1
|
Gędek A, Modrzejewski S, Materna M, Szular Z, Wichniak A, Mierzejewski P, Dominiak M. Efficacy and Safety of Agomelatine in Depressed Patients with Diabetes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:12631. [PMID: 39684343 DOI: 10.3390/ijms252312631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Major depressive disorder (MDD) and diabetes mellitus (DM) remain among the most prevalent diseases and the most significant challenges faced by medicine in the 21st century. The frequent co-occurrence and bidirectional relationship between the two conditions necessitates the identification of treatment strategies that benefit both. The purpose of this study was to systematically review and meta-analyze data on the efficacy and safety of agomelatine (AGO) in the treatment of patients with depression with comorbid diabetes to explore its potential mechanism of action in both diseases and its impact on diabetic parameters. Following PRISMA guidelines, a total of 11 studies were identified, both preclinical and clinical trials. Agomelatine has shown great potential as a treatment option for patients with diabetes and comorbid depression and anxiety. In addition to improving depressive and anxiety symptoms, it is also beneficial in glycemic control. A meta-analysis demonstrated a statistically significant reduction in glycated hemoglobin (HbA1C) and fasting blood glucose (FBG) levels following AGO administration over a period of 8-16 weeks. The administration of agomelatine was found to result in a significantly greater reduction in HbA1C than that observed with the selective serotonin reuptake inhibitor (SSRI) medications (namely fluoxetine, sertraline, and paroxetine) during 12-16 weeks of therapy. Furthermore, AGO has been found to be at least as effective as SSRIs in reducing depressive symptoms and more effective than SSRIs in reducing anxiety symptoms. The safety of such treatment is similar to SSRIs; no severe adverse events were reported, and the incidence of some side effects, such as insomnia and sexual dysfunction, are even less often reported. Particularly promising is also its potential action in improving some diabetic complications reported in preclinical trials. This might be through mechanisms involving the reduction in oxidative stress, anti-inflammatory effects, and potentially noradrenergic or NMDA receptor modulation. Further clinical studies on larger sample sizes, as well as elucidating its mechanisms of action, especially in the context of diabetic complications, are needed. Research should also focus on identifying the patient subpopulations most likely to benefit from agomelatine treatment.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | | | - Zofia Szular
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
2
|
Oga K, Fuchikami M, Kobayashi H, Miyagi T, Fujita S, Fujita S, Okada S, Morinobu S. Involvement of dysregulated hippocampal histone H3K9 methylation at the promoter of the BDNF gene in impaired memory extinction. Psychopharmacology (Berl) 2024; 241:2363-2374. [PMID: 38940908 PMCID: PMC11513706 DOI: 10.1007/s00213-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.
Collapse
Affiliation(s)
- Kenichi Oga
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan.
| | - Hironori Kobayashi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Sho Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Okada
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Psychology, School of Faculty of Health and Wellness Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
3
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Demyashkin G, Blinova E, Grigoryan M, Parshenkov M, Skovorodko P, Ius V, Lebed A, Shegay P, Kaprin A. Neuroprotective Effects of Myricetin on PTZ-Induced Seizures in Mice: Evaluation of Oxidation, Neuroinflammation and Metabolism, and Apoptosis in the Hippocampus. Curr Issues Mol Biol 2024; 46:8914-8944. [PMID: 39194744 DOI: 10.3390/cimb46080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy is one of the most frequently diagnosed neurological diseases, but the neurobiological basis of the disease remains poorly understood. Immunophenotyping CBA mice brain (NeuN and caspase-8) in parallel with hippocampal neurons' functional status and survival rate assessment during acute epileptic PTZ-induced seizures is of particular interest. The aims of this study were to investigate the involvement of NeuN and caspase-8 in cell cycle regulation and the death of hippocampal neurons during PTZ-induced seizures in mice and to assess the therapeutic efficacy of Myricetin in the aforementioned experimental settings. Male CBA mice (n = 340) were divided into six groups to investigate the neuroprotective and antiepileptic effects of Myricetin and Valproic Acid in the PTZ-induced seizure model. Group I (control, n = 20) received a single intraperitoneal injection of NaCl 0.9% solution. Group II (PTZ only, n = 110) received a single intraperitoneal 45 mg/kg PTZ to induce seizures. Group III (Myricetin + PTZ, n = 90) was administered Myricetin orally at 200 mg/kg for 5 days, followed by a PTZ injection. Group IV (Valproic Acid + PTZ, n = 80) received intraperitoneal Valproic Acid at 100 mg/kg for 5 days, followed by PTZ. Group V (Myricetin + NaCl, n = 20) received Myricetin and NaCl. Group VI (Valproic Acid + NaCl, n = 20) received Valproic Acid and NaCl. Seizure severity was monitored using the modified Racine scale. Behavioral assessments included sensorimotor function tests, motor coordination using the rotarod test, and cognitive function via the Morris water maze. Brain tissues were collected and analyzed for oxidative stress markers, including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Blood samples were analyzed for cytokine levels (IL-1β, IL-6, and TNF-α). Histological studies involved H&E and Nissl staining to evaluate general histopathology and neuronal density. Immunohistochemical analysis was conducted using antibodies against NeuN and caspase-8 to assess neuronal cell cycle regulation and apoptosis. PTZ-induced seizures caused significant oxidative stress and inflammation, leading to neuronal damage. Biochemical analyses showed elevated levels of MDA, SOD, GSH, IL-1β, IL-6, and TNF-α. Histological and immunohistochemical evaluations revealed a significant increase in caspase-8-positive neurons and a decrease in NeuN-positive neurons in the hippocampus and other brain regions, correlating with seizure severity. Myricetin and Valproic Acid treatments reduced oxidative stress markers and neuronal damage. Both treatments resulted in moderate neuronal protection, with fewer damaged neurons observed in the hippocampus, dentate gyrus, and other brain areas compared to the PTZ-only group. Summarizing, Myricetin administration showed promising neuroprotective effects. It significantly reduced oxidative stress markers, including MDA, and restored antioxidant enzyme activities (SOD and GSH), suggesting its antioxidative potential. Myricetin also effectively attenuated the elevation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, indicating strong anti-inflammatory properties. Behavioral assessments revealed that Myricetin improved cognitive and motor functions in PTZ-treated mice, with notable reductions in seizure severity and mortality rates. Histological analyses supported these behavioral findings, with Nissl staining showing reduced neuronal damage and NeuN staining indicating better preservation of neuronal integrity in Myricetin-treated groups. Additionally, caspase-8 staining suggested a significant reduction in neuronal apoptosis.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Ekaterina Blinova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Migran Grigoryan
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Vladimir Ius
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Anastasia Lebed
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, 117198 Moscow, Russia
| |
Collapse
|
5
|
Chen T, Li Y, Ren X, Wang Y. The mGluR5-mediated Arc activation protects against experimental traumatic brain injury in rats. CNS Neurosci Ther 2024; 30:e14695. [PMID: 39107945 PMCID: PMC11303269 DOI: 10.1111/cns.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a complex pathophysiological process, and increasing attention has been paid to the important role of post-synaptic density (PSD) proteins, such as glutamate receptors. Our previous study showed that a PSD protein Arc/Arg3.1 (Arc) regulates endoplasmic reticulum (ER) stress and neuronal necroptosis in traumatic injury in vitro. AIM In this study, we investigated the expression, regulation and biological function of Arc in both in vivo and in vitro experimental TBI models. RESULTS Traumatic neuronal injury (TNI) induced a temporal upregulation of Arc in cortical neurons, while TBI resulted in sustained increase in Arc expression up to 24 h in rats. The increased expression of Arc was mediated by the activity of metabotropic glutamate receptor 5 (mGluR5), but not dependent on the intracellular calcium (Ca2+) release. By using inhibitors and antagonists, we found that TNI regulates Arc expression via Gq protein and protein turnover. In addition, overexpression of Arc protects against TBI-induced neuronal injury and motor dysfunction both in vivo and in vitro, whereas the long-term cognitive function was not altered. To determine the role of Arc in mGluR5-induced protection, lentivirus-mediated short hairpin RNA (shRNA) transfection was performed to knockdown Arc expression. The mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced protection against TBI was partially prevented by Arc knockdown. Furthermore, the CHPG-induced attenuation of Ca2+ influx after TNI was dependent on Arc activation and followed regulation of AMPAR subunits. The results of Co-IP and Ca2+ imaging showed that the Arc-Homer1 interaction contributes to the CHPG-induced regulation of intracellular Ca2+ release. CONCLUSION In summary, the present data indicate that the mGluR5-mediated Arc activation is a protective mechanism that attenuates neurotoxicity following TBI through the regulation of intracellular Ca2+ hemostasis. The AMPAR-associated Ca2+ influx and ER Ca2+ release induced by Homer1-IP3R pathway might be involved in this protection.
