1
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
2
|
Bellia F, Piccinini A, Annunzi E, Cannito L, Lionetti F, Dell’Osso B, Adriani W, Dainese E, Di Domenico A, Pucci M, Palumbo R, D’Addario C. Dopamine and Serotonin Transporter Genes Regulation in Highly Sensitive Individuals during Stressful Conditions: A Focus on Genetics and Epigenetics. Biomedicines 2024; 12:2149. [PMID: 39335662 PMCID: PMC11429336 DOI: 10.3390/biomedicines12092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Coping with stress is essential for mental well-being and can be critical for highly sensitive individuals, characterized by a deeper perception and processing of stimuli. So far, the molecular bases characterizing high-sensitivity traits have not been completely investigated and gene × environment interactions might play a key role in making some people more susceptible than others. Methods: In this study, 104 young adult university students, subjects that might face overwhelming experiences more than others, were evaluated for the genetics and epigenetics of dopamine (DAT1) and serotonin (SERT) transporter genes, in addition to the expression of miR-132, miR-491, miR-16, and miR-135. Results: We found an increase in DNA methylation at one specific CpG site at DAT1 5'UTR in highly sensitive students reporting high levels of perceived stress when compared to those less sensitive and/or less stressed. Moreover, considering DAT1 VNTR at 3'UTR, we observed that this effect was even more pronounced in university students having the 9/9 genotype when compared to those with the 9/10 genotype. These data are corroborated by the higher levels of miR-491, targeting DAT1, in highly sensitive subjects with high levels of perceived stress. SERT gene DNA methylation at one specific CpG site was reported to instead be higher in subjects reporting lower perceived stress when compared to more stressed subjects. Consistently, miR-135 expression, regulating SERT, was lower in subjects with higher perceived stress. Conclusions: We here suggest that the correlation of DAT1 and SERT genetic and epigenetic data with the analysis of stress and sensitivity might be useful to suggest possible biomarkers to monitor mental health wellness in vulnerable subjects.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Alessandro Piccinini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Eugenia Annunzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Loreta Cannito
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Social Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesca Lionetti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20019 Milan, Italy;
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, University of Milan, 20122 Milan, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G.D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Clinical Neuroscience, Karolinska Institute, 10316 Stockholm, Sweden
| |
Collapse
|
3
|
Ekhtiari H, Sangchooli A, Carmichael O, Moeller FG, O'Donnell P, Oquendo M, Paulus MP, Pizzagalli DA, Ramey T, Schacht J, Zare-Bidoky M, Childress AR, Brady K. Neuroimaging Biomarkers in Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312084. [PMID: 39281741 PMCID: PMC11398440 DOI: 10.1101/2024.09.02.24312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Arshiya Sangchooli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Owen Carmichael
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - F Gerard Moeller
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Patricio O'Donnell
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Maria Oquendo
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Martin P Paulus
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Diego A Pizzagalli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Tatiana Ramey
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Joseph Schacht
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Mehran Zare-Bidoky
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Anna Rose Childress
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Kathleen Brady
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| |
Collapse
|
4
|
Trautmann S, Kräplin A, Muehlhan M, Fuchs FO, Loesch B, Wittgens C. The ad-libitum taste test as measure of momentary alcohol use in the laboratory: an investigation of construct validity and confounding factors. Psychopharmacology (Berl) 2024; 241:913-923. [PMID: 38141076 PMCID: PMC11031463 DOI: 10.1007/s00213-023-06518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
RATIONALE The ad-libitum taste test is a widely used covert measure of motivation to consume alcohol in the laboratory. However, studies on its construct validity and potential confounding factors are scarce. OBJECTIVES This study aimed to evaluate the construct validity of the ad-libitum taste test by examining the association of ad-libitum alcohol consumption with typical alcohol use and craving, and investigating potential moderation by trait anxiety, depressiveness, current mood, and drinking motives. METHODS A sample of 264 young male individuals were offered two 0.33 l glasses of beer. Participants were instructed to rate the characteristics of each drink, while the percentage of beverages containing alcohol consumed was assessed. Associations of ad-libitum consumption with typical alcohol use and craving were assessed using non-parametric and piecewise regressions. Moreover, moderator analysis with trait anxiety, depressiveness, current mood, and drinking motives was carried out. RESULTS Ad-libitum alcohol consumption was associated with typical alcohol use and alcohol craving. However, these associations decreased at high consumption levels. Associations between ad-libitum consumption, typical alcohol use, and craving were stable across several conditions, except that the association between ad-libitum consumption and craving increased with higher social, conformity, and coping drinking motives. CONCLUSIONS The ad-libitum taste test appears to be a valid measure of the motivation to drink alcohol in laboratory studies in young male adults, although this validity might be compromised at high levels of ad-libitum consumption. Consideration of these factors can contribute to further refining the ad-libitum taste test as a valuable tool for assessing motivation to consume alcohol in laboratory studies.
Collapse
Affiliation(s)
- Sebastian Trautmann
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, ICPP, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Anja Kräplin
- Work Group Addictive Behaviors, Risk Analysis and Risk Management, Faculty of Psychology, Technische University Dresden, Dresden, Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Fée Ona Fuchs
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, ICPP, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Beate Loesch
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, ICPP, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Charlotte Wittgens
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, ICPP, Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
5
|
Nieto SJ, Grodin EN, Ray LA. Neural correlates of the addictions neuroclinical assessment (ANA) incentive salience factor among individuals with alcohol use disorder. Behav Brain Res 2024; 464:114926. [PMID: 38431152 PMCID: PMC11563703 DOI: 10.1016/j.bbr.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The Addictions Neuroclinical Assessment (ANA) is a recently-developed framework offering a more holistic understanding of three neurofunctional and behavioral domains that reflect the neurobiological dysfunction seen in alcohol use disorder (AUD). While the ANA domains have been well-validated across independent laboratories, there is a critical need to identify neural markers that subserve the proposed neurofunctional domains. The current study involves secondary data analysis of a two-week experimental medication trial of ibudilast (50 mg BID). Forty-five non-treatment-seeking participants with AUD (17F / 28 M) completed a battery of validated behavioral assessments forming the basis of their incentive salience factor score, computed via factor analysis, as well as a functional neuroimaging (fMRI) task assessing their neural reactivity to visual alcohol cues after being on placebo or ibudilast for 7 days. General linear models were conducted to examine the relationship between incentive salience and neural alcohol cue-reactivity in the ventral and dorsal stratum. Whole-brain generalized linear model analyses were conducted to examine associations between neural alcohol cue-reactivity and incentive salience. Age, sex, medication, and smoking status were included as covariates. Incentive salience was not associated with cue-elicited activation in the dorsal or ventral striatum. Incentive salience was significantly positively correlated (p < 0.05) with alcohol cue-elicited brain activation in reward-learning and affective regions including the insula and posterior cingulate cortices, bilateral precuneus, and bilateral precentral gyri. The ANA incentive salience factor is reflected in brain circuitry important for reward learning and emotion processing. Identifying a sub-phenotype of AUD characterized by increased incentive salience to alcohol cues allows for precision medicine approaches, i.e. treatments specifically targeting craving and reward from alcohol use. This study serves as a preliminary bio-behavioral validation for the incentive salience factor of the ANA. Further studies validating the neural correlates of other ANA factors, as well as replication in larger samples, appear warranted.
