their influences on the osteogenic differentiation of hPDLSCs. hPDLSCs were isolated and cultured in osteogenic medium (OM) or growth medium (GM) for 7 days prior to transfection with PWAR6 overexpression vector, short hairpin RNA PWAR6 or miR-106a-5p mimic. The expression levels of runt-related transcription factor 2, osteocalcin and bone morphogenetic protein 2 (BMP2) were detected by western blotting and reverse transcription-quantitative PCR (RT-qPCR), and the expression levels of PWAR6, miR-106a-5p and alkaline phosphatase (ALP) were determined by RT-qPCR. ALP activity assays and Alizarin red staining were performed to detect osteogenesis and mineralization, respectively. Luciferase activities of wild-type and mutant PWAR6 and BMP2 were assessed by conducting a dual-luciferase reporter assay. The results indicated that PWAR6 expression was upregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs, and PWAR6 overexpression increased the osteogenic differentiation and mineralization of hPDLSCs compared with the corresponding control group. By contrast, miR-106a-5p expression was downregulated in OM-incubated hPDLSCs compared with GM-incubated hPDLSCs. PWAR6 acted as a sponge of miR-106a-5p and PWAR6 overexpression promoted the osteogenesis of miR-106a-5p mimic-transfected hPDLSCs. BMP2 was predicted as a target gene of miR-106a-5p. Collectively, the results indicated that PWAR6 displayed a positive influence on the osteogenic differentiation of hPDLSCs. The results of the present study demonstrated that the PWAR6/miR-106a-5p interaction network may serve as a potential regulatory mechanism underlying hPDLSCs osteogenesis.
Collapse
Affiliation(s)
- Juan Xiang
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ying Bian
- Department of Oral and Maxillofacial Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
11
|
Wang XJ, Liu JW, Liu J. MiR-655-3p inhibits the progression of osteoporosis by targeting LSD1 and activating BMP-2/Smad signaling pathway. Hum Exp Toxicol 2020; 39:1390-1404. [PMID: 32431171 DOI: 10.1177/0960327120924080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is one of the most common chronic metabolic bone diseases in the seniors and postmenopausal women. Plenty of microRNAs (miRNAs) have been confirmed to be involved in OP progression. However, the role of miR-655-3p in osteogenic differentiation and bone formation was still unclear. In this study, we aimed to investigate the cellular function of miR-655-3p and its underlying mechanism in OP. We found that miR-655-3p expression was downregulated in both ovariectomized (OVX) mice bone tissues and MC3T3-E1 cells treated with simulated microgravity (MG). MiR-655-3p overexpression facilitated cell differentiation but suppressed cell apoptosis of MC3T3-E1 cells induced by simulated MG. Mechanistically, we confirmed that lysine-specific histone demethylase 1 (LSD1) is a downstream target gene of miR-655-3p. Furthermore, overexpression of miR-655-3p activated the bone morphogenetic protein 2 (BMP-2)/decapentaplegic homolog (Smad) signaling pathway by suppressing LSD1 expression. Moreover, LSD1 knockdown accelerated osteogenic differentiation and inhibited apoptosis in MC3T3-E1 cells under simulated MG. Additionally, the OVX mouse model was established to investigate the role of miR-655-3p/LSD1 axis in vivo. The results demonstrated that LSD1 could reverse the effects triggered by the injection of adeno-associated virus-miR-655-3p on OP development. Further investigations revealed that miR-655-3p boosted osteogenic differentiation through LSD1/BMP-2/Smad signaling pathway. In summary, these findings implied a potential value of miR-655-3p in OP therapy.
Collapse
Affiliation(s)
- X-J Wang
- Department of Orthopedics, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - J-W Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - J Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| |
Collapse
|
12
|
Liu L, Zeng D, Chen Y, Zhou J, Liao Y, Shi B. Microarc oxidation surface of titanium implants promote osteogenic differentiation by activating ERK1/2-miR-1827-Osterix. In Vitro Cell Dev Biol Anim 2020; 56:296-306. [PMID: 32270391 DOI: 10.1007/s11626-020-00444-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
There has been a constant requirement from the clinic to develop biomedical titanium (Ti) implants with high osteogenic ability. In this study, we clarified a novel mechanism of how MAO (microarc oxidation) coating of Ti implants facilitates osteogenic differentiation of human bone marrow mesenchymal stem cells (hB-MSCs) by activating ERK1/2-miR-1827-Osterix signaling pathway in vitro. MAO surface of titanium implant was more favorable to promote osteogenic differentiation than SLA and AOS coating. Besides, titanium implants regulated hB-MSCs osteogenesis through the p38 MAPK pathway and ERK1/2 might be the most efficient target. Furthermore, MAO coating induced osteogenic differentiation though ERK1/2-miR-1827 pathway. Finally, we verified miR-1827 regulated osteogenic differentiation partially through Osterix. Our study reveals novel insights that MAO surface of titanium implant is a prior choice for biomedical trial and for its use in periprosthetic osteolysis (PIO) treatment in an evidence-based rationale.