Collapse
Affiliation(s)
- Tao Chen
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yun‐Fei Li
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Xu Ren
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yu‐Hai Wang
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| |
Collapse
|
6
|
Frank CE, Sadeghi J, Heath DD, Semeniuk CAD. Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12898. [PMID: 38817102 PMCID: PMC11140169 DOI: 10.1111/gbb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.
Collapse
Affiliation(s)
- Chelsea E. Frank
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Javad Sadeghi
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Daniel D. Heath
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Christina A. D. Semeniuk
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
7
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
8
|
Fawzi SF, Michel HE, Menze ET, Tadros MG, George MY. Clotrimazole ameliorates chronic mild stress-induced depressive-like behavior in rats; crosstalk between the HPA, NLRP3 inflammasome, and Wnt/β-catenin pathways. Int Immunopharmacol 2024; 127:111354. [PMID: 38103406 DOI: 10.1016/j.intimp.2023.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Depression is a major emotional disorder that has a detrimental effect on quality of life. The chronic mild stress (CMS)-depression model was adopted in rats to evaluate the neurotherapeutic effect of Clotrimazole (CLO) and investigate the possible mechanisms of its antidepressant action via its impact on the hypothalamic pituitary adrenal (HPA) axis and the stress hormone, cortisol. It was found that azole antifungals affect steroidogenesis and the HPA axis. Behavioral, histopathological, inflammatory, and apoptotic pathways were assessed. Serum cortisol, inflammasome biomarkers, hippocampal NLRP3, caspase-1, and IL-18, and the canonical Wnt/β-catenin neurogenesis biomarkers, Wnt3a, and non-phosphorylated β-catenin levels were also determined. Different stressors were applied for 28 days to produce depressive-like symptoms, and CLO was administered at a daily dose of 30 mg/kg body weight. Subsequently, behavioral and biochemical tests were carried out to assess the depressive-like phenotype in rats. Stressed rats showed increased immobility time in the forced swimming test (FST), decreased grooming time in the splash test (ST), increased serum cortisol levels, increased inflammasome biomarkers, and decreased neurogenesis. However, administration of CLO produced significant antidepressant-like effects in rats, which were accompanied by a significant decrease in immobility time in FST, an increase in grooming time in ST, a decrease in serum cortisol level, a decrease in inflammasome biomarkers, and an increase in neurogenesis biomarkers. The antidepressant mechanism of CLO involves the HPA axis and the anti-inflammatory effect, followed by neurogenesis pathway activation. Therefore, CLO may have the potential to be a novel antidepressant candidate.
Collapse
Affiliation(s)
- Sylvia F Fawzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
9
|
Fujimura M. Gabapentin improves neuropathic pain in Minamata disease model rats. Environ Health Prev Med 2024; 29:31. [PMID: 38825526 PMCID: PMC11157338 DOI: 10.1265/ehpm.24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Methylmercury (MeHg), the causative agent of Minamata disease, damages the cranial nervous system and causes specific sensory disturbances, especially hypoesthesia, in the extremities. However, recent reports demonstrate that patients with chronic Minamata disease conversely develop neuropathic pain in the lower extremities. Studies on our established Minamata disease model rats showed that MeHg-mediated neurodegeneration might induce neuropathic pain by over time through inducing rewiring with neuronal activation in the somatosensory cortex via microglial activation in the spinal dorsal horn. METHODS In this study, the effects of gabapentin, a potentially effective treatment for neuropathic pain, was evaluated using this Minamata disease model rats. To further elucidate the mechanism of its medicinal effects, histochemical and biochemical analyses of the nervous system of Minamata disease model rats were conducted. RESULTS Gabapentin treatment restored the reduction in the pain threshold caused by MeHg exposure in rats. Histochemical and biochemical analyses revealed that gabapentin showed no effect on MeHg-induced neurodegeneration in entire nervous system and microglial activation in the spinal dorsal horn. However, it was shown that gabapentin may reduce excessive synaptogenesis through its antagonist action on the alpha2-delta-1 subunit of calcium channels in the somatosensory cortex. CONCLUSIONS These results indicate that gabapentin may alleviated neuropathic pain in MeHg poisoning, as typified by Minamata disease, by reversibly modulation synaptic rewiring in the somatosensory cortex.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| |
Collapse
|
10
|
Bagheri F, Goudarzi I. Postnatal melatonin administration to stressed dams for ameliorating risk-taking behaviour in rat pups through maternal care improvement. Int J Dev Neurosci 2023. [PMID: 37114289 DOI: 10.1002/jdn.10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND AIM Anxiety often occurs both concurrently and sequentially in childhood and adolescence in association with prenatal stress, which may reduce the quality of maternal care and then cause mood disorders among children in later life. Against this background, melatonin, as a powerful antioxidant, was used in the present study to ameliorate risk-taking behaviour induced by pure maternal care in rat pups. MATERIALS AND METHODS The Wistar rat dams recruited in this study were exposed to restraint stress from gestational day (GD) 11 until delivery. They further received melatonin (10 mg/kg) during the postnatal days (PNDs) 0-7 by intraperitoneal (IP) injections at 4:00 PM. The pregnant rats were then divided into four groups, namely, control, stress, stress + melatonin and melatonin, and their maternal behaviour and corticosterone levels were measured. In the offspring, the outcomes of some behavioural tasks, including the elevated plus-maze (EPM) and open-field (OF) tests were ultimately assessed. RESULTS The study results revealed that the quantity and quality of maternal care significantly declined and the plasma corticosterone levels compounded in the stressed dams. Melatonin treatment, however, improved their nursing behaviour and reduced their plasma corticosterone levels. The offspring performance in two tasks also showed an upward trend in risk-taking behaviour in the stress group, and melatonin administration ameliorated the effects of stress and lessened their anxiety-like behaviour. CONCLUSION It was concluded that prenatal restraint stress could impair stress responses and quality of maternal care, whereas postnatal melatonin administration potentially contributed to the normalization of stress reaction and anxiolysis.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
11
|
Lin QS, Wang Y, Lin MH, Li YX, Chen P. WITHDRAWN: The cerebrospinal fluid-contacting nucleus contributes to depression- like behaviors via MKP-1 in rats. J Affect Disord 2022:S0165-0327(22)01378-7. [PMID: 36521668 DOI: 10.1016/j.jad.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350209, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ying Wang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Yu-Xi Li
- Fujian Medical University, China
| | - Ping Chen
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Liu X, Li P, Ma X, Zhang J, Sun X, Luo X, Zhang Y. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J Affect Disord 2022; 315:190-197. [PMID: 35908604 DOI: 10.1016/j.jad.2022.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The aims of our study are: i) to explore whether plasma levels of BDNF/GDNF are valuable in the diagnosis of first-episode depression; ii) to discuss whether there is an association between peripheral plasma levels of BDNF/GDNF and patients' depression severity and cognitive dysfunction; iii) to explore the association between plasma levels of BDNF/GDNF and the effectiveness of antidepressant treatment. METHODS Ninety patients with first-episode unmedicated MDD and healthy controls were recruited. MDD patients were treated with antidepressant medication for 8 weeks. Patients were assessed for clinical symptoms using HDRS-17 and HAMA-14. Social and neurocognitive functioning of all subjects was assessed at baseline using the Functional Assessment Test Short Form (FAST) and the MATRICS Consensus Cognitive Battery (MCCB). At the same time, peripheral venous blood was drawn from all subjects for BDNF/GDNF peripheral plasma level analysis at baseline and after 8 weeks of treatment. RESULTS The baseline BDNF/GDNF levels in MDD patients were significantly lower than that in healthy controls. The area under ROC curve (AUC) of baseline plasma BDNF and GDNF levels predicting MDD was 0.776 (95 % CI: 0.705-0.846, p < 0.001) and 0.864 (95 % CI: 0.808-0.920, p < 0.001), respectively. The baseline GDNF level (beta = 0.425, p = 0.001), the autonomy score of FAST (beta = -0.247, p = 0.037) and BACS-SC score of MCCB (beta = 0.323, p = 0.039) were predictors of HDRS-17 reduction rate after 8 weeks' antidepressant treatment. LIMITATIONS A longer follow-up period than 8 weeks may make the results more convincing, and the sample size of this study is still insufficient. CONCLUSION The decreased plasma levels of BDNF and GDNF are strong indicators for predicting the occurrence of MDD. This preliminary finding highlighted the value of GDNF plasma concentrations in the diagnosis of MDD and the prognosis of antidepressant treatment.