Collapse
Affiliation(s)
- Steven J Nieto
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Taha A, Alassi A, Gjedde A, Wong DF. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin 2024; 19:95-103. [PMID: 37813719 DOI: 10.1016/j.cpet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
PET technology has immense potential for furthering understanding of the brain and associated disorders, including advancements in high-resolution tomographs and hybrid imaging modalities. Novel radiotracers targeting specific neurotransmitter systems and molecular markers provide opportunities to unveil intricate mechanisms underlying neurologic and psychiatric conditions. As PET imaging techniques and analysis methods continue to be refined, the field is poised to make significant contributions to personalized medicine for more targeted and effective interventions. PET instrumentation has advanced the fields of neurology and psychiatry, providing insights into pathophysiology and development of effective treatments.
Collapse
Affiliation(s)
- Ahmed Taha
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Amer Alassi
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Albert Gjedde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Neuroscience, University of Copenhagen, Denmark
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis 2023; 184:106232. [PMID: 37479091 DOI: 10.1016/j.nbd.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Weili Cai
- School of Medical Technology, Jiangsu College of Nursing, Huai'an 22305, China.
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
8
|
Humińska-Lisowska K, Chmielowiec K, Strońska-Pluta A, Chmielowiec J, Suchanecka A, Masiak J, Michałowska-Sawczyn M, Boroń A, Cięszczyk P, Grzywacz A. Epigenetic Analysis of the Dopamine Transporter Gene DAT1 with a Focus on Personality Traits in Athletes. Int J Mol Sci 2023; 24:ijms24108931. [PMID: 37240274 DOI: 10.3390/ijms24108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human phenotypes (traits) are determined by the selective use of a person's unique genotype (DNA sequence), following exposure to environmental stimuli, such as exercise. Inducing profound changes in epigenetics may be an underlying factor of the beneficial effects of exercise. This study aimed to investigate the association between methylation in the promoter region of the DAT1 gene and personality traits measured by the NEO-FFI questionnaire in a group of athletes. The study group included 163 athletes, and the control group consisted of 232 non-athletes. The obtained results show several significant differences between the studied groups of subjects. The Extraversion scale and the Conscientiousness scale results of the NEO-FFI are significantly higher in the group of athletes compared to controls. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. Our analysis of the methylation status of individual CpG sites revealed a new direction of research into the biological aspects of regulating dopamine release and personality traits in people practicing sports.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
- Institute of Sports Sciences, The University of Physical Education in Krakow, 31-541 Kraków, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, 1 Głuska St., 20-059 Lublin, Poland
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Wieting J, Jahn K, Eberlein CK, Bleich S, Frieling H, Deest M. Hypomethylation of the dopamine transporter (DAT) gene promoter is associated with hyperphagia-related behavior in Prader-Willi syndrome: a case-control study. Behav Brain Res 2023; 450:114494. [PMID: 37182741 DOI: 10.1016/j.bbr.2023.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Prader-Willi syndrome (PWS), a neurodevelopmental disorder based on the loss of paternally derived but maternally imprinted genes on chromosome 15q11-13, is typically associated with hyperphagia-related behavior leading to massive obesity. Recently, there has been increasing evidence for dysregulated expression patterns of genes outside the PWS locus that influence the behavioral phenotype and for alterations in the dopaminergic system associated with weight regulation in PWS. In this study, we investigated the epigenetic regulation of the promoter regions of the dopamine transporter (DAT) and dopamine receptor D2 (DRD2) genes and their association with hyperphagia-related behavior in PWS. Methylation of the DAT and DRD2 promoter regions was examined by DNA bisulfite sequencing in 32 individuals with PWS and compared with a control group matched for sex, age, and body mass index (BMI). Hyperphagia-related behavior was assessed using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT). Analysis by linear mixed models revealed a significant effect of factor group on mean DAT promoter methylation rate with decreased mean methylation in PWS (7.3 ± 0.4%) compared to controls (18.8 ± 0.6%), p < 0.001. In the PWS group, we further identified effects of HQ-CT score and BMI on DAT promoter methylation. Although also statistically significantly different (8.4 ± 0.2 in PWS, 10.5 ± 0.3 in controls, p < 0.001), DRD2 promoter methylation visually appeared to be evenly distributed between groups, raising concerns regarding a biological effect. Here, we provide evidence for altered epigenetic regulation of the DAT gene in PWS, which is associated with PWS-typical hyperphagia-related behaviors.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christian K Eberlein
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
10
|
Cruise TM, Kotlo K, Malovic E, Pandey SC. Advances in DNA, histone, and RNA methylation mechanisms in the pathophysiology of alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10871. [PMID: 38389820 PMCID: PMC10880780 DOI: 10.3389/adar.2023.10871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2024]
Abstract
Alcohol use disorder (AUD) has a complex, multifactorial etiology involving dysregulation across several brain regions and peripheral organs. Acute and chronic alcohol consumption cause epigenetic modifications in these systems, which underlie changes in gene expression and subsequently, the emergence of pathophysiological phenotypes associated with AUD. One such epigenetic mechanism is methylation, which can occur on DNA, histones, and RNA. Methylation relies on one carbon metabolism to generate methyl groups, which can then be transferred to acceptor substrates. While DNA methylation of particular genes generally represses transcription, methylation of histones and RNA can have bidirectional effects on gene expression. This review summarizes one carbon metabolism and the mechanisms behind methylation of DNA, histones, and RNA. We discuss the field's findings regarding alcohol's global and gene-specific effects on methylation in the brain and liver and the resulting phenotypes characteristic of AUD.
