1
|
Mei C, Magliocca V, Chen X, Massey K, Gonzalez-Cordero A, Gray SJ, Tartaglia M, Bertini ES, Corti S, Compagnucci C. Riboflavin transporter deficiency: AAV9-SLC52A2 gene therapy as a new therapeutic strategy. Front Cell Neurosci 2025; 19:1523773. [PMID: 40134705 PMCID: PMC11933037 DOI: 10.3389/fncel.2025.1523773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Riboflavin transporter deficiency syndrome (RTD) is a rare childhood-onset neurodegenerative disorder caused by mutations in SLC52A2 and SLC52A3 genes, encoding the riboflavin (RF) transporters hRFVT2 and hRFVT3. In the present study we focused on RTD Type 2, which is due to variants in SLC52A2 gene. There is no cure for RTD patients and, although studies have reported clinical improvements with administration of RF, an effective treatment is still unavailable. Here we tested gene augmentation therapy on RTD type 2 patient-derived motoneurons using an adeno-associated viral vector 2/9 (AAV9) carrying the human codon optimized SLC52A2 cDNA. We optimized the in vitro transduction of motoneurons using sialidase treatment. Treated RTD motoneurons showed a significant increase in neurite's length when compared to untreated samples demonstrating that AAV9-SLC52A2 gene therapy can rescue RTD motoneurons. This leads the path towards in vivo studies offering a potential treatment for RTD patients.
Collapse
Affiliation(s)
- Cecilia Mei
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Magliocca V, Lanciotti A, Ambrosini E, Travaglini L, D’Ezio V, D’Oria V, Petrini S, Catteruccia M, Massey K, Tartaglia M, Bertini E, Persichini T, Compagnucci C. Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes. Front Cell Neurosci 2024; 18:1440555. [PMID: 39113759 PMCID: PMC11303166 DOI: 10.3389/fncel.2024.1440555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
Collapse
Affiliation(s)
- Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Lorena Travaglini
- Unit of Translational Cytogenetic Research, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Valentina D’Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | |
Collapse
|
3
|
Marioli C, Muzzi M, Colasuonno F, Fiorucci C, Cicolani N, Petrini S, Bertini E, Tartaglia M, Compagnucci C, Moreno S. Caspase-dependent apoptosis in Riboflavin Transporter Deficiency iPSCs and derived motor neurons. Cell Death Discov 2024; 10:54. [PMID: 38278809 PMCID: PMC10817897 DOI: 10.1038/s41420-024-01812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Riboflavin Transporter Deficiency (RTD) is a rare genetic, childhood-onset disease. This pathology has a relevant neurological involvement, being characterized by motor symptoms, ponto-bulbar paralysis and sensorineural deafness. Such clinical presentation is associated with muscle weakness and motor neuron (MN) degeneration, so that RTD is considered part of the MN disease spectrum. Based on previous findings demonstrating energy dysmetabolism and mitochondrial impairment in RTD induced Pluripotent Stem cells (iPSCs) and iPSC-derived MNs, here we address the involvement of intrinsic apoptotic pathways in disease pathogenesis using these patient-specific in vitro models by combined ultrastructural and confocal analyses. We show impaired neuronal survival of RTD iPSCs and MNs. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) documents severe alterations in patients' cells, including deranged mitochondrial ultrastructure, and altered plasma membrane and nuclear organization. Occurrence of aberrantly activated apoptosis is confirmed by immunofluorescence and TUNEL assays. Overall, our work provides evidence of a role played by mitochondrial dysfunction in RTD, and identifies neuronal apoptosis as a contributing event in disease pathogenesis, indicating intrinsic apoptosis pathways as possible relevant targets for more effective therapeutical approaches.
Collapse
Affiliation(s)
- Chiara Marioli
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Maurizio Muzzi
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Fiorella Colasuonno
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Cristian Fiorucci
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00146, Rome, Italy.