Collapse
Affiliation(s)
- Xinyu Liu
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| | - Peijun Li
- Tianjin Medical University, Tianjin, China
| | | | - Jian Zhang
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| | - Xia Sun
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Zhang
- Unit of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China.
| |
Collapse
|
14
|
Bashir MI, Abdul Aziz NHK, Noor DAM. Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model. Behav Sci (Basel) 2022; 12:bs12060196. [PMID: 35735406 PMCID: PMC9220072 DOI: 10.3390/bs12060196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is the most common behavior disorder that leads to many disabilities. The main aim of this study was to evaluate the effects of a Polygonum minus (P. minus) aqueous extract on chronic ultra-mild stress (CUMS)-induced depressive mice model. Chronic ultra-mild stress can disturb the neurotransmitters levels and plasticity of the hippocampus. Balb/c male mice were used in this study, which consisted of six groups (n = 14). Treatment was given for eight weeks, and chronic ultra-mild stress was applied for six weeks. Commercially available P. minus extract (BioKesum®) was used in this study. The behavior and neurochemical parameters were investigated through behavioral Tests and ELISA assays. P. minus administration significantly (p < 0.05) restored CUMS-induced behavior abnormalities, decreased the immobility time, and increased the sucrose preference and increased the spatial memory. P. minus treatment also showed the decreased level of serum corticosterone and increased the level of hippocampal neurotransmitters (Serotonin and Norepinephrine) significantly (p < 0.05). The brain-derived neurotrophic factor (BDNF) level also increased significantly in both the prefrontal cortex and hippocampus (p < 0.05). P. minus treatment exhibited significant (p < 0.05) reduction of Monoamine Oxidase-A (MAO-A) in the hippocampus. These findings indicate that P. minus aqueous extract exhibits antidepressant effects, including decreased immobility time, increased spatial memory, reduced corticosterone, increased BDNF level, and reduced MAO-A enzyme level with increasing the monoamines (serotonin and norepinephrine) in the hippocampus.
Collapse
Affiliation(s)
- Muhammad Irfan Bashir
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: or (M.I.B.); (N.H.K.A.A.)
| | - Nur Hidayah Kaz Abdul Aziz
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: or (M.I.B.); (N.H.K.A.A.)
| | - Dzul Azri Mohamed Noor
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
15
|
Dos Santos Guilherme M, Tsoutsouli T, Chongtham MC, Winter J, Gerber S, Müller MB, Endres K. Selective targeting of chronic social stress-induced activated neurons identifies neurogenesis-related genes to be associated with resilience in female mice. Psychoneuroendocrinology 2022; 139:105700. [PMID: 35220090 DOI: 10.1016/j.psyneuen.2022.105700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Prolonged social stress is a major cause for depression in humans and is associated with a wide range of subsequent pathophysiological changes such as elevated blood pressure. A routinely used model for investigating this kind of stress in mice is the chronic social defeat paradigm where a smaller intruder is exposed to an aggressive inhabitant of a home cage. This model is restricted to males and includes a high proportion of physical stress that might e.g., interfere with immunological aspects of the stress. The prevalence of depression in humans is even higher in women than in men. Therefore, expanding models to female individuals is desirable. We here tested the social instability model as a tool for administering chronic social stress to female C57BL/6J mice and analyzed short-term as well as long-lasting effects. Animals were housed in groups of four and were shuffled two times a week, resulting in a permanent re-structuration of their social hierarchy. While directly after the stress exposure, serum corticosterone was elevated, increased body weight and fat deposits were observed in stressed mice even one year after discontinuation of the stress. At the behavioral level, animals could be stratified into resilient and susceptible animals directly post-stress, but those subgroups were not distinguishable any more in the long-term analysis. To identify molecular contributors to resilience in the here presented social instability induced stress model, Arc-activity dependent trapping of neurons was conducted in Arc-creERT2/sun1sfGFP mice. RNA samples derived from activated nuclei from the ventral hippocampus, a brain region involved in stress-regulation during attacks or explorative behavior of mice, were subjected to a neurogenesis pathway array. While several genes were differentially regulated by stress, in particular, artemin, a neurotrophic factor was upregulated in resilient versus susceptible individuals.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Monika Chanu Chongtham
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
16
|
Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, De Guzman E, Galbusera A, Uboldi M, Panzeri S, Gozzi A. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr Biol 2022; 32:631-644.e6. [PMID: 34998465 PMCID: PMC8837277 DOI: 10.1016/j.cub.2021.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Human imaging studies have shown that spontaneous brain activity exhibits stereotypic spatiotemporal reorganization in awake, conscious conditions with respect to minimally conscious states. However, whether and how this phenomenon can be generalized to lower mammalian species remains unclear. Leveraging a robust protocol for resting-state fMRI (rsfMRI) mapping in non-anesthetized, head-fixed mice, we investigated functional network topography and dynamic structure of spontaneous brain activity in wakeful animals. We found that rsfMRI networks in the awake state, while anatomically comparable to those observed under anesthesia, are topologically configured to maximize interregional communication, departing from the underlying community structure of the mouse axonal connectome. We further report that rsfMRI activity in wakeful animals exhibits unique spatiotemporal dynamics characterized by a state-dependent, dominant occurrence of coactivation patterns encompassing a prominent participation of arousal-related forebrain nuclei and functional anti-coordination between visual-auditory and polymodal cortical areas. We finally show that rsfMRI dynamics in awake mice exhibits a stereotypical temporal structure, in which state-dominant coactivation patterns are configured as network attractors. These findings suggest that spontaneous brain activity in awake mice is critically shaped by state-specific involvement of basal forebrain arousal systems and document that its dynamic structure recapitulates distinctive, evolutionarily relevant principles that are predictive of conscious states in higher mammalian species. fMRI networks in awake mice depart from underlying anatomical structure fMRI dynamics in wakeful mice is critically shaped by arousal-related nuclei Occurrence and topography of rsfMRI coactivation patterns define conscious states fMRI coactivation dynamics defines a signature of consciousness in the mouse brain
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Neha Atulkumar Singh
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy; Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy; Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Elizabeth De Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
17
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
18
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
19
|
Misztak P, Sowa-Kućma M, Pańczyszyn-Trzewik P, Szewczyk B, Nowak G. Antidepressant-like Effects of Combined Fluoxetine and Zinc Treatment in Mice Exposed to Chronic Restraint Stress Are Related to Modulation of Histone Deacetylase. Molecules 2021; 27:22. [PMID: 35011254 PMCID: PMC8746513 DOI: 10.3390/molecules27010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.
