1
|
Jiao XF, Mu GJ, Zhao WY, Ni R, Zhao C, Lu X, Wu JQ, Gao W, Luo L. Dyrk1b as a potential biomarker for sarcopenia in older adults. BMC Geriatr 2025; 25:278. [PMID: 40281477 PMCID: PMC12032633 DOI: 10.1186/s12877-025-05942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of muscle mass and function due to aging. Dual-specificity tyrosine-regulated kinase 1b (Dyrk1b) plays a key role in muscle differentiation by regulating transcription, cell cycle progression, and cell survival. However, the relationship between Dyrk1b levels and sarcopenia is unclear. This study aimed to evaluate the association of serum Dyrk1b level with sarcopenia in the elderly of community-dwelling. METHODS A total of 939 community-dwelling elderly people (median age = 76.0 years) were recruited, including 524 men and 415 women. Serum Dyrk1b was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. RESULTS We found that serum Dyrk1b levels in patients with sarcopenia [median (IQR) = 67.37 (55.13-82.56) pg/mL] were lower than those in elderly people without sarcopenia [70.40 (58.34-92.35) pg/mL, P < 0.001]. Receiver operating characteristic curve analysis indicated that the optimal cutoff value of serum Dyrk1b level for predicting sarcopenia was 44.73 pg/mL, with a sensitivity of 94.8% and a specificity of 14.7% (AUC = 0.577, 95% CI = 0.540-0.613, P < 0.001. Multivariate logistic regression analysis showed that high serum Dyrk1b levels (> 44.73 pg/mL) were related to decreased risk of sarcopenia (adjusted OR = 0.342, 95%CI = 0.194-0.603, P < 0.001). Moreover, serum Dyrk1b concentration was positively correlated with ASMI (r = 0.169, P < 0.001), grip strength (r = 0.157, P < 0.001) and gait speed (r = 0.164, P < 0.001). CONCLUSIONS In summary, our results indicate that low serum Dyrk1b level is associated with an increased risk of sarcopenia in the elderly, suggesting that Dyrk1b may be valuable as a surrogate biomarker for screening and evaluation of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, No.20 Xishi Road, Nantong, 226001, Jiangsu Province, China
| | - Guang-Jian Mu
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Wen-Ya Zhao
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Ran Ni
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Qing Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, No.20 Xishi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Leisgang Osse AM, Kinney JW, Cummings JL. The Common Alzheimer's Disease Research Ontology (CADRO) for biomarker categorization. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70050. [PMID: 39935614 PMCID: PMC11812129 DOI: 10.1002/trc2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Biomarkers are vital to Alzheimer's disease (AD) drug development and clinical trials, and will have an increasing role in clinical care. In this narrative review, we demonstrate the use of the National Institutes on Aging/Alzheimer's Association (NIA/AA) Common Alzheimer's Disease Research Ontology (CADRO) system for the categorization of biomarkers based on the primary mechanism on which they report. We show that biomarkers are available (in various levels of validation) for all CADRO processes. Application of the CADRO system demonstrates gaps in the field where novel biomarkers are needed for specific aspects of the disease, and assays to detect and measure biological changes, in individuals with symptomatic or preclinical AD. We demonstrate the CADRO system as a means of categorizing established and candidate AD biomarkers, showing the feasibility and practicality of the system. CADRO can assist with biomarker selection for AD clinical trials and drug development, and may eventually be applied to implementing biomarkers in patient care. Highlights The Common Alzheimer's Disease Research Ontology (CADRO) system can be used to categorize biomarkers for drug development.We demonstrate the use of CADRO with Alzheimer's disease (AD) biomarkers.We identified AD biomarkers in each of the CADRO categories.CADRO can be incorporated into current AD drug development and clinical trial systems.
Collapse
Affiliation(s)
- Amanda M. Leisgang Osse
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jefferson W. Kinney
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Jeffrey L. Cummings
- Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
3
|
Chu D, Lei L, Gu S, Liu F, Wu F. Dual-specificity tyrosine phosphorylation-regulated kinase 1A promotes the inclusion of amyloid precursor protein exon 7. Biochem Pharmacol 2024; 224:116233. [PMID: 38663682 DOI: 10.1016/j.bcp.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Extracellular amyloid plaques made of Amyloid-β (Aβ) derived from amyloid precursor protein (APP) is one of the major neuropathological hallmarks of Alzheimer's disease (AD). There are three major isoforms of APP, APP770, APP751, and APP695 generated by alternative splicing of exons 7 and 8. Exon 7 encodes the Kunitz protease inhibitor (KPI) domain. Its inclusion generates APP isoforms containing KPI, APPKPI+, which is elevated in AD and Down syndrome (DS) brains and associated with increased Aβ deposition. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) phosphorylates many splicing factors and regulates the alternative splicing of pre-mRNA. It is upregulated in DS and AD brain. However, it is not yet clear whether Dyrk1A could regulate APP alternative splicing. In the present study, we overexpressed or knocked down Dyrk1A in cultured cells and observed that Dyrk1A promoted the inclusion of both APP exons 7 and 8. Moreover, a significant increase in APP exon7 inclusion was also detected in the forebrain and hippocampus of human Dyrk1A transgenic mice - Tg/Dyrk1A. Screening for splicing factors regulated by Dyrk1A revealed that serine/arginine-rich protein 9G8 inhibited APP exon7 inclusion and interacted with APP pre-mRNA. In vitro, expression of exon 7 facilitated APP cleavage. In human Dyrk1A transgenic mice, we also found an increase in Aβ production. These findings suggest that Dyrk1A inhibits the splicing factor 9G8 and promotes APP exon 7 inclusion, leading to more APPKPI+ expression and APP cleavage and potentially contributing to Aβ production in vivo.