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy.
| |
Collapse
|
4
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Fennessy JR, Cornett KMD, Burns J, Menezes MP. Benefit of high-dose oral riboflavin therapy in riboflavin transporter deficiency. J Peripher Nerv Syst 2023; 28:308-316. [PMID: 37537696 DOI: 10.1111/jns.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Riboflavin transporter deficiency (RTD) is a progressive inherited neuropathy of childhood onset, characterised by pontobulbar palsy, sensorineural deafness, sensory ataxia, muscle weakness, optic atrophy and respiratory failure. Riboflavin supplementation is beneficial in short-term reports, but the quantum of benefit in various clinical domains is not well understood. A PubMed search was conducted, which identified 94 genetically confirmed cases of RTD who received riboflavin supplementation and had follow-up assessments. Information on the clinical and functional status before and after riboflavin supplementation was collected and analysed. Seventy-six of the 94 patients (80.9%) showed an overall improvement after riboflavin supplementation, and the remaining (19.1%) were stable, though some patients had deteriorations in individual domains with no reported deaths. The domains that had the highest rates of response to riboflavin supplementation were gross motor function (93.3% improved), bulbar palsy (91.3%) and ataxia (90.0%). Improvements were also seen in limb muscle weakness, audiology, facial nerve palsy and respiratory function. Despite treatment, many patients required assistance to ambulate and had severe or profound hearing loss and some remained gastrostomy or tracheostomy dependent. Riboflavin supplementation is a lifesaving intervention for patients with RTD and results in a profound improvement in several functional domains, with early diagnosis and treatment further improving outcomes. Despite treatment, patients are left with residual disability. There is a need to accurately measure functional outcomes in children with RTD and develop additional disease-modifying therapies.
Collapse
Affiliation(s)
- Jack R Fennessy
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kayla M D Cornett
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Paediatric Gait Analysis Service of New South Wales, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Joshua Burns
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Paediatric Gait Analysis Service of New South Wales, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Manoj P Menezes
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Vianey-Saban C, Guffon N, Fouilhoux A, Acquaviva C. Fifty years of research on mitochondrial fatty acid oxidation disorders: The remaining challenges. J Inherit Metab Dis 2023; 46:848-873. [PMID: 37530674 DOI: 10.1002/jimd.12664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Since the identification of the first disorder of mitochondrial fatty acid oxidation defects (FAOD) in 1973, more than 20 defects have been identified. Although there are some differences, most FAOD have similar clinical signs, which are mainly due to energy depletion and toxicity of accumulated metabolites. However, some of them have an unusual clinical phenotype or specific clinical signs. This manuscript focuses on what we have learnt so far on the pathophysiology of these disorders, which present with clinical signs that are not typical of categorical FAOD. It also highlights that some disorders have not yet been identified and tries to make assumptions to explain why. It also deals with new treatments under consideration in FAOD, including triheptanoin and similar anaplerotic substrates, ketone body treatments, RNA and gene therapy approaches. Finally, it suggests challenges for the diagnosis of FAOD in the coming years, both for symptomatic patients and for those diagnosed through newborn screening. The ultimate goal would be to identify all the patients born with FAOD and ensure for them the best possible quality of life.
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Biochemical and Molecular Biology Laboratory, Metabolic Inborn Errors of Metabolism Unit, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Nathalie Guffon
- National Reference Centre for Hereditary Metabolic Diseases, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Alain Fouilhoux
- National Reference Centre for Hereditary Metabolic Diseases, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| | - Cécile Acquaviva
- Biochemical and Molecular Biology Laboratory, Metabolic Inborn Errors of Metabolism Unit, Groupement Hospitalier Est, CHU de Lyon, Bron, France
| |
Collapse
|
7
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
8
|
Colasuonno F, Marioli C, Tartaglia M, Bertini E, Compagnucci C, Moreno S. New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines 2022; 10:biomedicines10061329. [PMID: 35740351 PMCID: PMC9219947 DOI: 10.3390/biomedicines10061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial. Recent studies have highlighted concurrent pathogenic contribution of cellular energy dysmetabolism and cytoskeletal derangement. In this context, patient specific RTD models, based on induced pluripotent stem cell (iPSC) technology, have provided evidence of redox imbalance, involving mitochondrial and peroxisomal dysfunction. Such oxidative stress condition likely causes cytoskeletal perturbation, associated with impaired differentiation of RTD motor neurons. In this review, we discuss the most recent findings obtained using different RTD models. Relevantly, the integration of data from innovative iPSC-derived in vitro models and invertebrate in vivo models may provide essential information on RTD pathophysiology. Such novel insights are expected to suggest custom therapeutic strategies, especially for those patients unresponsive to high-dose riboflavin treatments.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Correspondence: (C.C.); (S.M.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
- Correspondence: (C.C.); (S.M.)