Collapse
Affiliation(s)
- Paulina Misztak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-668 Krakow, Poland; (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (M.S.-K.); (P.P.-T.)
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (M.S.-K.); (P.P.-T.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-668 Krakow, Poland; (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| |
Collapse
|
20
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Zabegalov KN, Maslov GO, Kositsyn YM, Petersen EV, Strekalova T, Rosemberg DB, Kalueff AV. Towards Modeling Anhedonia and Its Treatment in Zebrafish. Int J Neuropsychopharmacol 2021; 25:293-306. [PMID: 34918075 PMCID: PMC9017771 DOI: 10.1093/ijnp/pyab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Mood disorders, especially depression, are a major cause of human disability. The loss of pleasure (anhedonia) is a common, severely debilitating symptom of clinical depression. Experimental animal models are widely used to better understand depression pathogenesis and to develop novel antidepressant therapies. In rodents, various experimental models of anhedonia have already been developed and extensively validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of affective disorders, including depression. Here, we critically discuss the potential of zebrafish for modeling anhedonia and studying its molecular mechanisms and translational implications.
Collapse
Affiliation(s)
- Murilo S de Abreu
- School of Pharmacy, Southwest University, Chongqing, China,Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil,Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Fabiano Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil,Graduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Drug Screening Platform, School of Pharmacy, Southwest University, Chongqing, China,Ural Federal University, Ekaterinburg, Russia,Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia,Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Yuriy M Kositsyn
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tatiana Strekalova
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maasticht, the Netherlands,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil,Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China,Drug Screening Platform, School of Pharmacy, Southwest University, Chongqing, China,Ural Federal University, Ekaterinburg, Russia,Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia,Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia,Novosibirsk State University, Novosibisk, Russia,Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia,Correspondence: Allan V. Kalueff, PhD, School of Pharmacy, Southwest University, Chongqing, China ()
| |
Collapse
|
21
|
A new experimental design to study inflammation-related versus non-inflammation-related depression in mice. J Neuroinflammation 2021; 18:290. [PMID: 34895261 PMCID: PMC8666053 DOI: 10.1186/s12974-021-02330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Major depressive disorder (MDD) represents a major public health concern, particularly due to its steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate inflammation-related vs. inflammation-unrelated depression. Methods While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a procedure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), a stress-induced depression model notably renowned for its responsivity to antidepressants. Results While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation and downstream neurobiological pathways contributing to inflammation-driven depression were specifically activated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition. Conclusions These data validate an experimental design suitable to deeply study the mechanisms underlying inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better understand the pathophysiology of treatment resistant depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02330-9.
Collapse
|
22
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
23
|
Tutukova S, Tarabykin V, Hernandez-Miranda LR. The Role of Neurod Genes in Brain Development, Function, and Disease. Front Mol Neurosci 2021; 14:662774. [PMID: 34177462 PMCID: PMC8221396 DOI: 10.3389/fnmol.2021.662774] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Transcriptional regulation is essential for the correct functioning of cells during development and in postnatal life. The basic Helix-loop-Helix (bHLH) superfamily of transcription factors is well conserved throughout evolution and plays critical roles in tissue development and tissue maintenance. A subgroup of this family, called neural lineage bHLH factors, is critical in the development and function of the central nervous system. In this review, we will focus on the function of one subgroup of neural lineage bHLH factors, the Neurod family. The Neurod family has four members: Neurod1, Neurod2, Neurod4, and Neurod6. Available evidence shows that these four factors are key during the development of the cerebral cortex but also in other regions of the central nervous system, such as the cerebellum, the brainstem, and the spinal cord. We will also discuss recent reports that link the dysfunction of these transcription factors to neurological disorders in humans.
Collapse
Affiliation(s)
- Svetlana Tutukova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Victor Tarabykin
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| |
Collapse
|
24
|
Casaril AM, Lourenço DDA, Domingues M, Smaniotto TÂ, Birmann PT, Vieira B, Sonego MS, Seixas FK, Collares T, Lenardão EJ, Savegnago L. Anhedonic- and anxiogenic-like behaviors and neurochemical alterations are abolished by a single administration of a selenium-containing compound in chronically stressed mice. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 6:100054. [PMID: 35757368 PMCID: PMC9216694 DOI: 10.1016/j.cpnec.2021.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Angela Maria Casaril
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Darling de Andrade Lourenço
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Ângelo Smaniotto
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Vieira
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariana Souza Sonego
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kömmling Seixas
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technological Development Center, Division of Biotechnology, Nanobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
- Corresponding author. Neurobiotechnology Research Group, Biotechnology Unit Federal University of Pelotas, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
25
|
Okine T, Shepard R, Lemanski E, Coutellier L. Sex Differences in the Sustained Effects of Ketamine on Resilience to Chronic Stress. Front Behav Neurosci 2020; 14:581360. [PMID: 33192367 PMCID: PMC7606988 DOI: 10.3389/fnbeh.2020.581360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to stress is recognized to be a triggering factor in several mood disorders, including depression and anxiety. There is very little understanding of why female subjects have a significantly higher risk for these conditions than males. Recent findings in male rodents indicated that prophylactic ketamine can prevent the development of a stress-induced depressive-like phenotype, providing a pharmacological tool to study the mechanisms underlying stress resilience. Unfortunately, none of these studies incorporated female subjects, nor did they provide a mechanistic understanding of the effects of ketamine on stress resilience. Our previous work identified the prefrontal glutamatergic and parvalbumin (PV) systems as potential molecular mechanisms underlying sex differences in susceptibility to stress-induced emotional deregulations. To further address this point, we treated male and female mice with a single dose of ketamine before exposure to a chronic stress paradigm to determine whether stress-resilience induced by a pre-exposure to ketamine is similar in males and females and whether modulation of the prefrontal glutamatergic and PV systems by ketamine is associated with these behavioral effects. Ketamine prevented chronic stress-induced changes in behaviors in males, which was associated with a reduction in expression of PV and the NMDA receptor NR1 subunit. Ketamine did not protect females against the effects of chronic stress and did not change significantly prefrontal gene expression. Our data highlight fundamental sex differences in the sustained effects of ketamine. They also further implicate prefrontal glutamatergic transmission and PV in resilience to chronic stress.