Collapse
Affiliation(s)
- Dandan Chu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Leyi Lei
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu Gu
- Nantong No.1 High School of Jiangsu Province, Nantong 226300, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
4
|
Waiker DK, Verma A, Gajendra TA, Namrata, Roy A, Kumar P, Trigun SK, Srikrishna S, Krishnamurthy S, Davisson VJ, Shrivastava SK. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer's disease therapy. Eur J Med Chem 2024; 271:116409. [PMID: 38663285 DOI: 10.1016/j.ejmech.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 μM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 μM) along with good anti-Aβ aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 μM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aβ-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - T A Gajendra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Namrata
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Postic G, Solarz J, Loubière C, Kandiah J, Sawmynaden J, Adam F, Vilaire M, Léger T, Camadro J, Victorino DB, Potier M, Bun E, Moroy G, Kauskot A, Christophe O, Janel N. Over-expression of Dyrk1A affects bleeding by modulating plasma fibronectin and fibrinogen level in mice. J Cell Mol Med 2023; 27:2228-2238. [PMID: 37415307 PMCID: PMC10399536 DOI: 10.1111/jcmm.17817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.
Collapse
Affiliation(s)
| | - Jean Solarz
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Cécile Loubière
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | | | - Frederic Adam
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | - Thibaut Léger
- Université Paris Cité, IJM, UMR 7592, CNRSParisFrance
- Toxicology of Contaminants Unit, Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES)FougeresFrance
| | | | - Daniella Balduino Victorino
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Marie‐Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Eric Bun
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Gautier Moroy
- Université Paris Cité, BFA, UMR 8251, CNRS, ERLU1133ParisFrance
| | - Alexandre Kauskot
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Olivier Christophe
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | |
Collapse
|
7
|
Delabar JM, Lagarde J, Fructuoso M, Mohammad A, Bottlaender M, Doran E, Lott I, Rivals I, Schmitt FA, Head E, Sarazin M, Potier MC. Increased plasma DYRK1A with aging may protect against neurodegenerative diseases. Transl Psychiatry 2023; 13:111. [PMID: 37015911 PMCID: PMC10073199 DOI: 10.1038/s41398-023-02419-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid β burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ammara Mohammad
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Michel Bottlaender
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Eric Doran
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Ira Lott
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, 75005, France
| | - Frederic A Schmitt
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
| | - Elizabeth Head
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
8
|
de Souza MM, Cenci AR, Teixeira KF, Machado V, Mendes Schuler MCG, Gonçalves AE, Paula Dalmagro A, André Cazarin C, Gomes Ferreira LL, de Oliveira AS, Andricopulo AD. DYRK1A Inhibitors and Perspectives for the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:669-688. [PMID: 35726411 DOI: 10.2174/0929867329666220620162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Márcia Maria de Souza
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Arthur Ribeiro Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Kerolain Faoro Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Valkiria Machado
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | | | - Ana Elisa Gonçalves
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Ana Paula Dalmagro
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Camila André Cazarin
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| |
Collapse
|
9
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
10
|
Moreau M, Carmona-Iragui M, Altuna M, Dalzon L, Barroeta I, Vilaire M, Durand S, Fortea J, Rebillat AS, Janel N. DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients. Biomedicines 2022; 10:1380. [PMID: 35740400 PMCID: PMC9219646 DOI: 10.3390/biomedicines10061380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS.
Collapse
Affiliation(s)
- Manon Moreau
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Lorraine Dalzon
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marie Vilaire
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Sophie Durand
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | | | - Nathalie Janel
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| |
Collapse
|
11
|
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer's disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:704-710. [PMID: 34752348 DOI: 10.1016/j.nrleng.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Early diagnosis of Alzheimer disease (AD) through the use of biomarkers could assist in the implementation and monitoring of early therapeutic interventions, and has the potential to significantly modify the course of the disease. DEVELOPMENT The classic cerebrospinal fluid and approved structural and functional neuroimaging biomarkers are of limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would increase their use in clinical practice. We review the available published evidence on the main blood biochemical biomarkers potentially useful for diagnosing AD. CONCLUSIONS Blood biomarkers are more cost- and time-effective than CSF biomarkers. However, immediate applicability in clinical practice is relatively unlikely. The main limitations come from the difficulty of measuring and standardising thresholds between different laboratories and the failure to replicate results. Of all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through "omics" approaches, such as isolated or combined metabolomics, offer the most promising results.
Collapse
Affiliation(s)
- M Altuna-Azkargorta
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| | - M Mendioroz-Iriarte
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Spain
| |
Collapse
|
12
|
Barzowska A, Pucelik B, Pustelny K, Matsuda A, Martyniak A, Stępniewski J, Maksymiuk A, Dawidowski M, Rothweiler U, Dulak J, Dubin G, Czarna A. DYRK1A Kinase Inhibitors Promote β-Cell Survival and Insulin Homeostasis. Cells 2021; 10:2263. [PMID: 34571911 PMCID: PMC8467532 DOI: 10.3390/cells10092263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes β-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived β-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing β-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human β-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.