Collapse
Affiliation(s)
- Tara M. Cruise
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kumar Kotlo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Emir Malovic
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
11
|
Zhao Y, Skandali N, Bethlehem RAI, Voon V. Mesial Prefrontal Cortex and Alcohol Misuse: Dissociating Cross-sectional and Longitudinal Relationships in UK Biobank. Biol Psychiatry 2022; 92:907-916. [PMID: 35589437 DOI: 10.1016/j.biopsych.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol misuse is a major global public health issue. The disorder is characterized by aberrant neural networks interacting with environment and genetics. Dissecting the neural substrates and functional networks that relate to longitudinal changes in alcohol use from those that relate to alcohol misuse cross-sectionally is important to elucidate therapeutic approaches. METHODS To assess how neuroimaging data, including T1, resting-state functional magnetic resonance imaging, and diffusion-weighted imaging, relate to alcohol misuse cross-sectionally and longitudinally in the UK Biobank, this study analyzed range of alcohol misuse in a population-based normative sample of 24,784 participants, ages 45 to 81 years old, in a cross-sectional analysis and a sample of 3070 participants in a longitudinal analysis 2 years later. RESULTS Cross-sectional analysis showed that alcohol use is associated with a reduction in dorsal anterior cingulate cortex and dorsomedial prefrontal cortex gray matter concentration and functional resting-state connectivity (nodal degree: t24,422 = -12.99, p < 1 × 10-17). Reduced dorsal anterior cingulate cortex/dorsomedial prefrontal cortex functional connections to the ventrolateral prefrontal cortex, amygdala, and striatum relate to greater alcohol use. In a longitudinal analysis, higher resting-state nodal degree (t3036 = -3.27, p = .0011) and T1 gray matter concentration in the ventromedial prefrontal cortex relate to reduced alcohol intake frequency 2 years later. Higher ventromedial prefrontal cortex and frontoparietal executive network functional connectivity is associated with lower subsequent drinking longitudinally. CONCLUSIONS Dorsal versus ventromedial prefrontal regions are differentially related to alcohol misuse cross-sectionally or longitudinally in a large UK Biobank normative dataset. Our study provides a comprehensive understanding of the neurobiological substrates of alcohol use as a state or prospectively, thereby providing potential targets for clinical treatment.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Valerie Voon
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Ekhtiari H, Zare-Bidoky M, Sangchooli A, Janes AC, Kaufman MJ, Oliver JA, Prisciandaro JJ, Wüstenberg T, Anton RF, Bach P, Baldacchino A, Beck A, Bjork JM, Brewer J, Childress AR, Claus ED, Courtney KE, Ebrahimi M, Filbey FM, Ghahremani DG, Azbari PG, Goldstein RZ, Goudriaan AE, Grodin EN, Hamilton JP, Hanlon CA, Hassani-Abharian P, Heinz A, Joseph JE, Kiefer F, Zonoozi AK, Kober H, Kuplicki R, Li Q, London ED, McClernon J, Noori HR, Owens MM, Paulus MP, Perini I, Potenza M, Potvin S, Ray L, Schacht JP, Seo D, Sinha R, Smolka MN, Spanagel R, Steele VR, Stein EA, Steins-Loeber S, Tapert SF, Verdejo-Garcia A, Vollstädt-Klein S, Wetherill RR, Wilson SJ, Witkiewitz K, Yuan K, Zhang X, Zilverstand A. A methodological checklist for fMRI drug cue reactivity studies: development and expert consensus. Nat Protoc 2022; 17:567-595. [PMID: 35121856 PMCID: PMC9063851 DOI: 10.1038/s41596-021-00649-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
Abstract
Cue reactivity is one of the most frequently used paradigms in functional magnetic resonance imaging (fMRI) studies of substance use disorders (SUDs). Although there have been promising results elucidating the neurocognitive mechanisms of SUDs and SUD treatments, the interpretability and reproducibility of these studies is limited by incomplete reporting of participants' characteristics, task design, craving assessment, scanning preparation and analysis decisions in fMRI drug cue reactivity (FDCR) experiments. This hampers clinical translation, not least because systematic review and meta-analysis of published work are difficult. This consensus paper and Delphi study aims to outline the important methodological aspects of FDCR research, present structured recommendations for more comprehensive methods reporting and review the FDCR literature to assess the reporting of items that are deemed important. Forty-five FDCR scientists from around the world participated in this study. First, an initial checklist of items deemed important in FDCR studies was developed by several members of the Enhanced NeuroImaging Genetics through Meta-Analyses (ENIGMA) Addiction working group on the basis of a systematic review. Using a modified Delphi consensus method, all experts were asked to comment on, revise or add items to the initial checklist, and then to rate the importance of each item in subsequent rounds. The reporting status of the items in the final checklist was investigated in 108 recently published FDCR studies identified through a systematic review. By the final round, 38 items reached the consensus threshold and were classified under seven major categories: 'Participants' Characteristics', 'General fMRI Information', 'General Task Information', 'Cue Information', 'Craving Assessment Inside Scanner', 'Craving Assessment Outside Scanner' and 'Pre- and Post-Scanning Considerations'. The review of the 108 FDCR papers revealed significant gaps in the reporting of the items considered important by the experts. For instance, whereas items in the 'General fMRI Information' category were reported in 90.5% of the reviewed papers, items in the 'Pre- and Post-Scanning Considerations' category were reported by only 44.7% of reviewed FDCR studies. Considering the notable and sometimes unexpected gaps in the reporting of items deemed to be important by experts in any FDCR study, the protocols could benefit from the adoption of reporting standards. This checklist, a living document to be updated as the field and its methods advance, can help improve experimental design, reporting and the widespread understanding of the FDCR protocols. This checklist can also provide a sample for developing consensus statements for protocols in other areas of task-based fMRI.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amy C Janes
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jason A Oliver
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- TSET Health Promotion Research Center, Stephenson Cancer Center, Oklahoma City, OK, USA
- Department of Psychiatry & Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Torsten Wüstenberg
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- Division of Population Studies and Behavioural Sciences, St Andrews University Medical School, University of St Andrews, Scotland, UK
| | - Anne Beck
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Health, Health and Medical University, Campus Potsdam, Potsdam, Germany
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Judson Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Anna Rose Childress
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Kelly E Courtney
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyman Ghobadi Azbari
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Hamid R Noori
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)/Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Max M Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marc Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Department of Neuroscience, Child Study Center and Wu Tsai Institute, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, University of Montreal, Montreal, Canada
| | - Lara Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Elliot A Stein
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sabine Steins-Loeber
- Department of Clinical Psychology and Psychotherapy, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Reagan R Wetherill
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
- Department of Radiology, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Science at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Anhui, China
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Schacht JP, Hoffman M, Chen BH, Anton RF. Epigenetic moderators of naltrexone efficacy in reducing heavy drinking in Alcohol Use Disorder: a randomized trial. THE PHARMACOGENOMICS JOURNAL 2022; 22:1-8. [PMID: 34381173 PMCID: PMC8799481 DOI: 10.1038/s41397-021-00250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Polymorphisms in genes associated with opioid signaling and dopamine reuptake and inactivation may moderate naltrexone efficacy in Alcohol Use Disorder (AUD), but the effects of epigenetic modification of these genes on naltrexone response are largely unexplored. This study tested interactions between methylation in the μ-opioid receptor (OPRM1), dopamine transporter (SLC6A3), and catechol-O-methyltransferase (COMT) genes as predictors of naltrexone effects on heavy drinking in a 16-week randomized, placebo-controlled trial among 145 treatment-seeking AUD patients. OPRM1 methylation interacted with both SLC6A3 and COMT methylation to moderate naltrexone efficacy, such that naltrexone-treated individuals with lower methylation of the OPRM1 promoter and the SLC6A3 promoter (p = 0.006), COMT promoter (p = 0.005), or SLC6A3 3' untranslated region (p = 0.004), relative to placebo and to those with higher OPRM1 and SLC6A3 or COMT methylation, had significantly fewer heavy drinking days. Epigenetic modification of opioid- and dopamine-related genes may represent a novel pharmacoepigenetic predictor of naltrexone efficacy in AUD.
Collapse
Affiliation(s)
- Joseph P Schacht
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Michaela Hoffman
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brian H Chen
- FOXO Technologies Inc., Minneapolis, MN, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Raymond F Anton
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Longley MJ, Lee J, Jung J, Lohoff FW. Epigenetics of alcohol use disorder-A review of recent advances in DNA methylation profiling. Addict Biol 2021; 26:e13006. [PMID: 33538087 PMCID: PMC8596445 DOI: 10.1111/adb.13006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is a major contributor to morbidity and mortality worldwide. Although there is a heritable component, the etiology of AUD is complex and can involve environmental exposures like trauma and can be associated with many different patterns of alcohol consumption. Epigenetic modifications, which can mediate the influence of genetic variants and environmental variables on gene expression, have emerged as an important area of AUD research. Over the past decade, the number of studies investigating AUD and DNA methylation, a form of epigenetic modification, has grown rapidly. Yet we are still far from understanding how DNA methylation contributes to or reflects aspects of AUD. In this paper, we reviewed studies of DNA methylation and AUD and discussed how the field has evolved. We found that global DNA and candidate DNA methylation studies did not produce replicable results. To assess whether findings of epigenome-wide association studies (EWAS) were replicated, we aggregated significant findings across studies and identified 184 genes and 15 gene ontological pathways that were differentially methylated in at least two studies and four genes and three gene ontological pathways that were differentially methylated in three studies. These genes and pathways repeatedly found enrichment of immune processes, which is in line with recent developments suggesting that the immune system may be altered in AUD. Finally, we assess the current limitations of studies of DNA methylation and AUD and make recommendations on how to design future studies to resolve outstanding questions.