Collapse
Affiliation(s)
- Liu Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Da Zeng
- Xiamen Medical Device Research & Testing center, Xiamen, Fujian, China
| | - Yanwen Chen
- Xiamen Medical Device Research & Testing center, Xiamen, Fujian, China
| | - Junbo Zhou
- Department of stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunyang Liao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
13
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Zheng DZ, Bu YM, Wang L. miR-130b participates in wear particle-induced inflammation and osteolysis via FOXF2/NF-κB pathway. Immunopharmacol Immunotoxicol 2018; 40:408-414. [PMID: 30488739 DOI: 10.1080/08923973.2018.1514626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- De-Zhi Zheng
- Department of Joint Surgery, Tianjin Hospital, Tianjin, P.R. China
| | - Yan-Min Bu
- Department of Joint Surgery, Tianjin Hospital, Tianjin, P.R. China
| | - Lei Wang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|
15
|
Peng W, Zhu S, Chen J, Wang J, Rong Q, Chen S. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3. Biomed Pharmacother 2018; 109:1709-1717. [PMID: 30551425 DOI: 10.1016/j.biopha.2018.10.159] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) comprise a novel class of noncoding RNAs that play important roles in a variety of diseases. However, the mechanism by which circRNAs regulate the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remains largely unclear. METHODS Microarray analysis was used to explore the expression profiles of circRNAs during the osteogenic differentiation of normal and BMP2 induced-MSMSCs. CircRNA_33287 was identified by agarose electrophoresis, quantitative real-time PCR (qRT-PCR), and western blotting. The function of circRNA_33287 was assessed by loss- and gain-of-function techniques and Alizarin red staining. Potential miRNA binding sites for circRNA_33287, and the target genes of miR-214-3p, were predicted by using online bioinformatics analysis tools. The relationships among the regulatory roles played by circRNA_33287, miR-214-3p, and Runt-related transcription factor 3 (Runx3), during the osteogenic differentiation of MSMSCs were verified by use of the dual luciferase reporter assay, qRT-PCR, and western blotting techniques, respectively. In addition, the molecular sponge potential of circRNA_33287 for miRNA was assessed via in vivo ectopic bone formation and a histological analysis performed after hematoxylin and eosin staining. RESULTS Expression of circRNA_33287 was confirmed to be up-regulated during the osteogenic differentiation of MSMSCS. Overexpression and silencing of circRNA_33287 increased and decreased the expression levels of key markers of osteogenesis, respectively, including Runx2, OSX, and ALP. Furthermore, circRNA_33287 acted as a molecular sponge for miR-214-3p, which regulated Runx3 expression by targeting its 3'UTR. Moreover, circRNA_33287 protected Runx3 from miR-214-3p-mediated suppression. In addition, circRNA_33287 was shown to increase ectopic bone formation in vivo and displayed the strongest ability to stimulate bone formation when co-transfected with a miR-214-3p inhibitor. CONCLUSION The novel pathway circRNA_33287/miR-214-3p/Runx3 was found to play a role in regulating the osteoblastic differentiation of MSMSCs in the posterior maxilla.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University & Guangdong Key Laboratory of Stomatology, Guangdong, China
| | - Shuangxi Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University & Guangdong Key Laboratory of Stomatology, Guangdong, China
| | - Junlan Chen
- Dental Implant Department, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jin Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University & Guangdong Key Laboratory of Stomatology, Guangdong, China
| | - Qiong Rong
- Department of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Songling Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University & Guangdong Key Laboratory of Stomatology, Guangdong, China.