Collapse
Affiliation(s)
- Agata Barzowska
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Barbara Pucelik
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Katarzyna Pustelny
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Alex Matsuda
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Anna Maksymiuk
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (A.M.); (M.D.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (A.M.); (M.D.)
| | - Ulli Rothweiler
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.M.); (J.S.); (J.D.)
| | - Grzegorz Dubin
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| | - Anna Czarna
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (A.B.); (B.P.); (K.P.); (A.M.); (G.D.)
| |
Collapse
|
13
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
14
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat. Neuropharmacology 2021; 194:108618. [PMID: 34062164 DOI: 10.1016/j.neuropharm.2021.108618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/22/2023]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) contribute to the pathogenesis of depression, a potentially life-threatening and disabling mental disorder caused by the interaction of genetic and environmental factors. However, the specific miRNAs and their underlying molecular mechanisms as involved in the pathogenesis and development of depression remain largely unknown. In the present study, we screened miRNA expression profiles and found that miR-211-5p was significantly down-regulated within the dentate gyrus (DG) hippocampus in the chronic unpredictable mild stress (CUMS) induced rat model of depression. Deficits in miR-211-5p were accompanied with reductions in neurogenesis and increased apoptosis in these CUMS rats. In contrast, an up-regulation of miR-211-5p within the DG area in CUMS rats promoted neuronal neurogenesis, reduced neuronal apoptosis via suppression of the Dyrk1A/STAT3 signaling pathway and relieved depression-like behaviors in these CUMS rats. In rats subjected to a knock-down of miR-211-5p in the DG there was an increase in neuronal apoptosis and a decrease in neuronal regeneration, effects which were accompanied with an induction of depression-like behaviors. Taken together, the results of our study reveal that altered levels of miR-211-5p in the hippocampal DG area exert a significant impact on neurogenesis, apoptosis and thus depression-like behaviors in rats. These findings suggest that the miR-211-5p/Dyrk1A pathway plays an important role in the pathogenesis of depression and may serve as a potential therapeutic target for the treatment of depression.
Collapse
|
16
|
Delabar JM, Ortner M, Simon S, Wijkhuisen A, Feraudet‐Tarisse C, Pegon J, Vidal E, Hirschberg Y, Dubois B, Potier M. Altered age-linked regulation of plasma DYRK1A in elderly cognitive complainers (INSIGHT-preAD study) with high brain amyloid load. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12046. [PMID: 32642550 PMCID: PMC7331462 DOI: 10.1002/trc2.12046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION An effective therapy has not yet been developed for Alzheimer's disease (AD), in part because pathological changes occur years before clinical symptoms manifest. We recently showed that decreased plasma DYRK1A identifies individuals with mild cognitive impairment (MCI) or AD, and that aged mice have higher DYRK1A levels. METHODS We assessed DYRK1A in plasma in young/aged controls and in elderly cognitive complainers with low (L) and high (H) brain amyloid load. RESULTS DYRK1A level increases with age in humans. However, plasma from elderly individuals reporting cognitive complaints showed that the H group had the same DYRK1A level as young adults, suggesting that the age-associated DYRK1A increase is blocked in this group. L and H groups had similar levels of clusterin. DISCUSSION These results are reflective of early changes in the brain. These observations suggest that plasma DYRK1A and not clusterin could be used to classify elderly memory complainers for risk for amyloid beta pathology.
Collapse
Affiliation(s)
- Jean M. Delabar
- INSERM U 1127, CNRS UMR 7225UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICMSorbonne UniversitésParisFrance
- Brain & Spine Institute (ICM) CNRS UMR7225INSERM UMRS 975ParisFrance
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Stephanie Simon
- CEA, DSV, iBiTec‐SLaboratoire d'études et de recherches en immunoanalyseGif‐sur‐YvetteFrance
| | - Anne Wijkhuisen
- CEA, DSV, iBiTec‐SLaboratoire d'études et de recherches en immunoanalyseGif‐sur‐YvetteFrance
| | - Cecile Feraudet‐Tarisse
- CEA, DSV, iBiTec‐SLaboratoire d'études et de recherches en immunoanalyseGif‐sur‐YvetteFrance
| | - Jonathan Pegon
- INSERM U 1127, CNRS UMR 7225UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICMSorbonne UniversitésParisFrance
