4
|
Zhang W, Cai S, Huang K, Lv Y, Kang Y, Wang Q, Huang L. Association between schizophrenia risk allele dosage of rs6994992 and whole-brain structural and functional characteristics. Psychiatry Res Neuroimaging 2019; 294:110956. [PMID: 31202487 DOI: 10.1016/j.pscychresns.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023]
Abstract
The rs6994992 polymorphism has been reported as a candidate variant associated with schizophrenia (SZ). Neuroimaging studies have revealed that SZ is associated with widespread structural and functional alterations in brain. However, whether the allele dosage of rs6994992 is associated with brain structural or functional features is unclear. We aimed to investigate the association between the risk allele dosage of rs6994992 and whole-brain structural and functional characteristics and to further explore the relationship between these characteristics and cognition. Magnetic resonance images and the rs6994992 genotype were obtained from 53 healthy participants. A general linear model was used to determine the effects of risk allele dosage of rs6994992 on brain characteristics. Spearman correlation analysis was employed to calculate the correlation between altered brain characteristics and cognitive scores. Our results demonstrated that regions with significant differences in structural characteristics between groups with different dosages of rs6994992 were mainly located in the frontal and temporal lobes, hippocampus and angular gyrus. Moreover, significant regions of functional connectivity (FC) partly overlapped with the structural results. Measurements in those significant regions and FCs were correlated with the cognition scales. This association can inform our understanding of the mechanisms through which rs6994992 variants increase the risk for SZ.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Qiang Wang
- The First Affiliated Hospital, Xi 'an Jiaotong university, Shaanxi 710048, PR China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
5
|
Bateman JR, Filley CM, Kaplan RI, Heffernan KS, Bettcher BM. Lifetime surgical exposure, episodic memory, and forniceal microstructure in older adults. J Clin Exp Neuropsychol 2019; 41:1048-1059. [PMID: 31370773 PMCID: PMC6764849 DOI: 10.1080/13803395.2019.1647151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022]
Abstract
Introduction: Aging is associated with heterogeneous cognitive trajectories. There is considerable interest in identifying risk factors for pathological aging, with recent studies demonstrating a link between surgical procedures and proximal cognitive decline; however, the role of lifetime exposure to surgical procedures and cognitive function has been relatively unexplored. This pilot study aimed to evaluate the association between total lifetime surgical procedures and memory function in older adults. Methods: A cohort of 62 older adults underwent a neuropsychological evaluation and health history assessment. Self-reported lifetime surgical history was categorized as "cardiac" or "non-cardiac." General linear models were fit with demographics as nuisance covariates, and the total number of non-cardiac surgeries as our predictor of interest. Total scores on measures of episodic memory, language, working memory, fluency, and visuospatial function were separate outcome variables. In a secondary analysis, vascular risk factors were included as covariates. Diffusion tensor imaging was obtained for exploratory analyses of selected regions of interest. Results: The mean age of participants was 70, and 0-13 lifetime non-cardiac surgical procedures were reported. Higher numbers of lifetime non-cardiac surgical procedures were associated with worse verbal learning and memory (p = .04). The negative association between lifetime non-cardiac procedures and cognition was specific to memory. Exploratory analyses showed that higher number of lifetime non-cardiac procedures was related to lower FA in the fornix body (p = .02). Conclusions: These results of this pilot study suggest that greater lifetime exposure to surgery may be associated with worse verbal learning and memory in healthy older adults. These findings add to a growing body of literature suggesting that cumulative medical events may be risk factors for negative cognitive outcomes.
Collapse
Affiliation(s)
- James R. Bateman
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC; Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC), Research and Education Service Line, W.G. (Bill) Hefner VA Medical Center, Salisbury, NC
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, Marcus Institute for Brain Health, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rini I. Kaplan
- Department of Neurology, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kate S. Heffernan
- Behavioral Neurology Section, Departments of Neurology and Neurosurgery, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brianne M. Bettcher
- Behavioral Neurology Section, Departments of Neurology and Neurosurgery, Rocky Mountain Alzheimer’s Disease Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
Vaht M, Laas K, Kiive E, Parik J, Veidebaum T, Harro J. A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. J Psychopharmacol 2017; 31:54-61. [PMID: 27353026 DOI: 10.1177/0269881116655979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The neuregulin 1 gene is a susceptibility gene for substance dependence. A functional polymorphism (SNP8NRG243177/rs6994992; C/T) in the promoter region of the brain-specific type IV neuregulin-1 gene ( NRG1) has been associated with psychiatric disorders (e.g. schizophrenia and bipolar disorder) that often present higher odds of smoking, alcohol and illicit drug use. This study assessed the association of the NRG1 genotype with drug use and possible interaction with stressful life events (SLEs). METHODS The database of the Estonian Children Personality Behaviour and Health Study (beginning in 1998) was used. Cohorts of children initially 9 years old ( n=583; followed up at 15 and 18 years) and 15 years old ( n=593; followed up at 18 and 25 years) provided self-reports on alcohol, tobacco and illicit substance use and SLEs. Psychiatric assessment based on DSM-IV was carried out on the older birth cohort at age 25 to assess the lifetime presence of substance use disorders. NRG1 rs6994992 was genotyped in all participants by TaqMan® Pre-Designed SNP Genotyping Assay on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The minor (T) allele frequency was 0.37. RESULTS NRG1 rs6994992 C/C homozygotes, especially those who had experienced more SLEs, were more likely to develop alcohol use disorders by young adulthood, were generally more active consumers of tobacco products, and had more likely used illicit drugs. In T allele carriers, SLEs had a negligible effect on substance use. CONCLUSIONS In humans, NRG1 genotype is associated with substance use, and this relationship is moderated by adverse life events, with a gain-of-function allele being protective.
