1
|
Fanis P, Morrou M, Tomazou M, Alghol HAM, Spyrou GM, Neocleous V, Phylactou LA. Identification of puberty related miRNAs in the hypothalamus of female mice. Mol Cell Endocrinol 2025; 598:112468. [PMID: 39842623 DOI: 10.1016/j.mce.2025.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones. Major influence in pubertal timing has been attributed to genetic predisposition, environmental factors, and nutritional status. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as key regulators in various cellular processes by either repressing genes or activating them by inhibiting their repressors. The present study aims to investigate the involvement of miRNAs in the control of puberty. METHODS Small RNA sequencing was used to identify and compare the total population of miRNAs in the hypothalamus of female mice before, during and after puberty. Bioinformatic analysis was applied to analyse the expression profile of miRNAs with altered levels followed by pathway enrichment analysis. RESULTS Expression levels of several miRNAs were found up- or down-regulated from pre-pubertal to pubertal stage. Furthermore, monitoring the levels of these miRNAs at the post-pubertal stage revealed four expression patterns, in which pathway analysis displayed the associations of these miRNAs with developmental processes, cell cycle regulation, metabolic biosynthesis and epigenetic regulation. CONCLUSION The findings of the present study improve our understanding of the molecular pathways underlying puberty and stress the significance of miRNAs in fine-tuning gene expression within the hypothalamus during this critical developmental stage.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Hend Abdulgadr M Alghol
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
2
|
Kleynhans J, Reeve R, Driver CHS, Marjanovic-Painter B, Sathekge M, Zeevaart JR, Ebenhan T, Millar RP. Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical. J Neuroendocrinol 2025; 37:e13487. [PMID: 39775975 PMCID: PMC11919473 DOI: 10.1111/jne.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was attached to the NH2-terminus of KP10 as we posited from our previous publications that this modification would not impair biological activity. Here, we showed that the biological activity, as monitored by stimulation of inositol phosphate accumulation in HEK293 transfected with the KISS1R gene, was indeed similar for KP10 and DOTA-KP10. The optimisation of radiolabelling with gallium-68 and lutetium-177 is described. Stability in serum, plasma and whole blood was also investigated. Pharmacokinetics and biodistribution were established with micro-PET/CT (positron emission tomography/computerised tomography) and ex vivo measurements. Dynamic studies with micro-PET/CT demonstrated that background clearance for the radiopharmaceutical was rapid with a blood half-life of 18 ± 3 min. DOTA-KP10 demonstrated preserved functionality at KISS1R and good blood clearance. These results lay the foundation for the further development of DOTA-KP10 analogues that have high binding affinity along with proteolytic resistance.
Collapse
Affiliation(s)
- Janke Kleynhans
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Robert Reeve
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Cathryn H S Driver
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
| | | | - Mike Sathekge
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine and Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Jan Rijn Zeevaart
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
| | - Thomas Ebenhan
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
- Department of Nuclear Medicine and Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Nie Y, Wei Y, Zhang Y, Liang Z, Lei Z, Chang M, Peng Y. Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system. Int J Pharm 2025; 670:125154. [PMID: 39755342 DOI: 10.1016/j.ijpharm.2024.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228. By surface-modifying liposomes with Kp-10-228 (228-K3-EG8-Liposome), we demonstrated enhanced accumulation of these liposomes in tumor cells, both in vitro and in vivo. Doxorubicin-loaded 228-K3-EG8-Liposome exhibited a remarkable inhibition of cancer cell proliferation, significantly extending the median survival time in mice with breast tumors compared to model mice treated with non-targeted liposomes or free doxorubicin. Our results suggest that the liposomal drug delivery system utilizing the Kisspeptin/GPR54 system is a promising novel strategy for the management of breast cancer.