Collapse
Affiliation(s)
- Martha J. Longley
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
15
|
Pak K, Seok JW, Nam HY, Seo S, Lee MJ, Kim K, Kim IJ. The association of DAT gene methylation with striatal DAT availability in healthy subjects. EJNMMI Res 2021; 11:58. [PMID: 34120227 PMCID: PMC8197693 DOI: 10.1186/s13550-021-00800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background DNA methylation inhibits gene expression by preventing transcription factors from binding to DNA. Functioning of nigrostriatal dopaminergic neurons is influenced by the expression of the dopamine transporter (DAT), and genetic variations in the gene encoding DAT contribute to differences in reward processing. We aimed to investigate the action of DAT methylation on DAT protein expression measured by positron emission tomography (PET). Methods The emission data were acquired over 90 min with 50 frames after injection of 18F-FP-CIT using PET. Binding potentials (BPNDs) of ventral striatum, caudate nucleus, putamen were measured with the simplified reference tissue method. Genomic DNA was extracted from subjects’ blood sampling. Methylation of 4 regions in SLC6A3 gene was assessed using bisulfite pyrosequencing. The mean percentage of methylation (%) for each cluster was calculated by taking the average of all CpG site methylation levels measured within the cluster. Subjects were assessed with the Generalized Reward and Punishment Expectancy Scales (GRAPES) that consists of 30 items related with the reward and punishment that individuals expect for their behaviors. Results Thirty-five healthy males, with an age range between 20 and 30 years, and a mean age of 24.4 ± 2.7 years, were included in this study. The mean percentage of methylation (%) from cluster C showed a trend of positive correlation with DAT availability of ventral striatum (rho = 0.3712, p = 0.0281), not significant after correction for multiple comparisons, and a significant correlation with GRAPES A: reward expectancy scale (rho = 0.7178, p < 0.0001). Conclusion DAT methylation from peripheral blood showed a trend of positive correlation with DAT availability of ventral striatum in healthy subjects; however, it was not significant after correction for multiple comparison. The degrees of methylation from cluster C of DAT in peripheral blood were significantly correlated with reward scales of GRAPES A: reward expectancy scale. The association between DAT methylation and DAT expression needs to be investigated further.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| | - Ju Won Seok
- Department of Nuclear Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| |
Collapse
|
16
|
DNA Methylation and Allelic Polymorphism at the Dopamine Transporter Promoter Affect Internalizing and Externalizing Symptoms in Preschoolers. Child Psychiatry Hum Dev 2021; 52:281-290. [PMID: 32462358 DOI: 10.1007/s10578-020-01009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of the dopamine transporter (DAT) in the onset and maintenance of emotional-behavioral difficulties is recognized in adults, adolescents and school-age children, whereas few studies in this field have focused on preschoolers. The study recruited 2-year old children (N = 152) in the general population assessing the possible effect of DAT methylation and allelic polymorphism on internalizing and externalizing symptoms, also exploring whether epigenetic and genetic variability interact. Our results showed that DAT methylation is significantly associated with all the dimensions of children's emotional/behavioral functioning in children carrying 10/10-3/3-8/10 polymorphisms but not in children carrying 9/10-9/9 allele repeats. Understanding the influence of genetic/epigenetic factors on maladaptive emotional/behavioral outcomes in young children, can be of great help in programming effective prevention and intervention plans and can be a valid aid to alleviate psychopathological symptoms before they crystalize into more severe clinical conditions in later life.
Collapse
|
17
|
Zhang YH, Li Z, Zeng T, Pan X, Chen L, Liu D, Li H, Huang T, Cai YD. Distinguishing Glioblastoma Subtypes by Methylation Signatures. Front Genet 2020; 11:604336. [PMID: 33329750 PMCID: PMC7732602 DOI: 10.3389/fgene.2020.604336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, also called glioblastoma multiform (GBM), is the most aggressive cancer that initiates within the brain. GBM is produced in the central nervous system. Cancer cells in GBM are similar to stem cells. Several different schemes for GBM stratification exist. These schemes are based on intertumoral molecular heterogeneity, preoperative images, and integrated tumor characteristics. Although the formation of glioblastoma is remarkably related to gene methylation, GBM has been poorly classified by epigenetics. To classify glioblastoma subtypes on the basis of different degrees of genes' methylation, we adopted several powerful machine learning algorithms to identify numerous methylation features (sites) associated with the classification of GBM. The features were first analyzed by an excellent feature selection method, Monte Carlo feature selection (MCFS), resulting in a feature list. Then, such list was fed into the incremental feature selection (IFS), incorporating one classification algorithm, to extract essential sites. These sites can be annotated onto coding genes, such as CXCR4, TBX18, SP5, and TMEM22, and enriched in relevant biological functions related to GBM classification (e.g., subtype-specific functions). Representative functions, such as nervous system development, intrinsic plasma membrane component, calcium ion binding, systemic lupus erythematosus, and alcoholism, are potential pathogenic functions that participate in the initiation and progression of glioblastoma and its subtypes. With these sites, an efficient model can be built to classify the subtypes of glioblastoma.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Dejing Liu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B. Common and separable neural alterations in substance use disorders: A coordinate-based meta-analyses of functional neuroimaging studies in humans. Hum Brain Mapp 2020; 41:4459-4477. [PMID: 32964613 PMCID: PMC7555084 DOI: 10.1002/hbm.25085] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Delineating common and separable neural alterations in substance use disorders (SUD) is imperative to understand the neurobiological basis of the addictive process and to inform substance‐specific treatment strategies. Given numerous functional MRI (fMRI) studies in different SUDs, a meta‐analysis could provide an opportunity to determine robust shared and substance‐specific alterations. The present study employed a coordinate‐based meta‐analysis covering fMRI studies in individuals with addictive cocaine, cannabis, alcohol, and nicotine use. The primary meta‐analysis demonstrated common alterations in primary dorsal striatal, and frontal circuits engaged in reward/salience processing, habit formation, and executive control across different substances and task‐paradigms. Subsequent sub‐analyses revealed substance‐specific alterations in frontal and limbic regions, with marked frontal and insula‐thalamic alterations in alcohol and nicotine use disorders respectively. Examining task‐specific alterations across substances revealed pronounced frontal alterations during cognitive processes yet stronger striatal alterations during reward‐related processes. Finally, an exploratory meta‐analysis revealed that neurofunctional alterations in striatal and frontal reward processing regions can already be determined with a high probability in studies with subjects with comparably short durations of use. Together the findings emphasize the role of dysregulations in frontostriatal circuits and dissociable contributions of these systems in the domains of reward‐related and cognitive processes which may contribute to substance‐specific behavioral alterations.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
19
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
20
|
The effect of SLC6A3 variable number of tandem repeats and methylation levels on individual susceptibility to start tobacco smoking and on the ability of smokers to quit smoking. Pharmacogenet Genomics 2020; 30:117-123. [PMID: 32371614 DOI: 10.1097/fpc.0000000000000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Nicotine acts through the dopamine pathway in the brain affecting reward processing through cigarette consumption. Thus, both genetic and epigenetic factors related to dopamine metabolism may influence individual's smoking behavior. MATERIALS AND METHODS We studied variations of two variable numbers of tandem repeats (VNTRs), 40 and 30 bp in length, in SLC6A3 gene together with six DNA methylation sites located in a first intron of the gene in relation to several smoking-related phenotypes in a study population consisting of 1230 Whites of Russian origin. RESULTS Both the 5R allele of 30 bp VNTR and the 9R allele of 40 bp VNTR in SLC6A3 were associated with a reduced risk to tobacco smoking [odds ratio (OR) 0.53, 95% confidence interval (CI) 0.37-0.75; OR 0.62, 95% CI 0.43-0.88]. Although the carriers of 9R allele also had high Fagerström test for nicotine dependence scores (OR 1.65, 95% CI 1.04-2.60), they were still more likely to succeed in smoking cessation (OR 0.59, 95% CI 0.40-0.88). Also, current smokers had more than 2.5-fold likelihood to have increased SLC6A3 methylation levels than former smokers (OR 2.72, 95% CI 1.63-4.53). CONCLUSION The SLC6A3 5R of 30 bp and 9R of 40 bp VNTR variants may lead to a reduced risk to start smoking through decreased dopamine availability, and can also affect the success in subsequent smoking cessation attempts. Moreover, the elevated mean methylation values in the first intron of SLC6A3 may be related to nicotine dependence via a more active dopamine transporter.