Collapse
Affiliation(s)
- Mariliis Vaht
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Kariina Laas
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | - Evelyn Kiive
- 2 Division of Special Education, Department of Education, University of Tartu, Tartu, Estonia
| | - Jüri Parik
- 3 Department of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toomas Veidebaum
- 4 National Institute for Health Development, Estonian Centre of Behavioural and Health Sciences, Tallinn, Estonia
| | - Jaanus Harro
- 1 Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Eicher JD, Montgomery AM, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst T, Frazier J, Kaufmann WE, Keating B, Kenet T, Kennedy D, Mostofsky S, Murray SS, Sowell ER, Bartsch H, Kuperman JM, Brown TT, Hagler DJ, Dale AM, Jernigan TL, Gruen JR. Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging Behav 2016; 10:272-82. [PMID: 25953057 PMCID: PMC4639472 DOI: 10.1007/s11682-015-9392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dyslexia and language impairment (LI) are complex traits with substantial genetic components. We recently completed an association scan of the DYX2 locus, where we observed associations of markers in DCDC2, KIAA0319, ACOT13, and FAM65B with reading-, language-, and IQ-related traits. Additionally, the effects of reading-associated DYX3 markers were recently characterized using structural neuroimaging techniques. Here, we assessed the neuroimaging implications of associated DYX2 and DYX3 markers, using cortical volume, cortical thickness, and fractional anisotropy. To accomplish this, we examined eight DYX2 and three DYX3 markers in 332 subjects in the Pediatrics Imaging Neurocognition Genetics study. Imaging-genetic associations were examined by multiple linear regression, testing for influence of genotype on neuroimaging. Markers in DYX2 genes KIAA0319 and FAM65B were associated with cortical thickness in the left orbitofrontal region and global fractional anisotropy, respectively. KIAA0319 and ACOT13 were suggestively associated with overall fractional anisotropy and left pars opercularis cortical thickness, respectively. DYX3 markers showed suggestive associations with cortical thickness and volume measures in temporal regions. Notably, we did not replicate association of DYX3 markers with hippocampal measures. In summary, we performed a neuroimaging follow-up of reading-, language-, and IQ-associated DYX2 and DYX3 markers. DYX2 associations with cortical thickness may reflect variations in their role in neuronal migration. Furthermore, our findings complement gene expression and imaging studies implicating DYX3 markers in temporal regions. These studies offer insight into where and how DYX2 and DYX3 risk variants may influence neuroimaging traits. Future studies should further connect the pathways to risk variants associated with neuroimaging/neurocognitive outcomes.
Collapse
Affiliation(s)
- John D Eicher
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Angela M Montgomery
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Natacha Akshoomoff
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, 95817, USA
| | - Cinnamon S Bloss
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Ondrej Libiger
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Nicholas J Schork
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Burcu F Darst
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - B J Casey
- Sackler Institute for Developmental Psychobiology, Weil Cornell Medical College, New York, NY, 10065, USA
| | - Linda Chang
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Thomas Ernst
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Jean Frazier
- Department of Psychiatry, University of Massachusetts Medical School, Boston, MA, 01655, USA
| | - Walter E Kaufmann
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Harvard Medical School, Children's Hospital Boston, Boston, MA, 02115, USA
| | - Brian Keating
- Department of Medicine, Queen's Medical Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Tal Kenet
- Department of Neurology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - David Kennedy
- Department of Psychiatry, University of Massachusetts Medical School, Boston, MA, 01655, USA
| | - Stewart Mostofsky
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Sarah S Murray
- Scripps Genomic Medicine, Scripps Health, Scripps Translational Science Institute, La Jolla, CA, 92037, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
- Developmental Cognitive Neuroimaging Laboratory Children's Hospital, Los Angeles, CA, 90027, USA
| | - Hauke Bartsch
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Joshua M Kuperman
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Timothy T Brown
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Donald J Hagler
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
| | - Anders M Dale
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
- Multimodal Imaging Laboratory, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
- Cognitive Science University of California, La Jolla, San Diego, CA, 92037, USA
| | - Terry L Jernigan
- Center for Human Development, University of California, La Jolla, San Diego, CA, 92037, USA
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92037, USA
- Radiology University of California, La Jolla, San Diego, CA, 92037, USA
- Cognitive Science University of California, La Jolla, San Diego, CA, 92037, USA
| | - Jeffrey R Gruen
- Department of Genetics, Yale University, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Investigative, School of Medicine, Medicine Yale University, New Haven, CT, 06520, USA.
- Department of Pediatrics, Genetics, and Investigative Medicine, Yale Child Health Research Center, 464 Congress Avenue, New Haven, CT, 06520-8081, USA.
| |
Collapse
|