| |
Collapse
|
9
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
10
|
Niceforo A, Marioli C, Colasuonno F, Petrini S, Massey K, Tartaglia M, Bertini E, Moreno S, Compagnucci C. Altered cytoskeletal arrangement in induced pluripotent stem cells (iPSCs) and motor neurons from patients with riboflavin transporter deficiency. Dis Model Mech 2021; 14:dmm.046391. [PMID: 33468503 PMCID: PMC7927654 DOI: 10.1242/dmm.046391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
The cytoskeletal network plays a crucial role in differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient- specific induced Pluripotent Stem Cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance.The present study focusses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by impaired ability to repolymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca++ homeostasis, suggesting impaired differentiation.Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl-cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.
Collapse
Affiliation(s)
- Alessia Niceforo
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Fiorella Colasuonno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Keith Massey
- Science Director, Cure RTD Foundation, 6228 Northaven Road, Dallas, TX 75230, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Sandra Moreno
- Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| |
Collapse
|
11
|
Colasuonno F, Bertini E, Tartaglia M, Compagnucci C, Moreno S. Mitochondrial Abnormalities in Induced Pluripotent Stem Cells-Derived Motor Neurons from Patients with Riboflavin Transporter Deficiency. Antioxidants (Basel) 2020; 9:E1252. [PMID: 33317017 PMCID: PMC7763948 DOI: 10.3390/antiox9121252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by sensorineural deafness and motor neuron degeneration. Since riboflavin plays key functions in biological oxidation-reduction reactions, energy metabolism pathways involving flavoproteins are affected in RTD. We recently generated induced pluripotent stem cell (iPSC) lines from affected individuals as an in vitro model of the disease and documented mitochondrial impairment in these cells, dramatically impacting cell redox status. This work extends our study to motor neurons (MNs), i.e., the cell type most affected in patients with RTD. Altered intracellular distribution of mitochondria was detected by confocal microscopic analysis (following immunofluorescence for superoxide dismutase 2 (SOD2), as a dual mitochondrial and antioxidant marker), and βIII-Tubulin, as a neuronal marker. We demonstrate significantly lower SOD2 levels in RTD MNs, as compared to their healthy counterparts. Mitochondrial ultrastructural abnormalities were also assessed by focused ion beam/scanning electron microscopy. Moreover, we investigated the effects of combination treatment using riboflavin and N-acetylcysteine, which is a widely employed antioxidant. Overall, our findings further support the potential of patient-specific RTD models and provide evidence of mitochondrial alterations in RTD-related iPSC-derived MNs-emphasizing oxidative stress involvement in this rare disease. We also provide new clues for possible therapeutic strategies aimed at correcting mitochondrial defects, based on the use of antioxidants.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Department of Science, LIME, University of Roma Tre, 00146 Rome, Italy;
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Sandra Moreno
- Department of Science, LIME, University of Roma Tre, 00146 Rome, Italy;
| |
Collapse
|
12
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
13
|
Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice. Sci Rep 2020; 10:18443. [PMID: 33116204 PMCID: PMC7595085 DOI: 10.1038/s41598-020-75601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.
Collapse
|
14
|
Marioli C, Magliocca V, Petrini S, Niceforo A, Borghi R, Petrillo S, La Rosa P, Colasuonno F, Persichini T, Piemonte F, Massey K, Tartaglia M, Moreno S, Bertini E, Compagnucci C. Antioxidant Amelioration of Riboflavin Transporter Deficiency in Motoneurons Derived from Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:E7402. [PMID: 33036493 PMCID: PMC7582490 DOI: 10.3390/ijms21197402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in SLC52A2 and SLC52A3, encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q10 and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients. To identify possible improvement of the neuronal morphotype, neurite length was measured by confocal microscopy after β-III tubulin immunofluorescent staining. Neuronal function was evaluated by determining superoxide anion generation by MitoSOX assay and intracellular calcium (Ca2+) levels, using the Fluo-4 probe. Among the antioxidants tested, EPI-743 restored the redox status, improved neurite length and ameliorated intracellular calcium influx into RTD motoneurons. In conclusion, we suggest that antioxidant supplementation may have a role in RTD treatment.