Collapse
Affiliation(s)
- Yaoyan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Yanzhu Wei
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuhuan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhuansheng Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zelin Lei
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
4
|
Prasad K, Bhattacharya D, Shams SGE, Izarraras K, Hart T, Mayfield B, Blaszczyk MB, Zhou Z, Pajvani UB, Friedman SL, Bhattacharya M. Kisspeptin Alleviates Human Hepatic Fibrogenesis by Inhibiting TGFβ Signaling in Hepatic Stellate Cells. Cells 2024; 13:1651. [PMID: 39404414 PMCID: PMC11476267 DOI: 10.3390/cells13191651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFβ)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFβ-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFβ signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Shams Gamal Eldin Shams
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Kimberly Izarraras
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Tia Hart
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Brent Mayfield
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Maryjka B. Blaszczyk
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| |
Collapse
|
5
|
Israel I, Riehl G, Butt E, Buck AK, Samnick S. Gallium-68-Labeled KISS1-54 Peptide for Mapping KISS1 Receptor via PET: Initial Evaluation in Human Tumor Cell Lines and in Tumor-Bearing Mice. Pharmaceuticals (Basel) 2023; 17:44. [PMID: 38256878 PMCID: PMC10821118 DOI: 10.3390/ph17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade, increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to evaluate the developed KISS1-54 derivative, [68Ga]KISS1-54, as a PET-imaging probe for KISS1R-expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability of the resulting [68Ga]KISS1-54 evaluated in injection solution and human serum, followed by an examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231, MCF7, LNCap, SK-BR-3, and HCT116. Finally, [68Ga]KISS1-54 was tested in LNCap- and MDA-MB-231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [68Ga]KISS1-54 was obtained in a 77 ± 7% radiochemical yield and at a >99% purity. The [68Ga]KISS1-54 cell uptake amounted to 0.6-4.4% per 100,000 cells. Moreover, the accumulation of [68Ga]KISS1-54 was effectively inhibited by nonradioactive KISS1-54. In [68Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular KISS1R expression. Our first results suggest that [68Ga]KISS1-54 is a promising candidate for a radiotracer for targeting KISS1R-expressing tumors via PET.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Gabriele Riehl
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Elke Butt
- Institute of Experimental Biomedicine II, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany;
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| |
Collapse
|
6
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
7
|
Borkar NA, Ambhore NS, Balraj P, Ramakrishnan YS, Sathish V. Kisspeptin regulates airway hyperresponsiveness and remodeling in a mouse model of asthma. J Pathol 2023; 260:339-352. [PMID: 37171283 PMCID: PMC10759912 DOI: 10.1002/path.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | | | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
8
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
9
|
Chaudhuri A, Kumar DN, Dehari D, Patil R, Singh S, Kumar D, Agrawal AK. Endorsement of TNBC Biomarkers in Precision Therapy by Nanotechnology. Cancers (Basel) 2023; 15:cancers15092661. [PMID: 37174125 PMCID: PMC10177107 DOI: 10.3390/cancers15092661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a heterogeneous disease which accounts globally for approximately 1 million new cases annually, wherein more than 200,000 of these cases turn out to be cases of triple-negative breast cancer (TNBC). TNBC is an aggressive and rare breast cancer subtype that accounts for 10-15% of all breast cancer cases. Chemotherapy remains the only therapy regimen against TNBC. However, the emergence of innate or acquired chemoresistance has hindered the chemotherapy used to treat TNBC. The data obtained from molecular technologies have recognized TNBC with various gene profiling and mutation settings that have helped establish and develop targeted therapies. New therapeutic strategies based on the targeted delivery of therapeutics have relied on the application of biomarkers derived from the molecular profiling of TNBC patients. Several biomarkers have been found that are targets for the precision therapy in TNBC, such as EGFR, VGFR, TP53, interleukins, insulin-like growth factor binding proteins, c-MET, androgen receptor, BRCA1, glucocorticoid, PTEN, ALDH1, etc. This review discusses the various candidate biomarkers identified in the treatment of TNBC along with the evidence supporting their use. It was established that nanoparticles had been considered a multifunctional system for delivering therapeutics to target sites with increased precision. Here, we also discuss the role of biomarkers in nanotechnology translation in TNBC therapy and management.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmaceutics, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
10
|
Veschi V, Turdo A, Modica C, Verona F, Di Franco S, Gaggianesi M, Tirrò E, Di Bella S, Iacono ML, Pantina VD, Porcelli G, Mangiapane LR, Bianca P, Rizzo A, Sciacca E, Pillitteri I, Vella V, Belfiore A, Bongiorno MR, Pistone G, Memeo L, Colarossi L, Giuffrida D, Colarossi C, Vigneri P, Todaro M, Stassi G. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat Commun 2023; 14:1351. [PMID: 36906579 PMCID: PMC10008571 DOI: 10.1038/s41467-023-36922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Tirrò
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.,Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Elisabetta Sciacca
- Queen Mary University, Experimental Medicine & Rheumatology, London, United Kingdom
| | - Irene Pillitteri
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,A.O.U.P. "Paolo Giaccone", University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
11
|
Qasim M, Ricks-Santi LJ, Naab TJ, Rajack F, Beyene D, Abbas M, Kassim OO, Copeland RL, Kanaan Y. Inverse Correlation of KISS1 and KISS1R Expression in Triple-negative Breast Carcinomas from African American Women. Cancer Genomics Proteomics 2022; 19:673-682. [PMID: 36316037 PMCID: PMC9620443 DOI: 10.21873/cgp.20350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM The kisspeptin 1 (KISS1) gene encodes a precursor polypeptide which after proteolysis forms the kisspeptin-10 (KISS1) protein. KISS1, retains maximum physiological activity when it binds to its receptor (KISS1R), allowing KISS1 to effectively function as a suppressor of metastasis in melanomas and other types of cancer. The goal of this study was to evaluate the expression of KISS1 and KISS1R in breast carcinomas from African American (AA) women and correlate their association with clinicopathological features, including breast cancer subtypes, and outcomes. MATERIALS AND METHODS Tissue microarrays were constructed from formalin-fixed, paraffin-embedded surgical blocks from 216 AA patients. KISS1 and KISS1R expression was assessed using immunohistochemistry. Univariate analysis was used to determine the association between the expression of KISS1 and KISS1R, and clinicopathological characteristics. Pearson correlation was also determined between immunohistochemical H-scores, tumor size, and the number of positive lymph nodes. Kaplan-Meier estimates of overall and disease-free survival were plotted, and log-rank tests were performed to compare estimates among groups. RESULTS KISS1 protein expression was found to be higher in receptor-negative and triple-negative breast cancer (TNBC) compared to other subtypes (p<0.001). However, KISS1R expression was higher in non-TNBC tumors compared to other subtypes (p<0.001). Higher KISS1R expression was marginally negatively correlated with tumor size (p=0.077), and positively correlated with lymph-node positivity (p=0.056), and disease-free survival (p=0.092). CONCLUSION Our study showed a significant inverse correlation between KISS1 and KISS1R in TNBC. This investigation implicates a role for KISS1 and KISS1R in the pathogenesis of TNBCs in AA women.