Collapse
|
21
|
Bahi A. Dopamine transporter gene expression within the nucleus accumbens plays important role in the acquisition and reinstatement of ethanol-seeking behavior in mice. Behav Brain Res 2020; 381:112475. [PMID: 31923430 DOI: 10.1016/j.bbr.2020.112475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/15/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Alcoholism and alcohol use disorders are chronically relapsing conditions which is a major problem in treating alcohol addiction. In a previous study we showed that the dopamine transporter (DAT) is implicated in voluntary intake and preference. However, its role in modulating ethanol-associated contextual memory remains largely unknown. In this study we have investigated the role of DAT in ethanol-induced conditioned place preference (EtOH-CPP) acquisition and reinstatement in adult male C57BL/6 mice. For this purpose, we used both loss- and gain-of-function approaches to test the effects of central DAT manipulation on EtOH-CPP. We developed a lentiviral-mediated gene transfer approach to examine whether DAT knockdown (shDAT) or overexpression in the nucleus accumbens (Nacc) is enough to impair EtOH-CPP acquisition and reinstatement. In the first experiment, results showed that DAT knockdown blocked, whereas DAT overexpression, exacerbated the acquisition of EtOH-CPP. In the second experiment and after the EtOH-CPP expression, the mice were subjected to a 14-day extinction trials before drug-induced EtOH-CPP reinstatement was induced by a priming injection of 1 g/kg EtOH. Results indicated that reinstatement of EtOH-CPP was considerably decreased after accumbal shDAT injection. However, DAT overexpression significantly increased EtOH-CPP reinstatement. Finally, and following DAT mRNA quantification using RT-PCR, Pearson's correlation showed a strong positive relationship between accumbal DAT mRNA and EtOH-CPP acquisition and reinstatement. These results suggest that DAT expression in the Nacc is involved in the acquisition and retrieval of EtOH contextual memory and that blockade of this transporter can decrease the rewarding properties of EtOH.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
22
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
23
|
Wiers CE, Lohoff FW, Lee J, Muench C, Freeman C, Zehra A, Marenco S, Lipska BK, Auluck PK, Feng N, Sun H, Goldman D, Swanson JM, Wang GJ, Volkow ND. Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: A preliminary study. Eur J Neurosci 2019; 48:1884-1895. [PMID: 30033547 DOI: 10.1111/ejn.14067] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/23/2022]
Abstract
Dopamine transporters (DAT) are implicated in the pathogenesis and treatment of attention-deficit hyperactivity disorder (ADHD) and are upregulated by chronic treatment with methylphenidate, commonly prescribed for ADHD. Methylation of the DAT1 gene in brain and blood has been associated with DAT expression in rodents' brains. Here we tested the association between methylation of the DAT1 promoter derived from blood and DAT availability in the striatum of unmedicated ADHD adult participants and in that of healthy age-matched controls (HC) using Positron Emission Tomography (PET) and [11 C]cocaine. Results showed no between-group differences in DAT1 promoter methylation or striatal DAT availability. However, the degree of methylation in the promoter region of DAT1 correlated negatively with DAT availability in caudate in ADHD participants only. DAT availability in VS correlated with inattention scores in ADHD participants. We verified in a postmortem cohort with ADHD diagnosis and without, that DAT1 promoter methylation in peripheral blood correlated positively with DAT1 promoter methylation extracted from substantia nigra (SN) in both groups. In the cohort without ADHD diagnosis, DAT1 gene expression in SN further correlated positively with DAT protein expression in caudate; however, the sample size of the cohort with ADHD was insufficient to investigate DAT1 and DAT expression levels. Overall, these findings suggest that peripheral DAT1 promoter methylation may be predictive of striatal DAT availability in adults with ADHD. Due to the small sample size, more work is needed to validate whether DAT1 methylation in blood predicts DAT1 methylation in SN in ADHD and controls.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jisoo Lee
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Christine Muench
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Clara Freeman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Amna Zehra
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Stefano Marenco
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Barbara K Lipska
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Pavan K Auluck
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ningping Feng
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Hui Sun
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - James M Swanson
- Child Development Center, University of California, Irvine, California
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Hillemacher T, Rhein M, Burkert A, Heberlein A, Wilhelm J, Glahn A, Muschler MAN, Kahl KG, Kornhuber J, Bleich S, Frieling H. DNA-methylation of the dopamin receptor 2 gene is altered during alcohol withdrawal. Eur Neuropsychopharmacol 2019; 29:1250-1257. [PMID: 31530416 DOI: 10.1016/j.euroneuro.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023]
Abstract
The dopaminergic neurotransmission is known to be of crucial importance in addictive behavior. Epigenetic regulation like methylation of DNA influences the function of dopaminergic transmission. The present study investigated alterations of DNA methylation in the dopamine D2 receptor (DRD2)-gene in patients suffering from alcohol dependence. The study sample consists of 99 alcohol dependent males admitted for alcohol withdrawal treatment and a control group of 33 healthy participants. Blood samples underwent bisulfite sequencing to determine levels of DNA-methylation of the promoter region of the DRD2 gene. Mixed linear modeling was used to test differences between patients and controls, course of methylation during detoxification. While DRD2-gene methylation did not differ significantly between patients and controls, we found a significant increase of DRD2-gene methylation during alcohol withdrawal/early abstinence. Craving, measured with the Obsessive Compulsive Drinking Scale (OCDS), was significantly associated with DRD2-gene methylation. Furthermore, smoking significantly influenced DRD2-gene methylation in both, patients and controls. As in other types of addictive disorders, DRD2-gene methylation is altered during alcohol withdrawal/early abstinence. The findings regarding an association with alcohol craving and tobacco consumption point towards a crucial role of DRD2-gene methylation in the neurobiology of addictive behavior.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, Germany
| | - Mathias Rhein
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Alexandra Burkert
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Annemarie Heberlein
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia Wilhelm
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Glahn
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marc Andre Nicolas Muschler
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Kai G Kahl
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Helge Frieling
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany.