Collapse
Affiliation(s)
- Tracy Okine
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Ryan Shepard
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Elise Lemanski
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Casaril AM, Domingues M, Lourenço DDA, Vieira B, Begnini K, Corcini CD, França RT, Varela Junior AS, Seixas FK, Collares T, Lenardão EJ, Savegnago L. 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole ameliorates long-lasting depression- and anxiogenic-like behaviors and cognitive impairment in post-septic mice: Involvement of neuroimmune and oxidative hallmarks. Chem Biol Interact 2020; 331:109278. [PMID: 33038329 DOI: 10.1016/j.cbi.2020.109278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
Only in the last decade the long-term consequences of sepsis started to be studied and even less attention has been given to the treatment of psychological symptoms of sepsis survivors. It is estimated that 60% of sepsis survivors have psychological disturbances, including depression, anxiety, and cognitive impairment. Although the causative factors remain largely poorly understood, blood-brain barrier (BBB) disturbances, neuroinflammation, and oxidative stress have been investigated. Therefore, we sought to explore if the immunomodulatory and antioxidant selenocompound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) would be able to ameliorate long-term behavioral and biochemical alterations in sepsis survivors male Swiss mice. CMI treatment (1 mg/kg, given orally for seven consecutive days) attenuated depression- and anxiogenic-like behaviors and cognitive impairment present one month after the induction of sepsis (lipopolysaccharide, 5 mg/kg intraperitoneally). Meantime, CMI treatment modulated the number of neutrophils and levels of reactive species in neutrophils, lymphocytes, and monocytes. In addition, peripheral markers of liver and kidneys dysfunction (AST, ALT, urea, and creatinine) were reduced after CMI treatment in post-septic mice. Notably, CMI treatment to non-septic mice did not alter AST, ALT, urea, and creatinine levels, indicating the absence of acute hepatotoxicity and nephrotoxicity following CMI treatment. Noteworthy, CMI ameliorated BBB dysfunction induced by sepsis, modulating the expression of inflammation-associated genes (NFκB, IL-1β, TNF-α, IDO, COX-2, iNOS, and BDNF) and markers of oxidative stress (reactive species, nitric oxide, and lipid peroxidation levels) in the prefrontal cortices and hippocampi of mice. In conclusion, we unraveled crucial molecular pathways that are impaired in post-septic mice and we present CMI as a promising therapeutic candidate aimed to manage the long-lasting behavioral alterations of sepsis survivors to improve their quality of life.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Darling de Andrade Lourenço
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Vieira
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Karine Begnini
- Technological Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Carine Dahl Corcini
- Center for Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Raqueli Teresinha França
- Center for Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Antônio Sergio Varela Junior
- Center for Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kӧmmling Seixas
- Technological Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Technological Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
27
|
Baptista-de-Souza D, Tavares-Ferreira D, Megat S, Sankaranarayanan I, Shiers S, Flores CM, Ghosh S, Luiz Nunes-de-Souza R, Canto-de-Souza A, Price TJ. Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100049. [PMID: 32548337 PMCID: PMC7284072 DOI: 10.1016/j.ynpai.2020.100049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 04/15/2023]
Abstract
Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Diana Tavares-Ferreira
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Ishwarya Sankaranarayanan
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Christopher M. Flores
- Janssen Research & Development, Neuroscience Therapeutic Area, San Diego, CA, United States
| | - Sourav Ghosh
- Yale University School of Medicine, Department of Neurology, United States
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista – UNESP, Araraquara, SP 14800-903, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Graduate Program in Psychology UFSCar, São Carlos, SP 13565-905, Brazil
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
- Corresponding author at: University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 W Campbell Rd., BSB 14.102, Richardson, TX 75080, United States.
| |
Collapse
|
28
|
Kumar M, Arora P, Sandhir R. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. J Neuroimmune Pharmacol 2020; 16:483-499. [DOI: 10.1007/s11481-020-09920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
29
|
Konstantakopoulos G, Dimitrakopoulos S, Michalopoulou PG. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin Drug Discov 2020; 15:1121-1132. [PMID: 32568567 DOI: 10.1080/17460441.2020.1781087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Under the treatment of commonly used antidepressants, many patients with major depressive disorder (MDD) do not achieve remission. All previous first-line treatments for depression have focused on the enhancement of monoaminergic activity. Agomelatine was the first antidepressant with a mechanism of action extending beyond monoaminergic neurotransmission. AREAS COVERED The aim of this case history is to describe the discovery strategy and development of agomelatine. The pharmacodynamic profile of the drug is briefly presented. The article summarizes (a) the preclinical behavioral data on agomelatine's effects on depressive-like behavior, anxiety, and circadian rhythmicity disruptions, and (b) the results of early preclinical studies on safety, efficacy in MDD, and the risk-benefit pharmacological profile. Furthermore, the article examines findings of post-marketing research on safety, efficacy, and cost-effectiveness of the drug. EXPERT OPINION There is now evidence supporting the clinical efficacy and safety profile of agomelatine in the acute-phase treatment of MDD. Agomelatine may be more effective in specific subgroups of MDD patients, those with severe anxiety symptoms or disturbed circadian profiles. Its antidepressant and anxiolytic activities are due to synergy between its melatonergic and 5-hydroxytryptaminergic effects. Since its discovery, novel compounds acting on the melatonergic system have been under investigation for the treatment of MDD.
Collapse
Affiliation(s)
- George Konstantakopoulos
- First Department of Psychiatry, University of Athens , Athens, Greece.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | | | - Panayiota G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| |
Collapse
|
30
|
Faraji J, Metz GAS. Infrared Thermography Reveals Sex-Specific Responses to Stress in Mice. Front Behav Neurosci 2020; 14:79. [PMID: 32523518 PMCID: PMC7261839 DOI: 10.3389/fnbeh.2020.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Psychogenic hyperthermia is a stress-related condition reported mostly in women. Neuroendocrine responses to stress in females differ from those in males, and these differences cannot be explained solely based on hypothalamic-pituitary-adrenal (HPA) axis activity. Here, we used infrared (IR) thermographic imaging to record changes in cutaneous temperature following two types of stressful experiences in female and male mice. Mice were exposed to either single-session restraint stress or vertical exploration (rearing) deprivation and were monitored for exploratory activity and IR surface thermal changes. Females displayed higher rearing activity than males during the dark phase of the light cycle. Both sexes showed similar plasma corticosterone (CORT) responses after a challenge with restraint and rearing deprivation. However, only females responded to rearing deprivation with increased cutaneous temperature in the head and back, and a reduced thermal response in the tail. Circulating CORT levels were not correlated with the thermal variations. These findings, for the first time, provide evidence for sex-specific cutaneous thermal responses to short-term stress in mice following transient vertical-activity deprivation that may mimic clinical psychogenic hyperthermia.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Faculty of Nursing & Midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
31
|
Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord 2020; 268:188-200. [PMID: 32174477 DOI: 10.1016/j.jad.2020.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depressed patients present increased plasma levels of lipopolysaccharide (LPS) and neuroinflammatory alterations. Here, we determined the neuroimmune effects of different classes of ADs by using the LPS inflammatory model of depression. METHODS Male rats received amitriptyline (AMI) a tricyclic, S-citalopram (ESC) a selective serotonin reuptake inhibitor, tranylcypromine (TCP) a monoamine oxidase inhibitor, vortioxetine (VORT) a multimodal AD or saline for ten days. One-hour after the last AD administration, rats were exposed to LPS 0.83 mg/kg or saline and 24 h later were tested for depressive-like behavior. Plasma corticosterone, brain levels of nitrite, pro- and anti-inflammatory cytokines, phospho-cAMP Response Element-Binding Protein (CREB) and nuclear factor (NF)-kB p 65 were determined. RESULTS LPS induced despair-like, impaired motivation/self-care behavior and caused anhedonia. All ADs prevented LPS-induced despair-like behavior, but only VORT rescued impaired self-care behavior. All ADs prevented LPS-induced increase in brain pro-inflammatory cytokines [interleukin (IL)-1β and IL-6] and T-helper 1 cytokines [tumor necrosis factor (TNF)-α and interferon-γ]. VORT increased striatal and hypothalamic IL-4 levels. All ADs prevented LPS-induced neuroendocrine alterations represented by increased levels of hypothalamic nitrite and plasma corticosterone response. VORT and ESC prevented LPS-induced increase in NF-kBp65 hippocampal expression, while ESC, TCP and VORT, but not IMI, prevented the alterations in phospho-CREB expression. LIMITATIONS LPS model helps to understand depression in a subset of depressed patients with immune activation. The levels of neurotransmitters were not determined. CONCLUSION This study provides new evidence for the immunomodulatory effects of ADs, and shows a possible superior anti-inflammatory profile of TCP and VORT.