Collapse
Affiliation(s)
- Mustafa Qasim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Luisel J Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Tammey J Naab
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Fareed Rajack
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Desta Beyene
- Howard University Cancer Center, Washington, DC, U.S.A
| | - Muneer Abbas
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Olakunle O Kassim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Robert L Copeland
- Howard University Cancer Center, Washington, DC, U.S.A
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A.;
- Howard University Cancer Center, Washington, DC, U.S.A
| |
Collapse
|
12
|
Lack of Oestrogen Receptor Expression in Breast Cancer Cells Does Not Correlate with Kisspeptin Signalling and Migration. Int J Mol Sci 2022; 23:ijms23158744. [PMID: 35955878 PMCID: PMC9368979 DOI: 10.3390/ijms23158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Kisspeptin is an anti-metastatic mediator in many cancer types, acting through its receptor, KISS1R. However, controversy remains regarding its role in breast cancer since both pro- and anti-metastatic roles have been ascribed to it. In KISS1R overexpressing triple-negative breast cancer (TNBC) cells, stimulation has been associated with increased invasion and MMP-9 expression, leading to the suggestion that hormone receptor status determines the metastatic effects of kisspeptin. To assess the veracity of this claim, we compared endogenous KISS1R signalling and physiological output in the hormone receptor-negative MDA-MB-231 and BT-20 cell lines after KP-10 (shortest active kisspeptin peptide) stimulation. MDA-MB-231 cells are metastatic when implanted in mice while BT-20 are not and remain epithelial-like. We show that both cell lines express KISS1R mRNA and respond to KP-10 by elevating calcium mobilisation. However, KP-10 stimulation induced migration of MDA-MB-231, but not BT-20 cells, in a calcium-dependent manner. Moreover, only BT-20 cells responded to KP-10 by increasing ERK phosphorylation in a β-arrestin-dependent manner. Interestingly, both cell lines displayed different complements of β-arrestin 1 and 2 expression. Overall, our data shows that, in TNBC, it is not universally true that kisspeptin/KISS1R stimulate migration or pro-metastatic behaviour, as divergent responses were observed in the two TNBC lines tested. Whether this divergence is related to the observed differences in β-arrestin complements warrants further investigation and may enable further stratification of the ability of kisspeptin to influence breast tumour behaviour.
Collapse
|
13
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
14
|
Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, Kalemba KM, Shah A, Rustgi VK, Wang H, Bech PR, Abbara A, Izzi-Engbeaya C, Manousou P, Guo JY, Guo GL, Radovick S, Dhillo WS, Wondisford FE, Babwah AV, Bhattacharya M. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132:145889. [PMID: 35349482 PMCID: PMC9106350 DOI: 10.1172/jci145889] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, and
| | | | - Shivani Rao
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | - Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vinod K. Rustgi
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Paul R. Bech
- Section of Endocrinology and Investigative Medicine and
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine and
| | | | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jessie Y. Guo
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, and
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Li Z, Liu J, Inuzuka H, Wei W. Functional analysis of the emerging roles for the KISS1/KISS1R signaling pathway in cancer metastasis. J Genet Genomics 2021; 49:181-184. [PMID: 34767970 DOI: 10.1016/j.jgg.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Cancer metastasis, a process that primary tumor cells disseminate to secondary organs, is the most lethal and least effectively treated characteristic of human cancers. Kisspeptins are proteins encoded by the KISS1 gene that was originally described as a melanoma metastasis suppressor gene. Then, Kisspeptins were discovered as the natural ligands of the G-protein-coupled receptor 54 (GPR54) that is also called KISS1R. The KISS1/KISS1R signaling is essential to control GnRH secretion during puberty and to establish mammalian reproductive function through the hypothalamic-pituitary-gonadal (HPG) axis. Although KISS1 primarily plays a suppressive role in the metastasis progression in several cancer types, emerging evidence indicates that the physiological effect of KISS1/KISS1R in cancer metastasis is tissue context-dependent and still controversial. Here, we will discuss the epigenetic mechanism regulation of KISS1 gene expression, the context-dependent role of KISS1/KISS1R, pro-/anti-metastasis signaling pathways of KISS1/KISS1R, and the perspective anti-cancer therapeutics via targeting KISS1/KISS1R.