| |
Collapse
|
25
|
A Meta-analysis of the Association Between SLC6A3 Gene Polymorphisms and Schizophrenia. J Mol Neurosci 2019; 70:155-166. [PMID: 31440993 DOI: 10.1007/s12031-019-01399-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
The dopamine transporter is coded by the SLC6A3 gene and plays an important role in regulation of the neurotransmitter dopamine. To detect the association between the SLC6A3 gene and the risk of schizophrenia, 31 case-control articles were included in this meta-analysis. There were 23 studies with 40 bp VNTR (3246 cases and 3639 controls), 4 studies with rs40184 (2020 cases and 1674 controls), rs6347 (1317 cases and 1917 controls), rs403636 (2045 cases and 1704 controls), and rs2975226 (849 cases and 904 controls); and 3 studies with rs12516948 (1920 cases and 1569 controls), rs27072 (984 cases and 1015 controls), rs6869645 (1142 cases and 1082 controls), rs37022 (1168 cases and 1091 controls), rs464049 (1169cases and 1096 controls), rs2652511 (707 cases and 714 controls), and rs3756450 (1176 cases and 1096 controls). Pooled, subgroup, and sensitivity analyses were performed, and the results were visualized by forest and funnel plots. In the dominant genetic model, the genotype AA+AT of rs2975226 in the Indian population (Pz = 0, odds ratio [OR] = 3.245, 95% confidence interval [CI] = 1.806-5.831), TT of rs464049 (Pz = 0.002, OR = 1.389, 95% CI = 1.129-1.708), and TT of rs3756450 (Pz = 0.014, OR = 1.251, 95% CI = 1.047-1.495) might be risk factors for schizophrenia. Additionally, no other single nucleotide polymorphisms were observed. These results indicate that more functional studies are warranted.
Collapse
|
26
|
Sliedrecht W, de Waart R, Witkiewitz K, Roozen HG. Alcohol use disorder relapse factors: A systematic review. Psychiatry Res 2019; 278:97-115. [PMID: 31174033 DOI: 10.1016/j.psychres.2019.05.038] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
A relapsing-remitting course is very common in patients with an Alcohol Use Disorder (AUD). Understanding the determinants associated with alcohol resumption remains a formidable task. This paper examines relapse determinants based on a systematic review of recent alcohol literature (2000-2019). Relevant databases were consulted for articles that contained information about specific relapse determinants and reported statistical significance of each relapse determinant in predicting relapse. Relapse was broadly defined based on the characterization in the included articles. From the initial identified 4613 papers, a total of 321 articles were included. Results encompass multiple relapse determinants, which were ordered according to biopsychosocial and spiritual categories, and presented, using a descriptive methodology. Psychiatric co-morbidity, AUD severity, craving, use of other substances, health and social factors were consistently significantly associated with AUD relapse. Conversely, supportive social network factors, self efficacy, and factors related to purpose and meaning in life, were protective against AUD relapse. Despite heterogeneity in different methods, measures, and sample characteristics, these findings may contribute to a better therapeutic understanding in which specific factors are associated with relapse and those that prevent relapse. Such factors may have a role in a personalized medicine framework to improve patient outcomes.
Collapse
Affiliation(s)
- Wilco Sliedrecht
- De Hoop GGZ, Provincialeweg 70, 3329 KP Dordrecht, the Netherlands.
| | - Ranne de Waart
- Mentrum/Arkin, Wisselwerking 46-48, 1112 XR Diemen, the Netherlands.
| | - Katie Witkiewitz
- The University of New Mexico (UNM), MSC 03-2220, Univ of New Mexico, Albuquerque, NM 87131, USA.
| | - Hendrik G Roozen
- The University of New Mexico (UNM), Center on Alcoholism, Substance Abuse, and Addictions (CASAA), MSC 11 6280, 1 Univ of New Mexico, Albuquerque, NM 87106, USA.
| |
Collapse
|
27
|
Children's DAT1 Polymorphism Moderates the Relationship Between Parents' Psychological Profiles, Children's DAT Methylation, and Their Emotional/Behavioral Functioning in a Normative Sample. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142567. [PMID: 31323798 PMCID: PMC6678924 DOI: 10.3390/ijerph16142567] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Parental psychopathological risk is considered as one of the most crucial features associated with epigenetic modifications in offspring, which in turn are thought to be related to their emotional/behavioral profiles. The dopamine active transporter (DAT) gene is suggested to play a significant role in affective/behavioral regulation. On the basis of the previous literature, we aimed at verifying whether children’s DAT1 polymorphisms moderated the relationship between parents’ psychological profiles, children’s emotional/behavioral functioning, and DAT1 methylation in a normative sample of 79 families with school-age children (Ntot = 237). Children’s biological samples were collected through buccal swabs, while Symptom Check-List-90 item Revised, Adult Self Report, and Child Behavior Check-List/6–18 was administered to assess parental and children’s psychological functioning. We found that higher maternal externalizing problems predicted the following: higher levels of children’s DAT1 methylation at M1, but only among children with 10/10 genotype; higher levels of methylation at M2 among children with 10/10 genotype; while lower levels for children with a 9-repeat allele. There was also a positive relationship between fathers’ externalizing problems and children’s externalizing problems, only for children with a 9-repeat allele. Our findings support emerging evidence of the complex interplay between genetic and environmental factors in shaping children’ emotional/behavioral functioning, contributing to the knowledge of risk variables for a child’s development and psychological well-being.
Collapse
|
28
|
Bidwell LC, Karoly HC, Thayer RE, Claus ED, Bryan AD, Weiland BJ, YorkWilliams S, Hutchison KE. DRD2 promoter methylation and measures of alcohol reward: functional activation of reward circuits and clinical severity. Addict Biol 2019; 24:539-548. [PMID: 29464814 DOI: 10.1111/adb.12614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Studies have identified strong associations between D2 receptor binding potential and neural responses to rewarding stimuli and substance use. Thus, D2 receptor perturbations are central to theoretical models of the pathophysiology of substance dependence, and epigenetic changes may represent one of the fundamental molecular mechanisms impacting the effects of alcohol exposure on the brain. We hypothesized that epigenetic alterations in the promoter region of the dopamine D2 receptor (DRD2) gene would be associated with cue-elicited activation of neural reward regions, as well as severity of alcohol use behavior. The current study leveraged functional neuroimaging (fMRI) during an alcohol reward paradigm (n = 383) to test associations among DRD2 promoter methylation in peripheral tissue, signal change in the striatum during the presentation of alcohol cues, and severity of alcohol use disorder (AUD). Controlling for age, DRD2 promoter methylation was positively associated with responses to alcohol cues in the right accumbens (partial r = 0.144, P = 0.005), left putamen (partial r = 0.133, P = 0.009), right putamen (partial r = 0.106, P = 0.039), left caudate (partial r = 0.117, P = 0.022), and right caudate (partial r = 0.133, P = 0.009), suggesting that DRD2 methylation was positively associated with robust activation in the striatum in response to reward cues. DRD2 methylation was also positively associated with clinical metrics of AUD severity. Specifically, controlling for age, DRD2 methylation was associated with Alcohol Use Disorders Identification Test total (partial r = 0.140, P = 0.002); Impaired Control Scale total (partial r = 0.097, P = 0.044) and Alcohol Dependence Scale total (partial r = 0.152, P = 0.001). Thus, DRD2 methylation may be a critical mechanism linking D2 receptors with functional striatal brain changes and clinical severity among alcohol users.