Collapse
|
32
|
Chaves Filho AJM, Cunha NL, de Souza AG, Soares MVR, Jucá PM, de Queiroz T, Oliveira JVS, Valvassori SS, Barichello T, Quevedo J, de Lucena D, Macedo DS. The GLP-1 receptor agonist liraglutide reverses mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: Relevance for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109872. [PMID: 31954756 DOI: 10.1016/j.pnpbp.2020.109872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 μg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natássia Lopes Cunha
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Alana Gomes de Souza
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Tatiana de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Victor Souza Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Joao Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - David de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
33
|
Kobayashi K, Shimizu N, Matsushita S, Murata T. The assessment of mouse spontaneous locomotor activity using motion picture. J Pharmacol Sci 2020; 143:83-88. [PMID: 32178942 DOI: 10.1016/j.jphs.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 11/17/2022] Open
Abstract
Spontaneous locomotor activity (SLA) is a useful parameter reflecting physical and mental status of experimental animals. Here we aimed to establish a novel and simple method to assess mouse SLA using motion picture. Movement of C57BL/6 mice was continuously recorded by an infrared video camera connected with a single board computer. The geometric center of mouse outline in each frame was calculated using an image processing library, OpenCV in a programming language Python. Moving distance of the geometric center every second was utilized as an index of mouse SLA. Twenty-four hours assessment of SLA showed that mice repeated active and resting phase. Mice moved more actively during the dark period compared with the light period. Time-frequency analysis of SLA followed by unsupervised clustering classified their active and resting phase. Administration of a sedative, chlorpromazine (5 mg/kg) abolished mouse SLA for 8 h. In contrast, administration of a central nervous stimulant, caffeine (25 mg/kg) increased SLA for 3 h. In conclusion, we here established the automatic measurement system of mouse SLA using motion picture. This system is composed of common equipment and analysis software written in freely available programming language. We also confirmed that it is applicable for drug assessment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoyuki Shimizu
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Matsushita
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
34
|
Cognitive Abilities of Dogs with Mucopolysaccharidosis I: Learning and Memory. Animals (Basel) 2020; 10:ani10030397. [PMID: 32121123 PMCID: PMC7143070 DOI: 10.3390/ani10030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Mucopolysaccharidosis I (MPS I) results from a deficiency of a lysosomal enzyme, alpha-L-iduronidase (IDUA). IDUA deficiency leads to glycosaminoglycan (GAG) accumulation resulting in cellular degeneration and multi-organ dysfunction. The primary aims of this pilot study were to determine the feasibility of cognitive testing MPS I affected dogs and to determine their non-social cognitive abilities with and without gene therapy. Fourteen dogs were tested: 5 MPS I untreated, 5 MPS I treated, and 4 clinically normal. The treated group received intrathecal gene therapy as neonates to replace the IDUA gene. Cognitive tests included delayed non-match to position (DNMP), two-object visual discrimination (VD), reversal learning (RL), attention oddity (AO), and two-scent discrimination (SD). Responses were recorded as correct, incorrect, or no response, and analyzed using mixed effect logistic regression analysis. Significant differences were not observed among the three groups for DNMP, VD, RL, or AO. The MPS I untreated dogs were excluded from AO testing due to failing to pass acquisition of the task, potentially representing a learning or executive function deficit. The MPS I affected group (treated and untreated) was significantly more likely to discriminate between scents than the normal group, which may be due to an age effect. The normal group was comprised of the oldest dogs, and a mixed effect logistic model indicated that older dogs were more likely to respond incorrectly on scent discrimination. Overall, this study found that cognition testing of MPS I affected dogs to be feasible. This work provides a framework to refine future cognition studies of dogs affected with diseases, including MPS I, in order to assess therapies in a more comprehensive manner.
Collapse
|
35
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
36
|
Casaril AM, Domingues M, de Andrade Lourenço D, Birmann PT, Padilha N, Vieira B, Begnini K, Seixas FK, Collares T, Lenardão EJ, Savegnago L. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioral, neurochemical and computational insights involving the serotonergic system. J Psychiatr Res 2019; 115:1-12. [PMID: 31082651 DOI: 10.1016/j.jpsychires.2019.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
Major depression and anxiety are highly incapacitating psychiatric disorders often present simultaneously, and the causal relationship between these disorders and inflammation are under extensive investigation. The treatment for this comorbidity still relies on drugs acting on the serotonergic neurotransmission, but the modulation of immune-inflammatory pathways has attained an increasing interest in the drug discovery. We have previously demonstrated that the selenoorganic compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) possess antioxidant, anti-inflammatory, antinociceptive and antidepressant-like effect in mice. Considering these pharmacological properties and the structural similarities between tryptophan, serotonin and CMI, the aim of the present study was to investigate whether CMI ameliorates depression- and anxiogenic-like behavior induced by lipopolysaccharide (LPS) in Swiss male mice by modulating the serotonergic system and reducing neuroinflammation. The administration of CMI (1 mg/kg, i.g) reversed the behavioral deficits induced by LPS (0.83 mg/kg, i.p) in the tail suspension test, splash test and elevated plus maze. The pre-treatment of mice with WAY100635 (5-HT1A receptor antagonist), ketanserin (5-HT2A/2C receptor antagonist) and ondansetron (5-HT3 receptor antagonist) prevented the antidepressant- and anxiolytic-like effect elicited by CMI treatment after the LPS challenge. The administration of CMI also counteracted the increased expression of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase (IDO) in the prefrontal cortex and hippocampus of mice challenged with LPS. Additionally, a molecular docking analysis showed that CMI binds to the active site of the serotonin transporter and IDO. These findings suggest that CMI reversed behavioral and biochemical alterations in the depression-anxiety comorbidity induced by LPS, possibly by modulation of neuroinflammatory mediators and the serotonergic system.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Darling de Andrade Lourenço
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Nathalia Padilha
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Vieira
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Karine Begnini
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kommling Seixas
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Technological Development Center, Division of Biotechnology, Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Center for Chemical, PharmaceuticaSl and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
37
|
van Weert LTCM, Buurstede JC, Sips HCM, Mol IM, Puri T, Damsteegt R, Roozendaal B, Sarabdjitsingh RA, Meijer OC. Mechanistic Insights in NeuroD Potentiation of Mineralocorticoid Receptor Signaling. Int J Mol Sci 2019; 20:E1575. [PMID: 30934833 PMCID: PMC6479562 DOI: 10.3390/ijms20071575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mineralocorticoid receptor (MR)-mediated signaling in the brain has been suggested as a protective factor in the development of psychopathology, in particular mood disorders. We recently identified genomic loci at which either MR or the closely related glucocorticoid receptor (GR) binds selectively, and found members of the NeuroD transcription factor family to be specifically associated with MR-bound DNA in the rat hippocampus. We show here using forebrain-specific MR knockout mice that GR binding to MR/GR joint target loci is not affected in any major way in the absence of MR. Neurod2 binding was also independent of MR binding. Moreover, functional comparison with MyoD family members indicates that it is the chromatin remodeling aspect of NeuroD, rather than its direct stimulation of transcription, that is responsible for potentiation of MR-mediated transcription. These findings suggest that NeuroD acts in a permissive way to enhance MR-mediated transcription, and they argue against competition for DNA binding as a mechanism of MR- over GR-specific binding.