Collapse
Affiliation(s)
- Zhenxi Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Lin Y, Sidthipong K, Ma J, Koide N, Umezawa K, Kubota T. The designed NF-κB inhibitor, DHMEQ, inhibits KISS1R-mediated invasion and increases drug-sensitivity in mouse plasmacytoma SP2/0 cells. Exp Ther Med 2021; 22:1092. [PMID: 34504546 PMCID: PMC8383752 DOI: 10.3892/etm.2021.10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoma is one of the most difficult types of leukemia to treat, and it often invades the bone down to the marrow resulting in the development of multiple myeloma. NF-κB is often constitutively activated, and promotes metastasis and drug resistance in neoplastic cells. The present study assessed the cellular anticancer activity of an NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on mouse plasmacytoma SP2/0 cells. Cellular invasion was measured by Matrigel chamber assay, and apoptosis was assessed by detecting caspase-3 cleavage and by flow cytometric analysis with Annexin V. DHMEQ inhibited constitutively activated NF-κB at nontoxic concentrations. DHMEQ was also shown to inhibit cellular invasion of SP2/0 cells, as well as human myeloma KMS-11 and RPMI-8226 cells. The metastasis PCR array indicated that DHMEQ induced a decrease in KISS1 receptor (KISS1R) expression in SP2/0 cells. Knockdown of KISS1R by small interfering RNA suppressed cellular invasion, suggesting that KISS1R may serve an essential role in the invasion of SP2/0 cells. Furthermore, DHMEQ enhanced cytotoxicity of the anticancer agent melphalan in SP2/0 cells. Notably, DHMEQ inhibited the expression of NF-κB-dependent anti-apoptotic proteins, such as Bcl-XL, FLIP, and Bfl-1. In conclusion, inhibition of constitutively activated NF-κB by DHMEQ may be useful for future anti-metastatic and anticancer strategies for the treatment of plasmacytoma.
Collapse
Affiliation(s)
- Yinzhi Lin
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.,Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kulrawee Sidthipong
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Jun Ma
- Department of Research and Development, Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen, Guangdong 518107, P.R. China
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Tetsuo Kubota
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo 113-8510, Japan
| |
Collapse
|
17
|
Sakabe T, Wakahara M, Shiota G, Umekita Y. Role of cytoplasmic localization of maspin in promoting cell invasion in breast cancer with aggressive phenotype. Sci Rep 2021; 11:11321. [PMID: 34059749 PMCID: PMC8166868 DOI: 10.1038/s41598-021-90887-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is downregulated during carcinogenesis and breast cancer progression. While the nuclear localization of maspin is essential for tumor suppression, we previously reported that the cytoplasmic localization of maspin was significantly correlated with poor prognosis in breast cancer patients. To understand the mechanisms that underlie oncogenic role of cytoplasmic maspin, we studied its biological function in breast cancer cell lines. Subcellular localization of maspin in MDA-MB-231 breast cancer cells was mainly detected in the cytoplasm, whereas in MCF10A mammary epithelial cells, maspin was present in both cytoplasm and nucleus. In MDA-MB-231 cells, maspin overexpression promoted cell proliferation and cell invasion, whereas maspin downregulation resulted in the opposite effect. Further, we observed that SRGN protein levels were increased in MDA-MB-231 cells stably overexpressing maspin. Finally, maspin overexpression in MDA-MB-231 cells resulted in the N-cadherin and epithelial mesenchymal transition (EMT)-related transcription factors upregulation, and TGFβ signaling pathway activation. These results suggested that cytoplasmic maspin enhances the invasive and metastatic potential in breast cancer cells with aggressive phenotype by inducing EMT via SRGN/TGFβ axis. This study demonstrated a novel biological function of cytoplasmic maspin in progression of breast cancer cells with an aggressive phenotype.