Collapse
Affiliation(s)
| | - Hollis C. Karoly
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Rachel E. Thayer
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | | | - Angela D. Bryan
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Barbara J. Weiland
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
| | - Sophie YorkWilliams
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Kent E. Hutchison
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| |
Collapse
|
29
|
Martinez M, Rossetto IMU, Neto FSL, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Cagnon VHA, Martinez FE. Interactions of ethanol and caffeine on apoptosis in the rat cerebellum (voluntary ethanol consumers). Cell Biol Int 2018; 42:1575-1583. [DOI: 10.1002/cbin.11054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Marcelo Martinez
- Department of Morphology and Pathology; Federal University of São Carlos; SP Brazil
| | | | | | - Luiz F. Tirapelli
- Department of Surgery and Anatomy; USP-University of São Paulo; Ribeirão Preto SP Brazil
| | | | | | - Valeria H. A. Cagnon
- Department of Anatomy; Cellular Biology, Physiology and Biophysics, UNICAMP; Campinas SP Brazil
| | | |
Collapse
|
30
|
Pan JX, Xia JJ, Deng FL, Liang WW, Wu J, Yin BM, Dong MX, Chen JJ, Ye F, Wang HY, Zheng P, Xie P. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry 2018; 8:130. [PMID: 29991685 PMCID: PMC6039504 DOI: 10.1038/s41398-018-0183-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/11/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric illness. However, there is currently no objective laboratory-based diagnostic tests for this disorder. Although, perturbations in multiple neurotransmitter systems have been implicated in MDD, the biochemical changes underlying the disorder remain unclear, and a comprehensive global evaluation of neurotransmitters in MDD has not yet been performed. Here, using a GC-MS coupled with LC-MS/MS-based targeted metabolomics approach, we simultaneously quantified the levels of 19 plasma metabolites involved in GABAergic, catecholaminergic, and serotonergic neurotransmitter systems in 50 first-episode, antidepressant drug-naïve MDD subjects and 50 healthy controls to identify potential metabolite biomarkers for MDD (training set). Moreover, an independent sample cohort comprising 49 MDD patients, 30 bipolar disorder (BD) patients and 40 healthy controls (testing set) was further used to validate diagnostic generalizability and specificity of these candidate biomarkers. Among the 19 plasma neurotransmitter metabolites examined, nine were significantly changed in MDD subjects. These metabolites were mainly involved in GABAergic, catecholaminergic and serotonergic systems. The GABAergic and catecholaminergic had better diagnostic value than serotonergic pathway. A panel of four candidate plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) could distinguish MDD subjects from health controls with an AUC of 0.968 and 0.953 in the training and testing set, respectively. Furthermore, this panel distinguished MDD subjects from BD subjects with high accuracy. This study is the first to globally evaluate multiple neurotransmitters in MDD plasma. The altered plasma neurotransmitter metabolite profile has potential differential diagnostic value for MDD.
Collapse
Affiliation(s)
- Jun-Xi Pan
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Jin-Jun Xia
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Feng-Li Deng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Wei-Wei Liang
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Jing Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Bang-Min Yin
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Mei-Xue Dong
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Fei Ye
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Peng Zheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Muench C, Wiers CE, Cortes CR, Momenan R, Lohoff FW. Dopamine Transporter Gene Methylation is Associated with Nucleus Accumbens Activation During Reward Processing in Healthy but not Alcohol-Dependent Individuals. Alcohol Clin Exp Res 2018; 42:21-31. [PMID: 29030974 PMCID: PMC6010188 DOI: 10.1111/acer.13526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alcohol's reinforcement is mediated by dopamine signaling in the ventral striatum, which is modulated by the dopamine transporter (DAT). We hypothesized that methylomic variation in the DAT gene (DAT1/SLC6A3) affects DAT expression, thus contributing to differences in brain reward circuitry in individuals with alcohol dependence (ALC). METHODS Blood from 45 recently detoxified ALC and 45 healthy control (HC) individuals was used to assess DNA methylation across 5 functional regions of SLC6A3. Participants completed the monetary incentive delay task in a 3-Tesla magnetic resonance imaging (MRI) scanner. Employing regression models, we examined effects of SLC6A3 methylation on nucleus accumbens (NAc) blood-oxygen-level dependent (BOLD) responses during anticipation of high/low reward/loss. RESULTS Results showed that decreased methylation of the promoter region of SLC6A3 predicted NAc activation during high loss anticipation (p = 0.028) and low loss anticipation (at trend-level; p = 0.057) in HC but not in individuals with ALC. Specifically, percentage of methylation at 2 CpG sites, located -1,001 and -993 base pairs from the transcription start site, accounted for significant variability in NAc activation in the HC group during high (ps ≤ 0.010) and low (ps ≤ 0.006) loss anticipation. There was no effect on reward anticipation. Furthermore, promoter methylation was positively associated with age, which replicates previous findings. CONCLUSIONS Our data suggest that methylation in the promoter region of SLC6A3 predicts NAc activation during the anticipation of monetary loss in HCs. However, this effect was not present in the ALC group, suggesting that epigenetic regulation of striatal DAT expression might be disrupted in ALC, which may contribute to previously reported differences in sensitivity to reward and punishment in this population. Alternatively, it is possible that a similar relationship in the ALC group remained undetected possibly due to methodological limitations inherent in functional MRI (e.g., poor spatial resolution, low signal-to-noise ratio) that generally restrict interpretations regarding mechanisms of epigenetic factors involved in group differences in BOLD responses. Future neuroimaging studies are needed to further elucidate the relationship between SLC6A3 methylation and NAc activation in ALC.
Collapse
Affiliation(s)
- Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene. J Psychiatr Res 2017; 86:1-8. [PMID: 27883923 DOI: 10.1016/j.jpsychires.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022]
Abstract
Several lines of evidence support a "dopaminergic hypothesis" in the pathophysiology of Gilles de la Tourette syndrome (TS). The aim of this study was to investigate for the first time epigenetic changes in DNA methylation in different dopamine genes in adult patients with TS. We included 51 well characterized adult patients with TS (41 males, 10 females, mean age = 35 ± 12.6 years, range, 18-71 years) and compared results with data from a group of 51 sex- and age-matched healthy controls. Bisulfite sequencing was used to measure peripheral DNA methylation of the dopamine transporter (DAT), the dopamine D2 receptor (DRD2), and the catechol-O-methyltransferase (COMT) genes. Compared to healthy controls, patients with TS showed significantly elevated methylation level of the DRD2 gene that positively correlated with tic severity. In contrast, DAT methylation was lower in more severely affected patients. Our results provide evidence for a role of altered epigenetic regulation of dopaminergic genes in the pathophysiology of TS. While DRD2 hypermethylation seems to be directly related to the neurobiology of TS that may lead to dopaminergic dysfunction resulting in enhanced thalamo-cortical movement-stimulating activity, DAT hypomethylation might reflect a secondary mechanism in order to compensate for increased dopaminergic signal transduction due to DRD2 hypermethylation. In addition, it can be speculated that spontaneous fluctuations of tics may be caused by short-term alterations of methylation levels of dopaminergic genes resulting in dynamic changes of tonic/phasic dopaminergic signaling in the striatum and thalamo-cortical output pathways.