Collapse
Affiliation(s)
- Chiara Marioli
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| | - Valentina Magliocca
- Department of Science, University Roma Tre, 00146 Rome, Italy; (V.M.); (T.P.)
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy;
| | - Alessia Niceforo
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Rossella Borghi
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Piergiorgio La Rosa
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Tiziana Persichini
- Department of Science, University Roma Tre, 00146 Rome, Italy; (V.M.); (T.P.)
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Keith Massey
- Science Director, Cure RTD Foundation, 6228 Northaven Rd., Dallas, TX 75230, USA;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy;
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (A.N.); (R.B.); (S.P.); (F.P.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy; (C.M.); (F.C.); (M.T.)
| |
Collapse
|
15
|
Sepehrimanesh M, Ding B. Generation and optimization of highly pure motor neurons from human induced pluripotent stem cells via lentiviral delivery of transcription factors. Am J Physiol Cell Physiol 2020; 319:C771-C780. [PMID: 32783653 PMCID: PMC7654652 DOI: 10.1152/ajpcell.00279.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Generation of neurons from human induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain samples and greatly facilitates the progress of research in neurological diseases. However, it is still a challenge to generate a particular neuronal subtype with high purity and yield for determining the pathogenesis of diseased neurons using biochemical approaches. Motor neurons (MNs) are a specialized neuronal subtype responsible for governing both autonomic and volitional movement. Dysfunctions in MNs are implicated in a variety of movement diseases, such as amyotrophic lateral sclerosis (ALS). In this study, we generated functional MNs from human iPSCs via lentiviral delivery of transcription factors. Moreover, we optimized induction conditions by using different combinations of transcription factors and found that a single lentiviral vector expressing three factors [neurogenin-2 (NGN2), insulin gene enhancer 1 (ISL1), and LIM/homeobox 3 (LHX3)] is necessary and sufficient to induce iPSC-derived MNs (iPSC-MNs). These MNs robustly expressed general neuron markers [microtubule-associated protein 2 (MAP2), neurofilament protein (SMI-32), and tubulin β-3 class III (TUBB3)] and MN-specific markers [HB9 and choline acetyltransferase (ChAT)] and showed electrical maturation and firing of action potentials within 3 wk. This approach significantly improved the neuronal survival, yield, and purity, making it feasible to obtain abundant materials for biochemical studies in modeling movement diseases.
Collapse
Affiliation(s)
- Masood Sepehrimanesh
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
| | - Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
| |
Collapse
|
16
|
Mitochondrial and Peroxisomal Alterations Contribute to Energy Dysmetabolism in Riboflavin Transporter Deficiency. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6821247. [PMID: 32855765 PMCID: PMC7443020 DOI: 10.1155/2020/6821247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments. Using this model, we document the following RTD-associated alterations: (i) abnormal colony-forming ability and loss of cell-cell contacts, revealed by light, electron, and confocal microscopy, using tight junction marker ZO-1; (ii) mitochondrial ultrastructural abnormalities, involving shape, number, and intracellular distribution of the organelles, as assessed by focused ion beam/scanning electron microscopy (FIB/SEM); (iii) redox imbalance, with high levels of superoxide anion, as assessed by MitoSOX assay accompanied by abnormal mitochondrial polarization state, evaluated by JC-1 staining; (iv) altered immunofluorescence expression of antioxidant systems, namely, glutathione, superoxide dismutase 1 and 2, and catalase, as assessed by quantitatively evaluated confocal microscopy; and (v) peroxisomal downregulation, as demonstrated by levels and distribution of fatty acyl β-oxidation enzymes. RF supplementation results in amelioration of cell phenotype and rescue of redox status, which was associated to improved ultrastructural features of mitochondria, thus strongly supporting patient treatment with RF, to restore mitochondrial- and peroxisomal-related aspects of energy dysmetabolism and oxidative stress in RTD syndrome.
Collapse
|
17
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
18
|
O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 2019; 42:598-607. [PMID: 30793323 DOI: 10.1002/jimd.12053] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.