Collapse
Affiliation(s)
- Tomohiko Sakabe
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Makoto Wakahara
- Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan.
| |
Collapse
|
18
|
Anwar MM, Shalaby M, Embaby AM, Saeed H, Agwa MM, Hussein A. Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights. Sci Rep 2020; 10:14706. [PMID: 32895397 PMCID: PMC7477571 DOI: 10.1038/s41598-020-71157-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Prodigiosin, a secondary metabolite red pigment produced by Serratia marcescens, has an interesting apoptotic efficacy against cancer cell lines with low or no toxicity on normal cells. HSP90α is known as a crucial and multimodal target in the treatment of TNBC. Our research attempts to assess the therapeutic potential of prodigiosin/PU-H71 combination on MDA-MB-231 cell line. The transcription and protein expression levels of different signalling pathways were assessed. Treatment of TNBC cells with both drugs resulted in a decrease of the number of adherent cells with apoptotic effects. Prodigiosin/PU-H71 combination increased the levels of caspases 3,8 and 9 and decreased the levels of mTOR expression. Additionally, there was a remarkable decrease of HSP90α transcription and expression levels upon treatment with combined therapy. Also, EGFR and VEGF expression levels decreased. This is the first study to show that prodigiosin/PU-H71 combination had potent cytotoxicity on MDA-MB-231 cells; proving to play a paramount role in interfering with key signalling pathways in TNBC. Interestingly, prodigiosin might be a potential anticancer agent to increase the sensitivity of TNBC cells to apoptosis. This study provides a new basis for upcoming studies to overcome drug resistance in TNBC cells.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Manal Shalaby
- Medical Biotechnology Department, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Zhu N, Zhao M, Song Y, Ding L, Ni Y. The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes Dis 2020; 9:28-40. [PMID: 35005105 PMCID: PMC8720660 DOI: 10.1016/j.gendis.2020.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
KiSS-1, first identified as an anti-metastasis gene in melanoma, encodes C-terminally amidated peptide products, including kisspeptin-145, kisspeptin-54, kisspeptin-14, kisspeptin-13 and kisspeptin-10. These products are endogenous ligands coupled to G protein-coupled receptor 54 (GPR54)/hOT7T175/AXOR12. To date, the regulatory activities of the KiSS-1/GPR54 system, such as puberty initiation, antitumor metastasis, fertility in adulthood, hypothalamic-pituitary-gonadal axis (HPG axis) feedback, and trophoblast invasion, have been investigated intensively. Accumulating evidence has demonstrated that KiSS-1 played a key role in reproduction and served as a promising biomarker relative to the diagnosis, identification of therapeutic targets and prognosis in various carcinomas, while few studies have systematically summarized its subjective factors and concluded the functions of KiSS-1/GPR54 signaling in physiology homeostasis and cancer biology. In this review, we retrospectively summarized the regulators of the KiSS-1/GPR54 system in different animal models and reviewed its functions according to physiological homeostasis regulations and above all, cancer biology, which provided us with a profound understanding of applying the KiSS-1/GPR54 system into medical applications.
Collapse
Affiliation(s)
- Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| |
Collapse
|
20
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
21
|
Dragan M, Nguyen MU, Guzman S, Goertzen C, Brackstone M, Dhillo WS, Bech PR, Clarke S, Abbara A, Tuck AB, Hess DA, Pine SR, Zong WX, Wondisford FE, Su X, Babwah AV, Bhattacharya M. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis 2020; 11:106. [PMID: 32034133 PMCID: PMC7005685 DOI: 10.1038/s41419-020-2305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic and deadly disease. TNBC tumors lack estrogen receptor (ERα), progesterone receptor (PR), and HER2 (ErbB2) and exhibit increased glutamine metabolism, a requirement for tumor growth. The G protein-coupled kisspeptin receptor (KISS1R) is highly expressed in patient TNBC tumors and promotes malignant transformation of breast epithelial cells. This study found that TNBC patients displayed elevated plasma kisspeptin levels compared with healthy subjects. It also provides the first evidence that in addition to promoting tumor growth and metastasis in vivo, KISS1R-induced glutamine dependence of tumors. In addition, tracer-based metabolomics analyses revealed that KISS1R promoted glutaminolysis and nucleotide biosynthesis by increasing c-Myc and glutaminase levels, key regulators of glutamine metabolism. Overall, this study establishes KISS1R as a novel regulator of TNBC metabolism and metastasis, suggesting that targeting KISS1R could have therapeutic potential in the treatment of TNBC.
Collapse
Affiliation(s)
- Magdalena Dragan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Mai-Uyen Nguyen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cameron Goertzen
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Muriel Brackstone
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Paul R Bech
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Sophie Clarke
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Alan B Tuck
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Sharon R Pine
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Andy V Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA. .,Child Health Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
22
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
23
|
Stathaki M, Stamatiou ME, Magioris G, Simantiris S, Syrigos N, Dourakis S, Koutsilieris M, Armakolas A. The role of kisspeptin system in cancer biology. Crit Rev Oncol Hematol 2019; 142:130-140. [PMID: 31401420 DOI: 10.1016/j.critrevonc.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Kisspeptins are a family of neuropeptides that are known to be critical in puberty initiation and ovulation. Apart from that kisspeptin derived peptides (KPs) are also known for their antimetastatic activities in several malignancies. Herein we report recent evidence of the role of kisspeptins in cancer biology and we examine the prospective of targeting the kisspeptin pathways leading to a better prognosis in patients with malignant diseases.