- Brain & Spine Institute (ICM) CNRS UMR7225INSERM UMRS 975ParisFrance
| | - Emma Vidal
- INSERM U 1127, CNRS UMR 7225UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICMSorbonne UniversitésParisFrance
- Brain & Spine Institute (ICM) CNRS UMR7225INSERM UMRS 975ParisFrance
| | - Yael Hirschberg
- INSERM U 1127, CNRS UMR 7225UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICMSorbonne UniversitésParisFrance
- Brain & Spine Institute (ICM) CNRS UMR7225INSERM UMRS 975ParisFrance
| | - Bruno Dubois
- Department of NeurologyCenter of excellence of neurodegenerative disease (CoEN) and National Reference Center for Rare or Early Dementias Pitié‐Salpêtrière Hospital, AP‐HPInstitute of Memory and Alzheimer's Disease (IM2A)Boulevard de l'hôpitalParisFrance
| | - Marie‐Claude Potier
- INSERM U 1127, CNRS UMR 7225UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICMSorbonne UniversitésParisFrance
- Brain & Spine Institute (ICM) CNRS UMR7225INSERM UMRS 975ParisFrance
| |
Collapse
|
17
|
Liu F, Zhao F, Wang W, Sang J, Jia L, Li L, Lu F. Cyanidin-3-O-glucoside inhibits Aβ40 fibrillogenesis, disintegrates preformed fibrils, and reduces amyloid cytotoxicity. Food Funct 2020; 11:2573-2587. [PMID: 32154523 DOI: 10.1039/c9fo00316a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is mainly caused by the fibrillogenesis of amyloid-β protein (Aβ). Therefore, the development of effective inhibitors against Aβ fibrillogenesis offers great hope for the treatment of AD. Cyanidin-3-O-glucoside (Cy-3G) is a commonly found anthocyanin that is mainly present in fruits, with established neuroprotective effects in situ. However, it remains unknown if Cy-3G can prevent Aβ fibrillogenesis and alleviate the corresponding cytotoxicity. In this study, extensive biochemical, biophysical, biological and computational experiments were combined to address this issue. It was found that Cy-3G significantly inhibits Aβ40 fibrillogenesis and disintegrates mature Aβ fibrils, and its inhibitory capacity is dependent on the Cy-3G concentration. The circular dichroism results showed that Cy-3G and Aβ40 at a molar ratio of 3 : 1 slightly prevents the structural transformation of Aβ40 from its initial random coil to the β-sheet-rich structure. Co-incubation of Aβ40 with Cy-3G significantly reduced the production of intracellular reactive oxygen species induced by Aβ40 fibrillogenesis and thus reduced Aβ40-induced cytotoxicity. Molecular dynamics simulations revealed that Cy-3G disrupted the β-sheet structure of the Aβ40 trimer. Cy-3G was found to mainly interact with the N-terminal region, the central hydrophobic cluster and the β-sheet region II via hydrophobic and electrostatic interactions. The ten hot spot residues D7, Y10, E11, F19, F20, E22, I31, I32, M35 and V40 were also identified. These findings not only enable a comprehensive understanding of the inhibitory effect of Cy-3G on Aβ40 fibrillogenesis, but also allow the identification of a valuable dietary ingredient that possesses great potential to be developed into functional foods to alleviate AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, 300457, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Wang L, Xie F, Wang X, Hou Y, Wang X, Liu J. Overexpression of miR-26a-5p Suppresses Tau Phosphorylation and Aβ Accumulation in the Alzheimer's Disease Mice by Targeting DYRK1A. Curr Neurovasc Res 2020; 17:241-248. [PMID: 32286945 DOI: 10.2174/1567202617666200414142637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE It is reported that miR-26a-5p could regulate neuronal development, but its underlying mechanisms in Alzheimer's disease (AD) progression is unclear. METHODS APP (swe)/PS1 (ΔE9) transgenic mice served as AD mice. Morris water maze test was used to measure the spatial learning and memory ability of mice. The expressions of miR-26a-5p, DYRK1A, phosphorylated-Tau, Aβ40, and Aβ42 were detected. The relationship between miR- 26a-5p and DYRK1A was explored using dual luciferase reporter assay. The effects of miR-26a- 5p on AD mice was determined. RESULTS AD mice walked a lot of wrong ways to find the platform area and the latency time to reach the platform was longer. There was low expression of MiR-26a-5p in AD mice. Overexpression of miR-26a-5p inhibited Tau phosphorylation and Aβ accumulation. MiR-26a-5p negatively regulated DYRK1A via targeting its 3'UTR. In vivo, increased miR-26a-5p down-regulated Aβ40, Aβ42, p-APP and p-Tau levels in AD mice through decreasing DYRK1A. Meanwhile, the swimming path and the latency time, to reach the platform, was shorten after enhancing miR-26a-5p expression. CONCLUSION Overexpression of miR-26a-5p could repress Tau phosphorylation and Aβ accumulation via down-regulating DYRK1A level in AD mice.