Collapse
|
34
|
Fransquet PD, Hutchinson D, Olsson CA, Wilson J, Allsop S, Najman J, Elliott E, Mattick RP, Saffery R, Ryan J. Perinatal maternal alcohol consumption and methylation of the dopamine receptor DRD4 in the offspring: the Triple B study. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw023. [PMID: 29492300 PMCID: PMC5804537 DOI: 10.1093/eep/dvw023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/08/2023]
Abstract
Maternal alcohol use during the perinatal period is a major public health issue, the higher ends of which are associated with foetal alcohol spectrum disorder and a range of adverse health outcomes in the progeny. The underlying molecular mechanisms remain largely unknown but may include the epigenetic disruption of gene activity during development. Alcohol directly activates the neurotransmitter dopamine, which plays an essential role in neurodevelopment. To investigate whether antenatal and early postnatal alcohol consumption were associated with differential dopamine receptor DRD4 promoter methylation in infants (n = 844). Data were drawn from the large population based Triple B pregnancy cohort study, with detailed information on maternal alcohol consumption in each trimester of pregnancy and early postpartum. DNA was extracted from infant buccal swabs collected at 8-weeks. DRD4 promoter DNA methylation was analysed by Sequenom MassARRAY. No strong evidence was found for an association between alcohol consumption during pregnancy and infant DRD4 methylation at 8-weeks postpartum. However, maternal alcohol consumption assessed contemporaneously at 8-weeks postpartum was associated with increased methylation at 13 of 19 CpG units examined (largest Δ + 3.20%, 95%Confidence Interval:1.66,4.75%, P = 0.0001 at CpG.6). This association was strongest in women who breastfeed, suggesting the possibility of a direct effect of alcohol exposure via breast milk. The findings of this study could influence public health guidelines around alcohol consumption for breastfeeding mothers; however, further research is required to confirm these novel findings.
Collapse
Affiliation(s)
- Peter D. Fransquet
- Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Parkville, Australia
- Population Health, Murdoch Childrens Research Institute, Parkville, Australia
| | - Delyse Hutchinson
- Population Health, Murdoch Childrens Research Institute, Parkville, Australia
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
- Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Melbourne, Australia
| | - Craig A. Olsson
- Population Health, Murdoch Childrens Research Institute, Parkville, Australia
- Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Melbourne, Australia
| | - Judy Wilson
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Steve Allsop
- National Drug Research Institute, Curtin University, Perth, Australia
| | - Jake Najman
- Queensland Alcohol and Drug Research and Education Centre, Schools of Public Health and Social Science, University of Queensland, Queensland, Australia
| | - Elizabeth Elliott
- Discipline of Paediatrics and Child Health, The University of Sydney, The Sydney Children’s Hospital, Hospitals Network, Westmead, Sydney, Australia
| | - Richard P. Mattick
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Richard Saffery
- Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Parkville, Australia
- Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Melbourne, Australia
| | - Joanne Ryan
- Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Parkville, Australia
- Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Melbourne, Australia
- Neuropsychiatry: Epidemiological and Clinical Research, Inserm U1061, Montpellier, France
- School of Public Health & Preventive Medicine, Monash University, Prahran, Australia
| | | |
Collapse
|
35
|
Zhang H, Gelernter J. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am J Addict 2016; 26:502-515. [PMID: 27759945 DOI: 10.1111/ajad.12465] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/17/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Risk for alcohol use disorders (AUDs) is influenced by gene-environment interactions. Environmental factors can affect gene expression through epigenetic mechanisms such as DNA methylation. This review outlines the findings regarding the association of DNA methylation and AUDs. METHODS We searched PubMed (by April 2016) and identified 29 studies that examined the association of DNA methylation and AUDs. We also evaluated the methods used in these studies. RESULTS Two studies demonstrated elevated global (repetitive element) DNA methylation levels in AUD subjects. Fifteen candidate gene studies showed hypermethylation of promoter regions of six genes (AVP, DNMT3B, HERP, HTR3A, OPRM1, and SNCA) or hypomethylation of the GDAP1 promoter region in AUD subjects. Five genome-wide DNA methylation studies demonstrated widespread DNA methylation changes across the genome in AUD subjects. Six studies showed significant correlations of DNA methylation with gene expression in AUD subjects. Three studies revealed interactive effects of genetic variation and DNA methylation on susceptibility to AUDs. Most studies analyzed AUD-associated DNA methylation changes in the peripheral blood; a few studies examined DNA methylation changes in postmortem brains of AUD subjects. DISCUSSION AND CONCLUSIONS Chronic alcohol consumption may result in DNA methylation changes, leading to neuroadaptations that may underlie some of the mechanisms of AUD risk and persistence. Future studies are needed to confirm the few existing results, and then to elucidate whether DNA methylation changes are the cause or consequence of AUDs. SCIENTIFIC SIGNIFICANCE DNA methylation profiles may be used to assess AUD status or monitor AUD treatment response. (Am J Addict 2017;26:502-515).
Collapse
Affiliation(s)
- Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
36
|
Kahl KG, Georgi K, Bleich S, Muschler M, Hillemacher T, Hilfiker-Kleinert D, Schweiger U, Ding X, Kotsiari A, Frieling H. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder. J Psychiatr Res 2016; 76:66-73. [PMID: 26919485 DOI: 10.1016/j.jpsychires.2016.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Alterations in brain glucose metabolism and in peripheral glucose metabolism have frequently been observed in major depressive disorder (MDD). The insulin independent glucose transporter 1 (GLUT1) plays a key role in brain metabolism while the insulin-dependent GLUT4 is the major glucose transporter for skeletal and cardiac muscle. We therefore examined methylation of GLUT1 and GLUT4 in fifty-two depressed inpatients and compared data to eighteen healthy comparison subjects. DNA methylation of the core promoter regions of GLUT1 and GLUT4 was assessed by bisulfite sequencing. Further factors determined were fasting glucose, cortisol, insulin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). We found significantly increased methylation of the GLUT1 in depressed inpatients compared to healthy comparison subjects (CG). Further findings comprise increased concentrations of fasting cortisol, glucose, insulin, and increased IL-6 and TNF-α. After six weeks of inpatient treatment, significantly lower GLUT1 methylation was observed in remitted patients compared to non-remitters. GLUT4 methylation was not different between depressed patients and CG, and did not differ between remitted and non-remitted patients. Although preliminary we conclude from our results that the acute phase of major depressive disorder is associated with increased GLUT1 methylation and mild insulin resistance. The successful treatment of depression is associated with normalization of GLUT1 methylation in remitters, indicating that this condition may be reversible. Failure of normalization of GLUT1 methylation in non-remitters may point to a possible role of impeded brain glucose metabolism in the maintenance of MDD.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Karsten Georgi
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marc Muschler
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | - Ulrich Schweiger
- Department of Psychiatry and Psychotherapy, University Hospital of Lübeck, Ratzeburger Allee 160, Germany
| | - Xiaoqi Ding
- Institute of Neuroradiology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexandra Kotsiari
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|