Collapse
Affiliation(s)
- Martha Stathaki
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Maria Evanthia Stamatiou
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - George Magioris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Simantiris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Nikolaos Syrigos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Dourakis
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens School of Medicine Hippokration General Hospital Athens Greece, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece.
| |
Collapse
|
24
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
25
|
Bilal M, Mehmood S, Rasheed T, Iqbal HMN. Bio-Catalysis and Biomedical Perspectives of Magnetic Nanoparticles as Versatile Carriers. MAGNETOCHEMISTRY 2019; 5:42. [DOI: 10.3390/magnetochemistry5030042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, magnetic nanoparticles (MNPs) have gained increasing attention as versatile carriers because of their unique magnetic properties, biocatalytic functionalities, and capabilities to work at the cellular and molecular level of biological interactions. Moreover, owing to their exceptional functional properties, such as large surface area, large surface-to-volume ratio, and mobility and high mass transference, MNPs have been employed in several applications in different sectors such as supporting matrices for enzymes immobilization and controlled release of drugs in biomedicine. Unlike non-magnetic carriers, MNPs can be easily separated and recovered using an external magnetic field. In addition to their biocompatible microenvironment, the application of MNPs represents a remarkable green chemistry approach. Herein, we focused on state-of-the-art two majorly studied perspectives of MNPs as versatile carriers for (1) matrices for enzymes immobilization, and (2) matrices for controlled drug delivery. Specifically, from the applied perspectives of magnetic nanoparticles, a series of different applications with suitable examples are discussed in detail. The second half is focused on different metal-based magnetic nanoparticles and their exploitation for biomedical purposes.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shahid Mehmood
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| |
Collapse
|
26
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
27
|
Noonan MM, Dragan M, Mehta MM, Hess DA, Brackstone M, Tuck AB, Viswakarma N, Rana A, Babwah AV, Wondisford FE, Bhattacharya M. The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget 2018; 9:30034-30052. [PMID: 30046386 PMCID: PMC6059025 DOI: 10.18632/oncotarget.25682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of cancer mortality. In particular, triple negative breast cancer (TNBC) comprise a heterogeneous group of basal-like tumors lacking estrogen receptor (ERα), progesterone receptor (PR) and HER2 (ErbB2). TNBC represents 15-20% of all breast cancers and occurs frequently in women under 50 years of age. Unfortunately, these patients lack targeted therapy, are typically high grade and metastatic at time of diagnosis. The mechanisms regulating metastasis remain poorly understood. We have previously shown that the kisspeptin receptor, KISS1R stimulates invasiveness of TNBC cells. In this report, we demonstrate that KISS1R signals via the secreted extracellular matrix protein, fibulin-3, to regulate TNBC invasion. We found that the fibulin-3 gene is amplified in TNBC primary tumors and that plasma fibulin-3 levels are elevated in TNBC patients compared to healthy subjects. In this study, we show that KISS1R activation increases fibulin-3 expression and secretion. We show that fibulin-3 regulates TNBC metastasis in a mouse experimental metastasis xenograft model and signals downstream of KISS1R to stimulate TNBC invasion, by activating matrix metalloproteinase 9 (MMP-9) and the MAPK pathway. These results identify fibulin-3 as a new downstream mediator of KISS1R signaling and as a potential biomarker for TNBC progression and metastasis, thus revealing KISS1R and fibulin-3 as novel drug targets in TNBC.
Collapse
Affiliation(s)
- Michelle M Noonan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Michael M Mehta
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, ON, Canada
| | - Muriel Brackstone
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Alan B Tuck
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Pathology, The University of Western Ontario, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Andy V Babwah
- Department of Pediatrics, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: potential for active targeting with engineered anti-cancer nanomedicines. Oncotarget 2018; 9:24882-24897. [PMID: 29861840 PMCID: PMC5982759 DOI: 10.18632/oncotarget.25427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Over 800 G-protein-coupled receptors (GPCRs) are encoded by the human genome and many are overexpressed in tumors. GPCRs are triggered by ligand molecules outside the cell and activate internal signal transduction pathways driving cellular responses. The receptor signals are desensitized by receptor internalization and this mechanism can be exploited for the specific delivery of ligand-linked drug molecules directly into cells. Detailed expression analysis in cancer tissue can inform the design of GPCR-ligand decorated drug carriers for active tumor cell targeting. The active targeting process utilizes ligand receptor interactions leading to binding and in most cases internalization of the ligand-attached drug carrier resulting in effective targeting of cancer cells. In this report public microarray data from the Gene Expression Omnibus (GEO) repository was used to identify overexpressed GPCRs in prostate and breast cancer tissues. The analyzed data confirmed previously known cancer receptor associations and identified novel candidates for potential active targeting. Prioritization of the identified targeting receptors is also presented based on high expression levels and frequencies in cancer samples but low expression in healthy tissue. Finally, some selected examples were used in ligand docking studies to assess the feasibility for chemical conjugation to drug nanocarriers without interference of receptor binding and activation. The presented data demonstrate a large untapped potential to improve efficacy and safety of current and future anti-cancer compounds through active targeting of GPCRs on cancer cells.