Collapse
Affiliation(s)
- Yanni Liu
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Lin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Fuheng Xie
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiao Wang
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Yuanyuan Hou
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiaomeng Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| |
Collapse
|
19
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
20
|
Movassat J, Delangre E, Liu J, Gu Y, Janel N. Hypothesis and Theory: Circulating Alzheimer's-Related Biomarkers in Type 2 Diabetes. Insight From the Goto-Kakizaki Rat. Front Neurol 2019; 10:649. [PMID: 31293498 PMCID: PMC6606723 DOI: 10.3389/fneur.2019.00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data suggest an increased risk of developing Alzheimer's disease (AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an early progressive accumulation of Aβ leading to a gradual Tau hyperphosphorylation, which constitute the main characteristics of damaged brain in AD. Apart from these processes, mounting evidence suggests that specific features of diabetes, namely impaired glucose metabolism and insulin signaling in the brain, play a key role in AD. Moreover, several studies report a potential role of Aβ and Tau in peripheral tissues such as pancreatic β cells. Thus, it appears that several biological pathways associated with diabetes overlap with AD. The link between peripheral insulin resistance and brain insulin resistance with concomitant cognitive impairment may also potentially be mediated by a liver/pancreatic/brain axis, through the excessive trafficking of neurotoxic molecules across the blood-brain barrier. Insulin resistance incites inflammation and pro-inflammatory cytokine activation modulates the homocysteine cycle in T2D patients. Elevated plasma homocysteine level is a risk factor for AD pathology and is also closely associated with metabolic syndrome. We previously demonstrated a strong association between homocysteine metabolism and insulin via cystathionine beta synthase (CBS) activity, the enzyme implicated in the first step of the trans-sulfuration pathway, in Goto-Kakizaki (GK) rats, a spontaneous model of T2D, with close similarities with human T2D. CBS activity is also correlated with DYRK1A, a serine/threonine kinase regulating brain-derived neurotrophic factor (BDNF) levels, and Tau phosphorylation, which are implicated in a wide range of disease such as T2D and AD. We hypothesized that DYRK1A, BDNF, and Tau, could be among molecular factors linking T2D to AD. In this focused review, we briefly examine the main mechanisms linking AD to T2D and provide the first evidence that certain circulating AD biomarkers are found in diabetic GK rats. We propose that the spontaneous model of T2D in GK rat could be a suitable model to investigate molecular mechanisms linking T2D to AD.
Collapse
Affiliation(s)
- Jamileh Movassat
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Etienne Delangre
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Junjun Liu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - YuChen Gu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Nathalie Janel
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| |
Collapse
|
21
|
Granno S, Nixon-Abell J, Berwick DC, Tosh J, Heaton G, Almudimeegh S, Nagda Z, Rain JC, Zanda M, Plagnol V, Tybulewicz VLJ, Cleverley K, Wiseman FK, Fisher EMC, Harvey K. Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus. Sci Rep 2019; 9:7322. [PMID: 31086297 PMCID: PMC6513850 DOI: 10.1038/s41598-019-43820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer's disease and the 'Tc1' DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism. Under basal conditions, DYRK1A is a negative regulator of Wnt/β-catenin. Following pathway activation, however, DYRK1A exerts the opposite effect, increasing signalling activity. In summary, we identified downregulation of hippocampal Wnt/β-catenin signalling in DS, possibly mediated by a dose dependent effect of the chromosome 21-encoded kinase DYRK1A. Overall, we propose that dosage imbalance of the Hsa21 gene DYRK1A affects downstream Wnt target genes. Therefore, modulation of Wnt signalling may open unexplored avenues for DS and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Simone Granno
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathon Nixon-Abell
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK6 7AA, UK
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - George Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sultan Almudimeegh
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zenisha Nagda
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jean-Christophe Rain
- Hybrigenics Services - Fondation Jérôme Lejeune, 3-5 Impasse Reille, 75014, Paris, France
| | - Manuela Zanda
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Vincent Plagnol
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Victor L J Tybulewicz
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
- Department of Medicine, Imperial College, London, W12 0NN, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
22
|
Salvi A, Vezzoli M, Busatto S, Paolini L, Faranda T, Abeni E, Caracausi M, Antonaros F, Piovesan A, Locatelli C, Cocchi G, Alvisi G, De Petro G, Ricotta D, Bergese P, Radeghieri A. Analysis of a nanoparticle‑enriched fraction of plasma reveals miRNA candidates for Down syndrome pathogenesis. Int J Mol Med 2019; 43:2303-2318. [PMID: 31017260 PMCID: PMC6488180 DOI: 10.3892/ijmm.2019.4158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA-carriers were separated from the plasma of young participants with DS and their non-trisomic siblings and miRNAs were extracted. A microarray-based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR-16-5p, miR-99b-5p and miR-144-3p. These miRNAs were then profiled for 15 pairs of DS and non-trisomic sibling couples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non-trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS-associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Marika Vezzoli
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Teresa Faranda
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Edoardo Abeni
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40138 Bologna, Italy
| | - Francesca Antonaros
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Allison Piovesan
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, I‑35121 Padua, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| |
Collapse
|
23
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
24
|