Collapse
Affiliation(s)
- Lisa T C M van Weert
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| | - Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Isabel M Mol
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Tanvi Puri
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Ruth Damsteegt
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboudumc, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
38
|
Dutar P, Tolle V, Kervern M, Carcenac C, Carola V, Gross C, Savasta M, Darmon M, Masson J. GLS1 Mutant Mice Display Moderate Alterations of Hippocampal Glutamatergic Neurotransmission Associated with Specific Adaptive Behavioral Changes. Neuroscience 2019; 396:175-186. [PMID: 30472430 DOI: 10.1016/j.neuroscience.2018.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
Significant alterations in glutamatergic neurotransmission have been reported in major depressive disorder (MDD) that could underlie psychiatric traits. Studies were mainly interested in synaptic dysfunction in the prefrontal cortex, a key structure involved in depressive-like behavior, however hippocampus has been shown to be important in MDD. As cognitive deficits such as hippocampus-memory process were observed in MDD, we investigated in a mild hypoglutamatergic model behaviors related to depression and memory, synaptic transmission parameters and glutamatergic state specifically in the hippocampus. We thus characterized these phenotypes in adult male mice partially depleted in glutaminase type 1 or GLS1 (GLS1 HET), the enzyme responsible for glutamate synthesis in neurons, that we previously characterized as displaying moderate lower levels of glutamate in brain. We showed that GLS1 mutant mice display AMPA-R-mediated response deficits after prolonged repetitive stimulation with electrophysiological recording and inability to sustain glutamate release by microdialysis experiments with no consequences on behavioral spatial learning performances. However, their ability to escape from unpleasant but repeated escapable condition was attenuated whereas they were more immobile in the unescapable situation in the FST during re-test. These results show that GLS1 mutant mice display moderate impairments of hippocampal glutamatergic neurotransmission and moderate changes in adaptive behaviors that have been shown to participate to the development of depressive-like state.
Collapse
Affiliation(s)
- Patrick Dutar
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Myriam Kervern
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Carole Carcenac
- Université Grenoble Alpes, Grenoble Institut des neuroscience (GIN), 38000 Grenoble, France
| | - Valeria Carola
- Department of Experimental Neuroscience, Fondazione Santa Lucia, Rome, Italy; Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Italy
| | - Cornelius Gross
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Italy
| | - Marc Savasta
- Université Grenoble Alpes, Grenoble Institut des neuroscience (GIN), 38000 Grenoble, France
| | - Michèle Darmon
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Justine Masson
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France.
| |
Collapse
|
39
|
Cordeiro RC, Chaves Filho AJM, Gomes NS, Tomaz VDS, Medeiros CD, Queiroz AIDG, Maes M, Macedo DS, Carvalho AF. Leptin Prevents Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of Dopamine Receptors. Front Psychiatry 2019; 10:125. [PMID: 30949073 PMCID: PMC6436077 DOI: 10.3389/fpsyt.2019.00125] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Depression is a chronic and recurrent disorder, associated with high morbidity and risk of suicide. Leptin was firstly described as an anti-obesity hormone, but several actions of leptin in CNS have been reported. In fact, leptin regulates dopaminergic neurotransmission in mesolimbic areas and has antidepressant-like properties in stress-based models. In the present study, we investigated, for the first time, putative antidepressant-like effects of leptin in an animal model of depressive-like behaviors induced by lipopolysaccharide (LPS), and the potential involvement of dopamine receptors as mediators of those behavioral effects. Mice were injected leptin (1.5 mg/kg, IP) or imipramine prior to LPS administration. To evaluate the involvement of dopamine receptors, different experimental groups were pretreated with either the dopaminergic antagonist SCH23390, for D1 receptors or raclopride, for D2/D3 receptors, prior to leptin injection. Twenty-four hours post-LPS, mice were submitted to the forced swimming and sucrose preference tests. In addition, IL-1β levels were determined in the prefrontal cortex (PFC), hippocampus and striatum. BDNF levels were measured in the hippocampus. Our results showed that leptin, similarly to imipramine, prevented the core behavioral alterations induced by LPS (despair-like behavior and anhedonia), without altering locomotion. In neurochemical analysis, leptin restored LPS-induced changes in IL-1β levels in the PFC and striatum, and increased BDNF levels in the hippocampus. The blockade of dopamine D1 and D2/D3 receptors inhibited leptin's antidepressant-like effects, whilst only the blockade of D1-like receptors blunted leptin-induced increments in prefrontal IL-1β levels. Our results indicate that leptin has antidepressant-like effects in an inflammatory model of depression with the contribution, at least partial, of dopamine receptors.
Collapse
Affiliation(s)
- Rafaela Carneiro Cordeiro
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Nayana Soares Gomes
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Viviane de Sousa Tomaz
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Camila Dantas Medeiros
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil.,McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University Montreal, QC, Canada
| | - Ana Isabelle de Góis Queiroz
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University Bangkok, Thailand
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Universidade Federal do Ceará Fortaleza, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto Toronto, ON, Canada.,Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
40
|
França AP, Takahashi RN, Cunha RA, Prediger RD. Promises of Caffeine in Attention-Deficit/Hyperactivity Disorder: From Animal Models to Clinical Practice. J Caffeine Adenosine Res 2018. [DOI: 10.1089/caff.2018.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Angela Patricia França
- Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Reinaldo N. Takahashi
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience of Coimbra, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui Daniel Prediger
- Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
41
|
Dey SK, Kamle A, Dereddi RR, Thomas SM, Thummala SR, Kumar A, Chakravarty S, Jesudasan RA. Mice With Partial Deletion of Y-Heterochromatin Exhibits Stress Vulnerability. Front Behav Neurosci 2018; 12:215. [PMID: 30297990 PMCID: PMC6160548 DOI: 10.3389/fnbeh.2018.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
The role of Y chromosome in sex determination and male fertility is well established. It is also known that infertile men are prone to psychological disturbances. Earlier studies in the laboratory identified genes expressed in testes that are putatively regulated by Y chromosome in man and mouse. With the availability of a Y-deleted mouse model, that is subfertile, we studied the effect of a partial deletion of Y-chromosomal heterochromatin on mouse behavior when compared to its wild type. The partial Y-deleted mice exhibited anxiety like phenotype under stress when different anxiety (open field test and elevated plus maze, EPM test) and depression related tests (tail suspension and force swim) were performed. The mutant mice also showed reduction in hippocampal neurogenesis and altered expression of neurogenesis markers such as Nestin, Sox2, Gfap, NeuroD1 and Dcx using quantitative real time PCR (qPCR) analysis. The genes with altered expression contained short stretches of homology to Y-derived transcripts only in their Untranslated Regions (UTRs). Our study suggests putative regulation of these genes by the Y chromosome in mouse brain altering stress related behavior.