Collapse
|
29
|
Luo L, Gao W, Wang J, Wang D, Peng X, Jia Z, Jiang Y, Li G, Tang D, Wang Y. Study on the Mechanism of Cell Cycle Checkpoint Kinase 2 (CHEK2) Gene Dysfunction in Chemotherapeutic Drug Resistance of Triple Negative Breast Cancer Cells. Med Sci Monit 2018; 24:3176-3183. [PMID: 29761796 PMCID: PMC5978023 DOI: 10.12659/msm.907256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background This study aimed to investigate the mechanism of CHEK2 gene dysfunction in drug resistance of triple negative breast cancer (TNBC) cells. Material/Methods To perform our study, a stable CHEK2 wild type (CHEK2 WT) or CHEK2 Y390C mutation (CHEK2 Y390C) expressed MDA-MB-231 cell line was established. MTT assay, cell apoptosis assay and cell cycle assay were carried out to analyze the cell viability, apoptosis, and cell cycle respectively. Western blotting and qRT-PCR were applied for related protein and gene expression detection. Results We found that the IC50 value of DDP (Cisplatin) to CHEK2 Y390C expressed MDA-MB-231 cells was significantly higher than that of the CHEK2 WT expressed cells and the control cells. After treatment with DDP for 48 h, cells expressing CHEK2 WT showed lower cell viability than that of the CHEK2 Y390C expressed cells and the control cells; compared with the CHEK2 Y390C expressed cells and the control cells, cells expressing CHEK2 WT showed significant G1/S arrest. Meanwhile, we found that compared with the CHEK2 Y390C expressed cells and the control cells, cell apoptosis was significantly increased in CHEK2 WT expressed cells. Moreover, our results suggested that cells expressing CHEK2 WT showed higher level of p-CDC25A, p-p53, p21, Bax, PUMA, and Noxa than that of the CHEK2 Y390C expressed cells and the control cells. Conclusions Our findings indicated that CHEK2 Y390C mutation induced the drug resistance of TNBC cells to chemotherapeutic drugs through administrating cell apoptosis and cell cycle arrest via regulating p53 activation and CHEK2-p53 apoptosis pathway.
Collapse
Affiliation(s)
- Li Luo
- Department of Oncological Hematology, First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, China (mainland).,Department of Oncology, Guihang Guiyang Hospital, Guiyang, Guizhou, China (mainland)
| | - Wei Gao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jinghui Wang
- Department of Oncological Hematology, First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, China (mainland)
| | - Dingxue Wang
- Department of Oncological Hematology, First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, China (mainland)
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Zhaoyang Jia
- Department of Radiotherapy, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (mainland)
| | - Ye Jiang
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, Guizhou, China (mainland)
| | - Gongzhuo Li
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, Guizhou, China (mainland)
| | - Dongxin Tang
- Department of Science and Education, First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, China (mainland)
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
30
|
Ferguson PJ, Vincent MD, Koropatnick J. Synergistic Antiproliferative Activity of the RAD51 Inhibitor IBR2 with Inhibitors of Receptor Tyrosine Kinases and Microtubule Protein. J Pharmacol Exp Ther 2018; 364:46-54. [PMID: 29061656 DOI: 10.1124/jpet.117.241661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022] Open
Abstract
Although cancer cell genetic instability contributes to characteristics that mediate tumorigenicity, it also contributes to the tumor-selective toxicity of some chemotherapy drugs. This synthetic lethality can be enhanced by inhibitors of DNA repair. To exploit this potential Achilles heel, we tested the ability of a RAD51 inhibitor to potentiate the cytotoxicity of chemotherapy drugs. 2-(Benzylsulfonyl)-1-(1H-indol-3-yl)-1,2-dihydroisoquinoline (IBR2) inhibits RAD51-mediated DNA double-strand break repair but also enhances cytotoxicity of the Bcr-Abl inhibitor imatinib. The potential for synergy between IBR2 and more drugs was examined in vitro across a spectrum of cancer cell lines from various tissues. Cells were exposed to IBR2 simultaneously with inhibitors of receptor tyrosine kinases, DNA-damaging agents, or microtubule disruptors. IBR2, at concentrations that inhibited proliferation between 0% and 75%, enhanced toxicity by up to 80% of imatinib and regorafenib (targets RAF and kit); epidermal growth factor receptor inhibitors erlotinib, gefitinib, afatinib, and osimertinib; and vincristine, an inhibitor of microtubule function. However, IBR2 antagonized the action of olaparib, cisplatin, melphalan, and irinotecan. A vincristine-resistant squamous cell line was not cross resistant to imatinib, but IBR2 and another RAD51 inhibitor (B02) enhanced imatinib toxicity in this cell line, its HN-5a parent, and the colon cancer line HT-29 by up to 60% and much better than verapamil, a P-glycoprotein inhibitor (P < 0.05). Given the disparate agents the functions of which are enhanced by IBR2, the mechanisms of enhancement may be multimodal. Whether RAD51 is common to these mechanisms remains to be elucidated, but it provides the potential for selectivity to tumor cells.