Liu F, Wang W, Sang J, Jia L, Lu F. Hydroxylated Single-Walled Carbon Nanotubes Inhibit Aβ 42 Fibrillogenesis, Disaggregate Mature Fibrils, and Protect against Aβ 42-Induced Cytotoxicity. ACS Chem Neurosci 2019; 10:588-598. [PMID: 30335950 DOI: 10.1021/acschemneuro.8b00441] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fibrillogenesis of amyloid-β protein (Aβ) is considered a crucial factor in the pathogenesis of Alzheimer's disease (AD). Hence, inhibiting Aβ fibrillogenesis is regarded as the primary therapeutic strategy for the prevention and treatment of AD. However, the development of effective inhibitors against Aβ fibrillogenesis has faced significant challenges. Previous studies have shown that pristine single-walled carbon nanotubes (SWNTs) can inhibit fibrillogenesis of some amyloid proteins. However, the poor dispersibility of SWNTs in an aqueous environment greatly hinders their inhibitory efficacy. Here, we examined the inhibitory activity of hydroxylated SWNTs (SWNT-OH) on the aggregation and cytotoxicity of Aβ42 using thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), cellular viability assays, and molecular dynamics (MD) simulations. ThT and AFM results showed that SWNT-OH inhibits Aβ42 fibrillogenesis and disaggregates preformed amyloid fibrils in a dose-dependent manner. Furthermore, the ratio of hydroxyl groups in SWNT-OH is crucial for their effect against Aβ42 aggregation. SWNT-OH exerted cytoprotective effects against Aβ42 fibrillation-induced cytotoxicity. The results of free-energy decomposition studies based on MD simulations revealed that nonpolar interactions, and especially van der Waals forces, contributed most of the free energy of binding in the SWNT-OH-Aβ complex. Two regions of the Aβ pentamer were identified to interact with SWNT-OH, spanning H13-Q15 and V36-G38. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of hydroxylated nanoparticles against Aβ fibrillogenesis, which is critical for the search for more effective agents that can counteract amyloid-mediated pathologies.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| | - Wenjuan Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Longgang Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| |
Collapse
|
25
|
Dowjat K, Adayev T, Wojda U, Brzozowska K, Barczak A, Gabryelewicz T, Hwang YW. Abnormalities of DYRK1A-Cytoskeleton Complexes in the Blood Cells as Potential Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2019; 72:1059-1075. [PMID: 31683476 PMCID: PMC6971831 DOI: 10.3233/jad-190475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND DYRK1A is implicated in mental retardation and Alzheimer's disease (AD) dementia of Down syndrome (DS) individuals. The protein is associated with cytoskeleton and altered expression has been shown to impair the cytoskeletal network via dosage effect. OBJECTIVE Our original observations of marked reduction of cytoskeletal proteins associated with DYRK1A in brains and lymphoblastoid cell lines from DS and AD prompted an investigation whether cytoskeleton abnormalities could potentially be used as biomarkers of AD. METHODS Our assay relied on quantification of co-immunoprecipitated cytoskeletal proteins with DYRK1A (co-IP assay) and analysis of the profile of G- and F-actin fractions obtained by high-speed centrifugations (spin-down assay). RESULTS In co-IP assay, both DS and AD samples displayed reduced abundance of associated cytoskeletal proteins. In spin-down assay, G-actin fractions of controls displayed two closely spaced bands of actin in SDS-PAGE; while in AD and DS, only the upper band of the doublet was present. In both assays, alterations of actin cytoskeleton were present in DS, sporadic and familial AD cases, and in asymptomatic persons who later progressed to confirmed AD, but not in non-AD donors. In blind testing involving six AD and six controls, the above tests positively identified ten cases. Analysis of blood samples revealed the diversity of mild cognitive impairment (MCI) cases regarding the presence of the AD biomarker allowing distinction between likely prodromal AD and non-AD MCI cases. CONCLUSIONS Both brain tissue and lymphocytes from DS and AD displayed similar semi-quantitative and qualitative alterations of actin cytoskeleton. Their specificity for AD-type dementia and the presence before clinical onset of the disease make them suitable biomarker candidates for early and definite diagnosis of AD. The presence of alterations in peripheral tissue points to systemic underlying mechanisms and suggests that early dysfunction of cytoskeleton may be a predisposing factor in the development of AD.
Collapse
Affiliation(s)
- Karol Dowjat
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| | - Tatyana Adayev
- Department of Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Brzozowska
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Gabryelewicz
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Yu-Wen Hwang
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| |
Collapse
|
26
|
Hugon J, Mouton-Liger F, Cognat E, Dumurgier J, Paquet C. Blood-Based Kinase Assessments in Alzheimer's Disease. Front Aging Neurosci 2018; 10:338. [PMID: 30487744 PMCID: PMC6246745 DOI: 10.3389/fnagi.2018.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is marked by memory disturbances followed by aphasia, apraxia and agnosia. Brain lesions include the accumulation of the amyloid peptide in extracellular plaques, neurofibrillary tangles with abnormally phosphorylated tau protein and synaptic and neuronal loss. New findings have suggested that brain lesions could occur one or two decades before the first clinical signs. This asymptomatic preclinical phase could be an opportunity to put in place a secondary prevention but the detection of these brain lesions can only be achieved so far by cerebrospinal fluid (CSF) evaluation or molecular amyloid and tau PET imaging. There is an urgent need to find out simple and easily accessible new biomarkers to set up an efficient screening in adult and aging population. Neuropathological and biochemical studies have revealed that abnormal accumulations of potentially toxic kinases are present in the brains of AD patients. Kinase activation leads to abnormal tau phosphorylation, amyloid production, apoptosis and neuroinflammation. Increased levels of these kinases are present in the CSF of mild cognitive impairment (MCI) and AD patients. Over the last years the search for abnormal kinase levels was performed in the blood of patients. Glycogen synthase kinase 3 (GSK 3), protein kinase R (PKR), mamalian target of rapamycin (mTOR), dual specificity tyrosine-phosphorylation-regulated kinase 1A (DIRK1A), c-Jun N-terminal kinase (JNK), protein 70 kD ribosomal protein S6 kinase (P70S6K), ERK2 and other kinase concentrations were evaluated and abnormal levels were found in many studies. For example, GSK3 levels are increased in MCI and AD patients. PKR levels are also augmented in peripheral blood mononuclear cells (PBMC) of AD patients. In the future, the assessment of several blood kinase levels in large cohorts of patients will be needed to confirm the usefulness of this test at an early phase of the disease.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - François Mouton-Liger
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Emmanuel Cognat
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Julien Dumurgier
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| |
Collapse
|
27
|
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer's disease. Neurologia 2018; 36:S0213-4853(18)30091-4. [PMID: 29752036 DOI: 10.1016/j.nrl.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The early diagnosis of Alzheimer's disease (AD) via the use of biomarkers could facilitate the implementation and monitoring of early therapeutic interventions with the potential capacity to significantly modify the course of the disease. DEVELOPMENT Classic cerebrospinal fluid biomarkers and approved structural and functional neuroimaging have a limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would facilitate application in clinical practice. We present a literature review of the main blood biochemical biomarkers with potential use for diagnosing Alzheimer's disease. CONCLUSIONS Blood biomarkers are cost and time effective with regard to cerebrospinal fluid biomarkers. However, the immediate applicability of blood biochemical biomarkers in clinical practice is not very likely. The main limitations come from the difficulties in measuring and standardising thresholds between different laboratories and in failures to replicate results. Among all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through omics approaches, such as isolated or combined metabolomics, offer the most promising results.