Collapse
Affiliation(s)
- Sandeep Kumar Dey
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Shiju M. Thomas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
42
|
Moreno-Fernández RD, Nieto-Quero A, Gómez-Salas FJ, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pérez-Martín M, Pedraza C. Effects of genetic deletion versus pharmacological blockade of the LPA 1 receptor on depression-like behaviour and related brain functional activity. Dis Model Mech 2018; 11:dmm.035519. [PMID: 30061118 PMCID: PMC6177006 DOI: 10.1242/dmm.035519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Animal models of psychopathology are particularly useful for studying the neurobiology of depression and characterising the subtypes. Recently, our group was the first to identify a possible relationship between the LPA1 receptor and a mixed anxiety-depression phenotype. Specifically, maLPA1-null mice exhibited a phenotype characterised by depressive and anxious features. However, the constitutive lack of the gene encoding the LPA1 receptor (Lpar1) can induce compensatory mechanisms that might have resulted in the observed deficits. Therefore, in the present study, we have compared the impact of permanent loss and acute pharmacological inhibition of the LPA1 receptor on despair-like behaviours and on the functional brain map associated with these behaviours, as well as on the degree of functional connectivity among structures. Although the antagonist (intracerebroventricularly administered Ki16425) mimicked some, but not all, effects of genetic deletion of the LPA1 receptor on the results of behavioural tests and engaged different brain circuits, both treatments induced depression-like behaviours with an agitation component that was linked to functional changes in key brain regions involved in the stress response and emotional regulation. In addition, both Ki16425 treatment and LPA1 receptor deletion modified the functional brain maps in a way similar to the changes observed in depressed patients. In summary, the pharmacological and genetic approaches could ultimately assist in dissecting the function of the LPA1 receptor in emotional regulation and brain responses, and a combination of those approaches might provide researchers with an opportunity to develop useful drugs that target the LPA1 receptor as treatments for depression, mainly the anxious subtype. This article has an associated First Person interview with the first author of the paper. Summary: Animal models of psychopathology are useful for studying the neurobiology of depression. Here, we have assessed by pharmacological approach and knockout models the contribution of the LPA-LPA1 signalling pathway to anxious depression.
Collapse
Affiliation(s)
- Román Darío Moreno-Fernández
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Francisco Javier Gómez-Salas
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Luis Javier Santín
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología. Facultad de Ciencias. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| | - Carmen Pedraza
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
43
|
Can ÖD, Üçel Uİ, Demir Özkay Ü, Ulupınar E. The Effect of Agomelatine Treatment on Diabetes-Induced Cognitive Impairments in Rats: Concomitant Alterations in the Hippocampal Neuron Numbers. Int J Mol Sci 2018; 19:ijms19082461. [PMID: 30127276 PMCID: PMC6121488 DOI: 10.3390/ijms19082461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
Researches that are related to the central nervous system complications of diabetes have indicated higher incidence of cognitive disorders in patients. Since the variety of nootropic drugs used in clinics is limited and none of them consistently improves the outcomes, new and effective drug alternatives are needed for the treatment of diabetes-induced cognitive disorders. Based on the nootropic potential of agomelatine, the promising efficacy of this drug on cognitive impairments of diabetic rats was investigated in the current study. Experimental diabetes model was induced by streptozotocin. After development of diabetes-related cognitive impairments in rats, agomelatine (40 and 80 mg/kg) was administrated orally for two weeks. Cognitive performance was assessed by Morris water-maze and passive avoidance tests. Then, the total numbers of neurons in both dentate gyrus and Cornu Ammonis (CA) 1–3 subfields of the hippocampus were estimated by the optical fractionator method. Agomelatine treatment induced notable enhancement in the learning and memory performance of diabetic rats. Moreover, it reversed the neuronal loss in the hippocampal subregions of diabetic animals. Obtained results suggest that agomelatine has a significant potential for the treatment of diabetes-induced cognitive impairments. However, therapeutic efficacy of this drug in diabetic patients suffering from cognitive dysfunctions needs to be confirmed by further clinical trials.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Umut İrfan Üçel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Emel Ulupınar
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.
- Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26480 Eskisehir, Turkey.
| |
Collapse
|
44
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
46
|
The Gender-Biased Effects of Intranasal MPTP Administration on Anhedonic- and Depressive-Like Behaviors in C57BL/6 Mice: the Role of Neurotrophic Factors. Neurotox Res 2018; 34:808-819. [DOI: 10.1007/s12640-018-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
|
47
|
Regenass W, Möller M, Harvey BH. Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex. J Psychopharmacol 2018; 32:134-145. [PMID: 29082818 DOI: 10.1177/0269881117735769] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT1/MT2) agonist and serotonin (5-HT2C) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.
Collapse
Affiliation(s)
- Wilmie Regenass
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Brian H Harvey
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
48
|
Règue-Guyon M, Lanfumey L, Mongeau R. Neuroepigenetics of Neurotrophin Signaling: Neurobiology of Anxiety and Affective Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:159-193. [DOI: 10.1016/bs.pmbts.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Leem YH, Chang H. Arc/Arg3.1 protein expression in dorsal hippocampal CA1, a candidate event as a biomarker for the effects of exercise on chronic stress-evoked behavioral abnormalities. J Exerc Nutrition Biochem 2017; 21:45-51. [PMID: 29370673 PMCID: PMC5772070 DOI: 10.20463/jenb.2017.0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022] Open
Abstract
[Purpose] Chronic stress is a risk factor for behavioral deficits, including impaired memory processing and depression. Exercise is well known to have beneficial impacts on brain health. [Methods] Mice were forced to treadmill running (4-week) during chronic restraint stress (6h/21d), and then behavioral tests were conducted by Novel object recognition, forced swimming test: FST, sociality test: SI. Dissected brain was stained with anti-calbindin-d28k and anti-Arc antibodies. Also, mice were treated with CX546 intraperitoneally during chronic restraint stress, and behavioral tests were assessed using Morris water maze, FST, and SI. Dissected brain was stained with anti-Arc antibody. [Results] The current study demonstrated that chronic stress-induced impairment of memory consolidation and depression-like behaviors, along with the changes in calbindin-d28k and Arc protein levels in the hippocampal CA1 area, were attenuated by regular treadmill running. Further, prolonged ampakine treatment prevented chronic stress-evoked behavioral abnormalities and nuclear Arc levels in hippocampal CA1 neurons. Nuclear localization of Arc protein in hippocampal CA1 neurons, but not total levels, was correlated with behavioral outcome in chronically stressed mice in response to a regular exercise regimen. [Conclusion] These results suggest that nuclear levels of Arc are strongly associated with behavioral changes, and highlight the role of exercise acting through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated mechanisms in a chronic stress-induced maladaptive condition.
Collapse
|
50
|
Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance. Eur Arch Psychiatry Clin Neurosci 2017; 267:723-735. [PMID: 28260126 DOI: 10.1007/s00406-017-0766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Genes belonging to neuroplasticity, monoamine, circadian rhythm, and transcription factor pathways were investigated as modulators of antidepressant efficacy. The present study aimed (1) to replicate previous findings in an independent sample with treatment-resistant depression (TRD), and (2) to perform a pathway analysis to investigate the possible molecular mechanisms involved. 220 patients with major depressive disorder who were non-responders to a previous antidepressant were treated with venlafaxine for 4-6 weeks and in case of non-response with escitalopram for 4-6 weeks. Symptoms were assessed using the Montgomery Asberg Depression Rating Scale. The phenotypes were response and remission to venlafaxine, non-response (TRDA) and non-remission (TRDB) to neither venlafaxine nor escitalopram. 50 tag SNPs in 14 genes belonging to the pathways of interest were tested for association with phenotypes. Molecular pathways (KEGG database) that included one or more of the genes associated with the phenotypes were investigated also in the STAR*D sample. The associations between ZNF804A rs7603001 and response, CREB1 rs2254137 and remission were replicated, as well as CHL1 rs2133402 and lower risk of TRD. Other CHL1 SNPs were potential predictors of TRD (rs1516340, rs2272522, rs1516338, rs2133402). The MAPK1 rs6928 SNP was consistently associated with all the phenotypes. The protein processing in endoplasmic reticulum pathway (hsa04141) was the best pathway that may explain the mechanisms of MAPK1 involvement in antidepressant response. Signals in genes previously associated with antidepressant efficacy were confirmed for CREB1, ZNF804A and CHL1. These genes play pivotal roles in synaptic plasticity, neural activity and connectivity.
Collapse
|