| |
Collapse
|
16
|
Di Cristofori A, Del Bene M, Locatelli M, Boggio F, Ercoli G, Ferrero S, Del Gobbo A. Meningioma and Bone Hyperostosis: Expression of Bone Stimulating Factors and Review of the Literature. World Neurosurg 2018; 115:e774-e781. [DOI: 10.1016/j.wneu.2018.04.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
|
17
|
Peng W, Deng W, Zhang J, Pei G, Rong Q, Zhu S. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun 2018; 503:815-821. [PMID: 29913147 DOI: 10.1016/j.bbrc.2018.06.081] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) were proposed to be important regulators influencing various differentiation processes. Yet, the molecular mechanisms of lncRNAs governing osteogenic differentiation of Periodontal Ligament Stem Cells (PDLSCs) remain unclear. Here, PDLSCs were isolated from normal periodontal ligament of human (PDL) whereas P-PDLSCs were isolated from periodontitis affected PDL. Quantitative real-time PCR (qRT-PCR) was performed to examine the relative expression level of lncRNA-ANCR and of Osterix (OSX), Alkaline Phosphatase (ALP) as well as Runt-related transcription factor 2 (RUNX2) in PDLSCs. Gain- and loss-of- function experiments was performed to study the role of lncRNA-ANCR. Alizarin Red staining was used to evaluate the function of lncRNA-ANCR and miRNA-758 on osteogenic differentiation. In addition, via dual luciferase reporter assay and RNA immunoprecipitation the microRNA sponge potential of lncRNA-ANCR was assessed. A luciferase reporter assay identified the correlation between miR-758 and Notch2. Our results showed that the expression of ALP, RUNX2 and OSX were increased whereas lncRNA-ANCR was decreased during the process of differentiation in PDLSCs. Overexpression of lncRNA-ANCR decreased the expression of ALP, RUNX2 and OSX as confirmed by Alizarin red staining. Overexpression of lncRNA-ANCR resulted in reduction of the miR-758 expression level. Furthermore, RNA immunoprecipitation proved that lncRNA-ANCR targets miR-758 directly. The results of dual luciferase reporter assay also demonstrated that miR-758 regulated Notch2 expression by targeting 3'-UTR of Notch2. In conclusion, the novel pathway lncRNA-ANCR/miR-758/Notch2 plays an important role in the process of regulating osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital, Haikou, PR China
| | - Jing Zhang
- Department of Stomatology, Clifford Hospital, Guangzhou University of Chinese Medicine, PR China
| | - Gengwang Pei
- Otolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, PR China
| | - Qiong Rong
- Department of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Shuangxi Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
18
|
Peng W, Zhu S, Wang J, Chen L, Weng J, Chen S. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p. Clin Implant Dent Relat Res 2018; 20:110-121. [PMID: 29106055 PMCID: PMC5947825 DOI: 10.1111/cid.12553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The function and the mechanism of long non-coding RNAs (lncRNAs) on the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remain largely unknown. MATERIALS AND METHODS The expression of lnc-NTF3-5 and Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and Alkaline Phosphatase (ALP) was examined by quantitative real-time PCR (qRT-PCR) in MSMSCs during the process osteogenic differentiation. Then the function of lnc-NTF3-5 was evaluated by loss- and gain-of-function techniques, as well as qRT-PCR, western blot, and Alizarin Red staining. In addition, the microRNAs (miRNAs) sponge potential of lnc-NTF3-5 was assessed through RNA immunoprecipitation, dual luciferase reporter assay, and in vivo ectopic bone formation. RESULTS Lnc-NTF3-5, RUNX2, OSX, and ALP increased alone with the differentiation. Inhibition of lnc-NTF3-5 decreased the expression of RUNX2, OSX, and ALP both at mRNA and protein levels. Alizarin red staining showed similar trend. In contrast, overexpression of lnc-NTF3-5 presented totally opposite effects. Besides, overexpression of lnc-NTF3-5 could decrease the expression of microRNA-93-3p (miR-93-3p). Enhance miR-93-3p could also inhibit the expression level of lnc-NTF3-5. RNA immunoprecipitation demonstrated that lnc-NTF3-5 is directly bound to miR-93-3p and dual luciferase reporter assay proved that miR-93-3p targets 3' UTR of RUNX2 to regulate its expression. Ultimately, in vivo bone formation study showed that lnc-NTF3-5 and miR-93-3p inhibitor co-transfection group displayed the strongest bone formation. CONCLUSIONS The novel pathway lnc-NTF3-5/miR-93-3p/RUNX2 could regulate osteogenic differentiation of MSMSCs and might serve as a therapeutic target for bone regeneration in the posterior maxilla.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Shuang‐Xi Zhu
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Jin Wang
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Li‐Li Chen
- Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jun‐Quan Weng
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of StomatologyShenzhen People's Hospital, Second Clinical Medical School, Jinan UniversityShenzhenChina