Collapse
Affiliation(s)
- M Altuna-Azkargorta
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, España.
| | - M Mendioroz-Iriarte
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, España; Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, España
| |
Collapse
|
28
|
García-Cerro S, Rueda N, Vidal V, Lantigua S, Martínez-Cué C. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes. Neurobiol Dis 2017; 106:76-88. [PMID: 28647555 DOI: 10.1016/j.nbd.2017.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/30/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022] Open
Abstract
The intellectual disability that characterizes Down syndrome (DS) is primarily caused by prenatal changes in central nervous system growth and differentiation. However, in later life stages, the cognitive abilities of DS individuals progressively decline due to accelerated aging and the development of Alzheimer's disease (AD) neuropathology. The AD neuropathology in DS has been related to the overexpression of several genes encoded by Hsa21 including DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which encodes a protein kinase that performs crucial functions in the regulation of multiple signaling pathways that contribute to normal brain development and adult brain physiology. Studies performed in vitro and in vivo in animal models overexpressing this gene have demonstrated that the DYRK1A gene also plays a crucial role in several neurodegenerative processes found in DS. The Ts65Dn (TS) mouse bears a partial triplication of several Hsa21 orthologous genes, including Dyrk1A, and replicates many DS-like abnormalities, including age-dependent cognitive decline, cholinergic neuron degeneration, increased levels of APP and Aβ, and tau hyperphosphorylation. To use a more direct approach to evaluate the role of the gene dosage of Dyrk1A on the neurodegenerative profile of this model, TS mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment of Mmu16 that includes this gene, mice that are trisomic for the same genes but only carry two copies of Dyrk1A, euploid mice with a normal Dyrk1A dosage, and CO animals with a single copy of Dyrk1A. Normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic neuron degeneration, and reduced App expression in the hippocampus, Aβ load in the cortex and hippocampus, the expression of phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the present study provides further support for the role of the Dyrk1A gene in several AD-like phenotypes found in TS mice and indicates that this gene could be a therapeutic target to treat AD in DS.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Anatomical Pathology, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
29
|
Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, Burge CB, Wang ET, Gertler FB. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons. Neuron 2017; 95:608-622.e5. [PMID: 28735747 DOI: 10.1016/j.neuron.2017.06.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation.
Collapse
Affiliation(s)
- Marina Vidaki
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Frauke Drees
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanvi Saxena
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erwin Lanslots
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antonios Tatarakis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric T Wang
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Janel N, Alexopoulos P, Badel A, Lamari F, Camproux AC, Lagarde J, Simon S, Feraudet-Tarisse C, Lamourette P, Arbones M, Paul JL, Dubois B, Potier MC, Sarazin M, Delabar JM. Combined assessment of DYRK1A, BDNF and homocysteine levels as diagnostic marker for Alzheimer's disease. Transl Psychiatry 2017; 7:e1154. [PMID: 28632203 PMCID: PMC5537644 DOI: 10.1038/tp.2017.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Early identification of Alzheimer's disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes.
Collapse
Affiliation(s)
- N Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - P Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, University Hospital of Rion, University of Patras, Patras, Greece
| | - A Badel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - F Lamari
- Department of Metabolic Biochemistry, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - A C Camproux
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - J Lagarde
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - S Simon
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - C Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - P Lamourette
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - M Arbones
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - J L Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - B Dubois
- Alzheimer Institute (MB, LCdS, BD, MS), Department of Neurology, Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
| | - M C Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Sarazin
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - J M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
31
|
Dekker AD, Fortea J, Blesa R, De Deyn PP. Cerebrospinal fluid biomarkers for Alzheimer's disease in Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 8:1-10. [PMID: 28413821 PMCID: PMC5384293 DOI: 10.1016/j.dadm.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Down syndrome (DS), present in nearly six million people, is associated with an extremely high risk to develop Alzheimer's disease (AD). Amyloid-β and tau pathology are omnipresent from age 40 years onward, but clinical symptoms do not appear in all DS individuals. Dementia diagnostics is complex in this population, illustrating the great need for predictive biomarkers. Although blood biomarkers have not yet proven useful, cerebrospinal fluid (CSF) biomarkers (low amyloid-β42, high t-tau, and high p-tau) effectively contribute to AD diagnoses in the general population and are increasingly used in clinical practice. Surprisingly, CSF biomarkers have been barely evaluated in DS. Breaking the taboo on CSF analyses would finally allow for the elucidation of its utility in (differential) diagnoses and staging of disease severity. A sensitive and specific biomarker profile for AD in DS would be of paramount importance to daily care, adaptive caregiving, and specific therapeutic interventions.