Collapse
Affiliation(s)
- Benjamin O'Callaghan
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Annet M Bosch
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Amsterdam, The Netherlands
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
19
|
Rizzo F, Nizzardo M, Vashisht S, Molteni E, Melzi V, Taiana M, Salani S, Santonicola P, Di Schiavi E, Bucchia M, Bordoni A, Faravelli I, Bresolin N, Comi GP, Pozzoli U, Corti S. Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of human motor neurons. Brain 2019; 142:276-294. [PMID: 30649277 PMCID: PMC6351774 DOI: 10.1093/brain/awy330] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy is a motor neuron disorder caused by mutations in SMN1. The reasons for the selective vulnerability of motor neurons linked to SMN (encoded by SMN1) reduction remain unclear. Therefore, we performed deep RNA sequencing on human spinal muscular atrophy motor neurons to detect specific altered gene splicing/expression and to identify the presence of a common sequence motif in these genes. Many deregulated genes, such as the neurexin and synaptotagmin families, are implicated in critical motor neuron functions. Motif-enrichment analyses of differentially expressed/spliced genes, including neurexin2 (NRXN2), revealed a common motif, motif 7, which is a target of SYNCRIP. Interestingly, SYNCRIP interacts only with full-length SMN, binding and modulating several motor neuron transcripts, including SMN itself. SYNCRIP overexpression rescued spinal muscular atrophy motor neurons, due to the subsequent increase in SMN and their downstream target NRXN2 through a positive loop mechanism and ameliorated SMN-loss-related pathological phenotypes in Caenorhabditis elegans and mouse models. SMN/SYNCRIP complex through motif 7 may account for selective motor neuron degeneration and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Shikha Vashisht
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Erika Molteni
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Valentina Melzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Sabrina Salani
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elia Di Schiavi
- Institute of Bioscience and BioResources, IBBR, CNR, Naples, Italy
| | - Monica Bucchia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Andreina Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology, Bosisio Parini, Lecco, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Chung KM, Hernández N, Sproul AA, Yu WH. Alzheimer's disease and the autophagic-lysosomal system. Neurosci Lett 2018; 697:49-58. [PMID: 29758300 DOI: 10.1016/j.neulet.2018.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Age-related neurodegenerative diseases are of critical concern to the general population and research/medical community due to their health impact and socioeconomic consequences. A feature of most, if not all, neurodegenerative disorders is the presence of proteinopathies, in which misfolded or conformationally altered proteins drive disease progression and are often used as a primary neuropathological marker of disease. In particular, Alzheimer's disease (AD) is characterized by abnormal accumulation of protein aggregates, primarily extracellular plaques composed of the Aβ peptide and intracellular tangles comprised of the tau protein, both of which may indicate a primary defect in protein clearance. Protein degradation is a key cellular mechanism for protein homeostasis and is essential for cell survival but is disrupted in neurodegenerative diseases. Dysregulation in proteolytic pathways - mainly the autophagic-lysosomal system (A-LS) and the ubiquitin-proteasome system (UPS) - has been increasingly associated with proteinopathies in neurodegenerative diseases. Here we review the role of dysfunctional autophagy underlying AD-related proteinopathy and discuss how to model this aspect of disease, as well as summarize recent advances in translational strategies for targeted A-LS dysfunction in AD.
Collapse
Affiliation(s)
- Kyung Min Chung
- Taub Institute and the Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, United States
| | - Nancy Hernández
- Taub Institute and the Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, United States
| | - Andrew A Sproul
- Taub Institute and the Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, United States
| | - Wai Haung Yu
- Taub Institute and the Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, United States.
| |
Collapse
|
22
|
Manole A, Jaunmuktane Z, Hargreaves I, Ludtmann MHR, Salpietro V, Bello OD, Pope S, Pandraud A, Horga A, Scalco RS, Li A, Ashokkumar B, Lourenço CM, Heales S, Horvath R, Chinnery PF, Toro C, Singleton AB, Jacques TS, Abramov AY, Muntoni F, Hanna MG, Reilly MM, Revesz T, Kullmann DM, Jepson JEC, Houlden H. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain 2017; 140:2820-2837. [PMID: 29053833 PMCID: PMC5808726 DOI: 10.1093/brain/awx231] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Iain Hargreaves
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Marthe H R Ludtmann
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Oscar D Bello
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Amelie Pandraud
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Renata S Scalco
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Abi Li
- Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Queen Square, London WC1N 3BG, UK
| | - Balasubramaniem Ashokkumar
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Charles M Lourenço
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Simon Heales
- Chemical Pathology, Great Ormond Street Children’s Hospital, London, UK
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | | | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK
| | - Michael G Hanna
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Tamas Revesz
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|