| | - Song‐Ling Chen
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Wang A, Ren M, Song Y, Wang X, Wang Q, Yang Q, Liu H, Du Z, Zhang G, Wang J. MicroRNA Expression Profiling of Bone Marrow Mesenchymal Stem Cells in Steroid-Induced Osteonecrosis of the Femoral Head Associated with Osteogenesis. Med Sci Monit 2018; 24:1813-1825. [PMID: 29590087 PMCID: PMC5887684 DOI: 10.12659/msm.909655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a common orthopedic disease associated with the application of glucocorticoid (GC). In this study, we detected the microRNAs (miRNAs) differentially expressed in bone marrow mesenchymal stem cells (BMSCs) from SONFH patients, and target gene predictions were performed, and the functions of the target genes was verified. MATERIAL AND METHODS BMSCs collected from patients with SONFH and femoral neck fracture (FNF) constituted the SONFH group (n=3) and FNF (control) group (n=3), respectively. MiRNA microarray analysis was utilized to detect the differentially expressed miRNAs, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the microarray results. The target genes and functions of the differentially expressed miRNAs were analyzed using a bioinformatics database. RESULTS The microarray results revealed that compared with the control group, 22 miRNAs were identified differentially expressed in the SONFH group, with 17 upregulated and 5 downregulated. Further qRT-PCR validation of differentially expressed miRNAs confirmed that hsa-miR-601, hsa-miR-452-3p, hsa-miR-647, and hsa-miR-516b-5p were significantly increased, whereas hsa-miR-122-3p was significantly decreased. During osteogenic differentiation, hsa-miR-601, hsa-miR-452-3p, hsa-miR-647, hsa-miR-516b-5p, and hsa-miR-127-5p were significantly downregulated, whereas hsa-miR-122-3p was significantly upregulated, and miRNAs showed a converse tendency during adipogenic differentiation. CONCLUSIONS Six miRNAs associated with osteogenic and adipogenic differentiation were identified differentially expressed in the BMSCs of SONFH patients; these miRNAs may serve as novel biomarkers or therapeutic targets for SONFH.
Collapse
Affiliation(s)
- Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ming Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yang Song
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xiaonan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Qiwei Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhenwu Du
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
20
|
Kume K, Iwama H, Deguchi K, Ikeda K, Takata T, Kokudo Y, Kamada M, Fujikawa K, Hirose K, Masugata H, Touge T, Masaki T. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep 2017; 17:852-860. [PMID: 29115515 PMCID: PMC5780164 DOI: 10.3892/mmr.2017.7995] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple system atrophy (MSA) is a sporadic neurodegenerative disease that is pathologically characterized by α-synuclein positive glial cytoplasmic inclusions in oligodendrocytes. The clinical diagnosis of MSA is often challenging as there are no established biomarkers and diagnoses are now based on clinical findings alone. At present, the etiology and pathogenesis of MSA are unclear. It has been reported that dysregulation of microRNA (miRNA/miR) serves an important role in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The miRNA profile of patients with MSA remains to be established. The present study investigated the serum miRNA expression level of 10 patients with MSA, using microarray chips including 668 miRNAs. It was identified that 50 miRNAs were significantly upregulated and 17 miRNAs were significantly downregulated in the serum of the patients with MSA. The most upregulated miRNA was miR-16, which may induce the accumulation of α-synuclein. The target genes of some miRNAs upregulated in MSA (including miR-17, 20a, 24, 25, 30d and 451) were associated with autophagy-associated molecules. The present study concluded that the expression pattern of miRNAs may be a clinical biomarker for MSA and targeting these miRNAs may provide a novel treatment for MSA.
Collapse
Affiliation(s)
- Kodai Kume
- Department of Neurology, Kagawa University Hospital, Kita‑gun, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kazushi Deguchi
- Department of Neurology, Kagawa University Hospital, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kazuyo Ikeda
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tadayuki Takata
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Yohei Kokudo
- Department of Intractable Neurological Research, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Masaki Kamada
- Department of Intractable Neurological Research, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kayo Hirose
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Hisashi Masugata
- Department of Integrated Medicine, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tetsuo Touge
- Department of Health Sciences, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| |
Collapse
|