Collapse
Affiliation(s)
- Alain D. Dekker
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Juan Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Rafael Blesa
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter P. De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Castoria G, Auricchio F, Migliaccio A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. FASEB J 2016; 31:1289-1300. [PMID: 28031322 DOI: 10.1096/fj.201601047r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
Abstract
In this review, we focus on the role played by the protein partners of ligand-activated extranuclear androgen receptor (AR) in the final effects of hormone action, such as proliferation, migration, and neuritogenesis. The choice of AR partner, at least in part, depends on cell type. Androgen-activated receptor directly associates with cytoplasmic Src tyrosine kinase in epithelial cells, whereas in mesenchymal and neuronal cells, it prevalently interacts with filamin A. In the former, proliferation represents the final hormonal outcome, whereas in the latter, either migration or neuritogenesis, respectively, occurs. Furthermore, AR partner filamin A is replaced with Src when mesenchymal cells are stimulated with very low androgen concentrations. Consequently, the migratory effect is replaced by mitogenesis. Use of peptides that prevent receptor/partner assembly abolishes the effects that are dependent on their association and offers new therapeutic approaches to AR-related diseases. Perturbation of migration is often associated with metastatic spreading in cancer. In turn, cell cycle aberration causes tumors to grow faster, whereas toxic signaling triggers neurodegenerative events in the CNS. Here, we provide examples of new tools that interfere in rapid androgen effects, including migration, proliferation, and neuronal differentiation, together with their potential therapeutic applications in AR-dependent diseases-mainly prostate cancer and neurodegenerative disorders.-Castoria, G., Auricchio, F., Migliaccio, A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis.
Collapse
Affiliation(s)
- Gabriella Castoria
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
33
|
Cen L, Xiao Y, Wei L, Mo M, Chen X, Li S, Yang X, Huang Q, Qu S, Pei Z, Xu P. Association of DYRK1A polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2016; 632:39-43. [PMID: 27546826 DOI: 10.1016/j.neulet.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022]
Abstract
α-Synuclein plays important roles in the development of Parkinson's disease (PD) pathologies. The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has a wide range of phosphorylation targets including α-synuclein. Posphorylated α-synuclein is more neurotoxic to dopamine (DA) neurons, but little is known about the genetic variation of DYRK1A in patients with PD. The present investigation aimed to explore the possible association of DYRK1A gene with PD in Chinese Han population. A total of 268 PD patients and 268 healthy-matched individuals in Chinese Han population were enrolled. Genotyping of rs8126696, rs2835740, and rs1137600 single nucleotide polymorphisms (SNPs) were performed on the Sequenom MassARRAY platform. Results revealed TT genotype in SNP rs8126696 denoted a significant difference between PD patients and controls (OR=1.710, 95% CI=1.116-2.619, P=0.014), and the frequency of rs8126696 TT genotype was significantly higher in male PD patients than male controls (OR=2.012, 95%CI: 1.125-3.599, p=0.018). The genotypes in rs2835740 and rs1137600 showed no significant difference between PD patients and controls. These results suggest that TT genotype derived from SNP rs8126696 of DYRK1A gene is a possible risk factor for sporadic PD, especially for males in this Chinese Han population.
Collapse
Affiliation(s)
- Luan Cen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Lei Wei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, 510080, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xingling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Qinghui Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Shaogang Qu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China.
| |
Collapse
|
34
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
35
|
Alexeeva M, Åberg E, Engh RA, Rothweiler U. The structure of a dual-specificity tyrosine phosphorylation-regulated kinase 1A-PKC412 complex reveals disulfide-bridge formation with the anomalous catalytic loop HRD(HCD) cysteine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1207-15. [PMID: 25945585 DOI: 10.1107/s1399004715005106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 01/12/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase associated with neuronal development and brain physiology. The DYRK kinases are very unusual with respect to the sequence of the catalytic loop, in which the otherwise highly conserved arginine of the HRD motif is replaced by a cysteine. This replacement, along with the proximity of a potential disulfide-bridge partner from the activation segment, implies a potential for redox control of DYRK family activities. Here, the crystal structure of DYRK1A bound to PKC412 is reported, showing the formation of the disulfide bridge and associated conformational changes of the activation loop. The DYRK kinases represent emerging drug targets for several neurological diseases as well as cancer. The observation of distinct activation states may impact strategies for drug targeting. In addition, the characterization of PKC412 binding offers new insights for DYRK inhibitor discovery.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Espen Åberg
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Richard A Engh
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ulli Rothweiler
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|