Collapse
Affiliation(s)
- Peter J Ferguson
- London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada (P.J.F., M.D.V., J.K.); and Departments of Microbiology and Immunology (J.K.), Pathology (J.K.), Physiology and Pharmacology (J.K.), and Oncology (P.J.F., M.D.V., J.K.), University of Western Ontario, London, Ontario, Canada
| | - Mark D Vincent
- London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada (P.J.F., M.D.V., J.K.); and Departments of Microbiology and Immunology (J.K.), Pathology (J.K.), Physiology and Pharmacology (J.K.), and Oncology (P.J.F., M.D.V., J.K.), University of Western Ontario, London, Ontario, Canada
| | - James Koropatnick
- London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada (P.J.F., M.D.V., J.K.); and Departments of Microbiology and Immunology (J.K.), Pathology (J.K.), Physiology and Pharmacology (J.K.), and Oncology (P.J.F., M.D.V., J.K.), University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in Cancer: Friend or Foe? Front Endocrinol (Lausanne) 2018; 9:437. [PMID: 30123188 PMCID: PMC6085450 DOI: 10.3389/fendo.2018.00437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The KISS1 gene encodes KISS1, a protein that is rapidly processed in serum into smaller but biologically active peptides called kisspeptins (KPs). KISS1 and the KPs signal via the G-protein coupled receptor KISS1R. While KISS1 and KPs are recognized as potent positive regulators of the reproductive neuroendocrine axis in mammals, the first reported role for KISS1 was that of metastasis suppression in melanoma. Since then, it has become apparent that KISS1, KPs, and KISS1R regulate the development and progression of several cancers but interestingly, while these molecules act as suppressors of tumorigenesis and metastasis in many cancers, in breast and liver cancer they function as promoters. Thus, they join a small but growing number of molecules that exhibit dual roles in cancer highlighting the importance of studying cancer in context. Given their roles, KISS1, KPs and KISS1R represent important molecules in the development of novel therapies and/or as prognostic markers in treating cancer. However, getting to that point requires a detailed understanding of the relationship between these molecules and different cancers. The purpose of this review is therefore to highlight and discuss the clinical studies that have begun describing this relationship in varying cancer types including breast, liver, pancreatic, colorectal, bladder, and ovarian. An emerging theme from the reviewed studies is that the relationship between these molecules and a given cancer is complex and affected by many factors such as the micro-environment and steroid receptor status of the cancer cell. Our review and discussion of these important clinical studies should serve as a valuable resource in the successful development of future clinical studies.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Muriel Brackstone
- Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Sally Radovick
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Andy V. Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Moshmi M. Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Moshmi M. Bhattacharya
| |
Collapse
|
32
|
Fratangelo F, Carriero MV, Motti ML. Controversial Role of Kisspeptins/KiSS-1R Signaling System in Tumor Development. Front Endocrinol (Lausanne) 2018; 9:192. [PMID: 29760678 PMCID: PMC5936968 DOI: 10.3389/fendo.2018.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023] Open
Abstract
KiSS-1 was first described as a metastasis suppressor gene in malignant melanoma. KiSS-1 encodes a 145 amino-acid residue peptide that is further processed, producing the 54 amino acid metastin and shorter peptides collectively named kisspeptins (KPs). KPs bind and activate KiSS-1R (GPR54). Although the KPs system has been extensively studied for its role in endocrinology of reproductive axis in mammals, its role in cancer is still controversial. Experimental evidences show that KP system exerts an anti-metastatic effect by the regulation of cellular migration and invasion in several cancer types. However, the role of KPs/KiSS-1R is very complex. Genomic studies suggest that KiSS-1/KiSS-1R expression might be different in the various stages of tumor development. Furthermore, overexpression of KiSS-1R has been reported to elicit drug resistance in triple negative breast cancer. In this review, we focused on multiple functions exerted by the KPs/KiSS-1R system in regulating tumor progression.
Collapse
Affiliation(s)
| | | | - Maria Letizia Motti
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
- Parthenope University of Naples, Naples, Italy
- *Correspondence: Maria Letizia Motti,
| |
Collapse
|